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Abstract—We consider the problem of efficiently managing
massive data in a large-scale distributed environment. We con-
sider data strings of size in the order of Terabytes, shared
and accessed by concurrent clients. On each individual access,
a segment of a string, of the order of Megabytes, is read or
modified. Our goal is to provide the clients with efficient fine-
grain access the data string as concurrently as possible, without
locking the string itself. This issue is crucial in the context of
applications in the field of astronomy, databases, data mining
and multimedia. We illustrate these requiremens with the case
of an application for searching supernovae. Our solution relies on
distributed, RAM-based data storage, while leveraging a DHT-
based, parallel metadata management scheme. The proposed
architecture and algorithms have been validated through a
software prototype and evaluated in a cluster environment.

I. I NTRODUCTION

Large scale data management is becoming increasingly
important for a wide range of applications, both scientific
and industrial: modeling, astronomy, biology, gouvernamental
and industrial statistics, etc. All these applications generate
huge amounts of data that need to be stored, processed and
eventually archived globally. In order to better illustrate these
needs, this paper focuses on a real life astronomy problem:
finding supernovae (stellar explosions).

In a typical scenario, a telescope is used to take pictures
of the same part of space at regular intervals, usually every
month. Corresponding digital images are then compared in an
attempt to find variable objects, which might be candidates
for supernovae. To confirm that such objects are supernovae,
considerable computational effort is necessary in order to
distinguish the supernovae themselves from the other variable
objects that may be present in the image: this requires to ana-
lyze the light curve and spectrum of each potential candidate.

To speed up the process of finding supernovae, multiple
parts of space should be analyzed concurrently: as there is no
dependency between different regions of space, the analysis

itself is an embarrassingly parallel problem. The difficulty lies
in the massive amount of data that needs to be managed and
made available to the machines providing the computational
power.

Huge data size.Hundreds of GB of images from various
parts of the sky may correspond to a single point in time.
Since the analysis requires multiple consecutive images ofthe
same part of the sky, the order of TB is quickly reached.

Global view. Managing independent images manually is
cumbersome. Applications finding supernovae (and not only)
are much easier to design if a global view of the sky is
available: finding the right image at a given time simply
translates into accessing the right part of the sky view for
that time. Let us consider a very simple abstraction of this
problem, in which the view of the sky is a very long string of
bytes (blob), obtained by concatenating the images in binary
form. Assuming all images have a fixed size, a specific part
of the sky is accessible by providing the corresponding offset
in the string. A simple transformation from two-dimensional
to unidimensional coordinates is sufficient.

Efficient fine grain access.While many images make up
the global view of the sky, each of them needs to be accessed
individually. As each image is much smaller than the size of
the string representing the sky, fine-grain access to substrings
is crucial.

Versioning.As new images are taken by the telescope, the
view of the sky needs to be updated, while the previous views
of the sky still need to be accessible. It is desirable to refer
to views of the sky at particular moments in time, therefore
versioning is necessary.

Read-read concurrency.Comparison of images for different
parts of the sky is a massively parallel problem. That is,
concurrent reads of different images in a view or concurrent
reads of the same image in different views should be efficiently
processed in parallel.
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Read-write concurrency.The telescope may gather and store
new pictures (i.e. new versions of some part of the sky) while
the analysis proceeds on the previous versions. Consequently,
in our model, it is important to allow new versions of our
global string to be generated and written while the earlier
versions are read and analyzed: read-write concurrency is
highly desirable for efficiency.

Write-write concurrency.As multiple telescopes may be
available for gathering pictures from different parts of the
sky, it is also desirable for the storage system to efficiently
support concurrent writes: concurrent substring updates should
generate the new corresponding strings in parallel.

Our case study clearly illustrates typical requirements for
the more general problem of massive data analysis: storage
of massive data, efficient fine grain access to small data
sets, snapshoting support. These requirements need to be
addressed in a space efficient way (by sharing common
parts of snapshots) and in a performance efficient way (by
supporting read/read, read/write and write/write concurrency).
Such requirements are also exhibited by many other types of
applications: databases ([1], [2], [3]), large-scale, continuous
data mining ([4]), multimedia ([5]), etc.

