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Abstract—Commodity clusters augmented with application 
accelerators are evolving as competitive high performance com­
puting systems. The Graphical Processing Unit (GPU) with a very 
high arithmetic density and performance per price ratio is a good 
platform for the scientific application acceleration. In addition to 
the interconnect bottlenecks among the cluster compute nodes, 
the cost of memory copies between the host and the GPU 
device have to be carefully amortized to improve the overall 
efficiency of the application. Scientific applications also rely on 
efficient implementation of the Basic Linear Algebra Subroutines 
(BLAS), among which the General Matrix Multiply (GEMM) is 
considered as the workhorse subroutine. In this paper, we study 
the performance of the memory copies and GEMM subroutines 
that are crucial to port the computational chemistry algorithms 
to the GPU clusters. To that end, a