To address these requirements, one may rely on scalable
distributed file systems, which provide a familiar, file-oriented
API allowing to transparently access physically distributed
data through globally unique logical file paths. A very large
distributed storage space is thus made available to existing
applications that usually use file storage, with no need for
modifications. This approach has been taken by a few projects
like GFS [6], GFarm [7], GridNFS [8], LegionFS [9], etc. Note
however that most such approaches are not highly optimized
to efficiently support highly-parallel, fine-grain accesses to the
same file, especially when some concurrent accesses modify
the file. A similar, RAM-based approach is provided by the
concept ofgrid data-sharing service[10], illustrated by the
JuxMem [11] platform. However, in JuxMem data blocks are
not not fragmented, so the largest data block that the service
is able to store is limited by the size of the RAM of asingle
node.

In this work, we explore the possibility of simultaneously
addressing massive data storage, with efficient fine-grain ac-
cess optimized for high read-read, read-write and write-write
concurrency. As opposed to grid file systems, our service
mainly relies on RAM storage. This favors access efficiency,
while data persistence can still be provided following the
scheme described in [12]. Our paper is organized as follows.
Section II restates the specification of the problem in a
more formal way. Section III provides an overview of our
algorithmic design and precisely describes how data access
operations are handled. Concurrency issues are discussed in
Section IV. Section V provides a few implementation details
and reports on a preliminary experimental evaluation on a
multi-site grid testbed. On-going and future work is discussed
in Section VI.

II. SPECIFICATIONS

We focus on managing massive binary strings (in the order
of TB) in a highly concurrent environment. We introduce two
further denominations used throughout this paper: Apage is
any substring whose size is fixed (pagesize) and whose offset
is a multiple ofpagesize. A segmentis any concatenation of
consecutive pages. By convention, both thesizeof the strings
we manipulate andpagesizeare powers of 2. We define two
primitives to access strings:

vw = WRITE(id, buffer, offset , size)

A WRITE results inpatchingthe string identified byid with
the contents of the localbuffer of lengthsizeat the specified
offset. This generates a new incremental snapshot of the string,
identified by its version number: the returned valuevw. Version
numbers are successive integers starting with 0, which is
the initial version. (By convention, version 0 is the all-zero
string.) The generated snapshot is the view resulting from
the successive application of all previous patches (including
the current one). At this point, the string versionrw is said
to be published. We obviously want that eachWRITE will
eventually publish its version (liveness).

vr = READ(id, v, buffer , offset , size)

A READ results in filling buffer with the segment identified
by (offset, size)of string id. This segment is extracted from
versionv if v has already been published. The returned value
vr is then the number of the latestpublishedversion of the
string andvr ≥ v holds. If v has not yet been published, then
the read fails.

Observe that the above conditions guarantee that all non-
failing READ operations on the same versionv and same
offset and size will yield the same substring. This substring
is the segment(offset, size)which is obtained by successively
applying the firstv patches to the initial string. This ensures
that all READ operations “see” theWRITE operations in the
same order. Everything happens as if the patches had been
applied in the same successive order. This is a variant ofglobal
serializability.

For completeness, we provide an additional primitive al-
lowing to allocate storage space (ALLOC), which generates a
globally uniqueid.

III. D ESIGN

Our system is striping-based: the set ofpageswhich make
up the global binary string is distributed among multiple nodes.
Metadatadefines the association between an access request
defined by(v, offset, size)and the corresponding set of pages
storing the actual data. AWRITE operation generates a new
list of fresh pages stored on potentially new physical nodes.
This way, no page is deleted from the system at that time: the
previous version of the pages remain available throughREAD
requests until some garbage collection is ordered by the client.
Each page is labeled with the corresponding version number.



Fig. 1. Interactions between the actors: reads(left) and writes(right)

A. General architecture overview

Five kinds of actors make up the system:

Clients issueREAD and WRITE requests. There may be
multiple concurrent clients. Their number may dynamically
vary in time without notifying the system.

Data providersphysically store in their local memory the
pages created by theWRITE operations. New data providers
may dynamically join the system.

A provider managerkeeps a information about the available
data providers. On entering the system, each data provider
register with the provider manager. On eachWRITE request,
the provider manager decides which providers should be used
to store the newly generated pages, based on some strategy
that favors global load balancing.

The metadata providerphysically stores the metadata allow-
ing generated when new pages are created byWRITE requests.
This entity is queries by clients issuingREAD requests, in
order to find the pages corresponding to the requested range
and version. Note that this can be a distributed entity, based
on an off-the-shelf distributed hash table (DHT), which allows
efficient concurrent access to metadata.

The version manageris the key actor of the system. It stores
the number of the latest published version of a given data
string. It is also responsible for serializingWRITE requests to
each string, and for supplyingREAD requests with the latest
published string version.

Our service consists of distributed communicating pro-
cesses. Their interaction is described below. In a typical
setting, each process runs on a separate physical node. A node
may fulfill a specific role by running a single process, but it
may also play multiple roles.

B. How reads and writes work

The interactions between the entities of our architecture
are briefly illustrated on Figure 1, both forREAD (left)
andWRITE requests (right). For aREAD request, the client
contacts the version manager to get the latest version avail-
able for the corresponding string. If the specified version is
available the client contacts the metadata provider to retrieve
the metadata describing the pages of the requested segment
at the requested version. This operation results in sending
and processing parallel requests to the metadata providers(as
metadata are distributed and stored on a DHT). Once the client
gathers all the metadata, it contacts (in parallel again) the data
providers that store the corresponding pages and downloads
them into the local buffer.

On issuing aWRITE request, a client first contacts the
provider manager to get a list of providers, one for each
page of the segment to be written. The client then contacts
(in parallel) the corresponding providers and requests them
to store the respective pages. Each provider executes the
request and sends an acknowledgment to the client. When the
client has received all acknowledgments, the client contacts
the version manager and requests a new version number.
This version number is then used by the client to generate
the corresponding new metadata. Then the client sends these
metadata to the metadata provider (in parallel again) and waits
for an acknowledgment. Finally, the client contacts the version
manager and reports success.

Note that both forREAD and WRITE requests, the only
serialization occurs when interacting with the version manager.
These interactions are reduced to simply requiring a version
number: all the other steps are fully parallel.



C. Metadata management

Metadata store information about the pages which make up
a given data string, for each version available in the system.
Our goal is to support fast metadata query for theREAD
requests, fast metadata update for theWRITE requests, and
to minimize the overall metadata storage space in the system.

We organize metadata as a distributedsegment tree[13],
one associated to each version of a given stringid. It is a full
binary tree, with each node of associated to a segment in the
string identified byoffsetandsize. Such a node is said tocover
the segment. The left child of the node covers the first half
of the segment and the right child the other half, with leaves
covering a single page. The node stores additional information:
the global stringid and its version numberv (Figure 2(a)). To
find the pages making up a segment, one must traverse down
the segment tree, starting from the root. A node is visited
only if its covered interval intersects the segment. All leaves
reached this way correspond to the pages that are part of that
segment. For example, in Figure 2(a), the set of nodes explored
for segment[1, 2] is (0, 4), (0, 2), (2, 2), (1, 1), (2, 1). Out of
these,(1, 1) and(2, 1) are the leaves and refer to the pages of
segment[1, 2].

A WRITE request producing versionv of a given string
needs to build a new metadata tree. This tree is the smallest
(possibly incomplete) binary tree of the same height as the
initial tree such that its leaves are exactly the leaves covering
the pages of the patched segment. The leaves of this new
tree exactly refer to these pages that are part of the segment.
This incomplete metadata tree needs to be “weaved” into the
previous complete metadata tree such that its incomplete nodes
(having a single left or a single right child and referred to as
border nodes) will become complete by referring to the miss-
ing corresponding child in the metadata tree correspondingto
the previous version. Figure 2(b) illustrates this featurethrough
a simple scenario, in which the the initial version (white) is
1. TheWRITE request on segment[1, 1] is assigned version
2 (grey). Its tree, is woven into the white tree: the missing
left child of B2 is set toD1 and the missing right child of
A2 is set toC1. Similarly, a consequentWRITE request on
segment[2, 1] is assigned version 3 (black). Interweaving with
the previous tree (gray) translates into setting the right child
of C3 to G1 and the left child ofA3 to B2. Once they are
built, the metadata tree nodes are uniformly dispersed among
the metadata providers (through the underlying DHT).

IV. M ANAGING CONCURRENCY

A. Enabling parallel reads

Dealing with concurrent reads is straightforward. As ex-
plained in Section III, each client starts by requesting the
latest version available from the version manager. This step
(whose cost is negligible with respect to the following steps)
is the only interaction with a centralized entity. Then each
traverses the tree down to the leaves to fetch the corresponding
pages. Both tree traversal page fetching can be performed by
clients with full parallelism, with no synchronization necessary

with respect to other clients. This is favored by the fine-grain
dispersal of both data and metadata across the distributed
nodes.

B. Enabling parallel reads with respect to concurrent writes

As explained above, reads are performed in total isolation
by each client once the latest version is received from the
version manager. The only possible conflict with a concurrent
write request may occur at the level of the version manager,
when a writer increments the latest published version number.
Consequently, the relative cost due to such a potential conflict
is negligible with respect to the total access cost, we may
consider that accesses are fully parallel.

C. Enabling parallel writes

As explained in Section III,WRITE operations involve
two phases: writing the data (i.e., the pages), then writing
the metadata (i.e., creating the metadata tree nodes). For any
concurrentWRITE operations to segments of the same string,
pages may be written in parallel with no synchronization. This
holds even when theWRITE operations concern non-disjoint
segments of the string, as each written segment involves a new
set of pages to be stored on potentially new data providers.
Remember that data is never actually modified: the old version
of the data still remains available on some providers.

Building and writing new metadata tree nodes might seem to
require serialization. Writing a newer version implies weaving
the metadata subtree into the full metadata tree of the previous
version, as explained in Section III. Even when the previous
version is being written concurrently, we can actually predict
the missing children for the border nodes at a slight computa-
tion overhead on the side of the versioning manager, no matter
how many concurrent writes compete for metadata weaving.
Due to space constraints, we do not develop the details of
this mechanism here. Getting a precomputed set of border
nodes from the version manager enables the writer to generate
the metadata in complete isolation with respect to the other
writers. After metadata is written, the client reports success to
the version manager.

V. EXPERIMENTAL EVALUATION

A. Implementation details

Our implementation is based on the Boost C++ collection
of libraries [14]. We chose Boost for its standardization
throughout the C++ community, and for the wide range of
functionalities it provides, among which serialization, thread-
ing and asynchronous I/O are of particular interest to us. For
metadata storage and retrieval, we use BambooDHT [15], a
stable, scalable DHT implementation on top of which we build
the abstraction of our metadata providers.

Processes in our system communicate through RPCs. We
allow a single client to perform a large number of concurrent
RPCs to enhance parallelism and turn fine grain dispersion
of data and metadata in our advantage. However there is a
tradeoff between striping and streaming. Dispersing data too
fine grained might not pay off because of RPC call overhead.



(a) A segment tree: each node cov-
ers(offset, size), leaves refer to the
pages

(b) Constructing new metadata: col-
ored nodes are generated and linked
to the previous version

Fig. 2. Metadata representation of a 4-page block
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Fig. 3. Metadata overhead for a single client and throughputfor concurrent clients when nodes are in the same cluster (latency = 0.1 ms)

For this reason we use lightweight custom RPC framework,
which delays RPC calls to a single machine and streams all
of them in a singe real RPC call.

B. Experimental platform

Evaluations have been performed using the Grid’5000 [16]
testbed, a reconfigurable, controllable and monitorable ex-
perimental Grid platform gathering 9 sites geographically
distributed in France. We used 50 nodes from a cluster located
on the Grid’5000 site in Rennes. Nodes are outfitted with
x86 64 CPUs and 4 GB of RAM, and run Ubuntu (Linux
2.6). Intracluster bandwidth is 1 Gbit/s (measured: 117.5MB/s
for TCP sockets with MTU = 1500 B), latency is 0.1 ms.

C. Metadata overhead

As a major goal of our system is to allow applications
to store huge data (of the order of 1 TB), we first evaluate
how our metadata scheme impacts the performance of data
accesses. We first consider a single client which allocates 1TB
of memory, then accesses a segment varying from 16 KB to
16 MB. Note that the system allocates on write, which means
that only the segments that are written are physicaly allocated.
The data and metadata are distributed among a varying number
of data providers and metadata providers. We successively use
10, 20 and 40 distinct physical nodes, each hosting one data
provider and one metadata provider. The provider manager

and the version manager are deployed on separate, dedicated
nodes.

We measure the time it takes for metadata to be completely
read (respectively written) for aREAD (respectivelyWRITE),
for a 1 TB string, using 64 KB pages (Figure 3).

We observe that increasing the number of providers has a
small impact on the cost perceived by the client issuing a
READ request. For a fixed number of tree nodes distributed
on a variable number of metadata providers, the retrieval cost
perceived by the client is almost the same. In fact, using a
larger number of metadata providers slightly increases the
overall cost, as the client needs to manage more connections.
The main limiting factor is actually the performance of the
client’s processing power. However, there is a benefit in using
a large number of metadata providers: this improves the
reactivity of the metadata providers when they are under heavy
load, in conditions of high access concurrency, because of the
better load balancing.

In the case ofWRITE requests, our observation is different:
using a larger number of metadata providers improves the
cost of writing the overall metadata. This is explained by
our optimized RPC mechanism, which aggregates requests for
storage sent to the same remote process. This is more visible
when writing larger segments.



D. Throughput of concurrent clients

Our second experiment aims at evaluating the efficiency
of our lock-free scheme in a highly-concurrent environment.
We measure the average bandwidth per client forREAD
(respectivelyWRITE) requests when increasing the number
of simultaneous readers (respectively writers). We use 20
distinct nodes to deploy 20 reader clients and another 20
physical nodes, each of which hosts one data provider and
one metadata provider. The version manager and the provider
manager run on another two dedicated physical nodes. The
same configuration is used with writers instead of readers.

The experiments run as follows. First, a data string of
1 TB is allocated, using tiny, 64-KB pages (in order to
generate a access various disjoint segments within a 1 GB
interval of the data string in a 100-iteration loop. Clients
start simultaneously, then run without any synchronization. As
illustrated on Figure 3, in all settings, we can notice that the
per client bandwidth hardly decreases when the number of
concurrent clients significantly increases. Besides, notethat
this read bandwidth corresponds to a worst-case experiment,
in which client-level caching has been totally disabled! Read
bandwidth is much higher in real life situations, where client-
side caching of metadata tree nodes results in optimizing out
a large amount of RPC calls. In our experiments, the cache
can accommodate220 tree nodes.

VI. CONCLUSION

We address the problem of efficiently managing massive
data in a distributed environment. As a case study, we consider
a problem in the field of astronomy, consisting in searching
for supernovae in a huge set of images representing the sky
at various moments in time. Our problem illustrates typical
requirements for massive data analysis: storage of massive
data, efficient fine grain access to small data sets, snapshoting
support, with efficient read/read, read/write and write/write
access concurrency. We consider binary strings of size in the
order of Terabytes, which are intensively accessed by a set of
concurrent clients. For each such access, only a tiny segment
of such a string, of the order of Megabytes, is read or modified.

Our contribution is to propose an algorithm and system de-
sign which let the clients access the strings as concurrently as
possible, without locking the string itself. Efficient fine-grain
access to arbitrarily tiny parts of the data is provided thanks
to a distributed, memory-based storage of individual pages,
while leveraging a DHT-based, inherently parallel metadata
management scheme.

Preliminary experiments have been run on a cluster from
the Grid’5000 testbed. It turns out that our approach scales
well, both in terms of storage providers and in terms of
concurrency degree: the per-client bandwidth remains high
when the number of concurrent clients increases.

Our prototype is however a work in progress and needs fur-
ther refinement. First, fault tolerance, which becomes critical
in large-scale grid environments, is only partially addressed
through the use of the off-the-shelf DHT which implements
the metadata provider. We plan to also include fault-tolerance
mechanisms for the entities that currently represent single
points of failure (version manager, provider manager). Second,
we also intend to address the issue of garbage collection.
Finally, we intend to realize large-scale experimens with real
applications in the fields of databases and data mining.
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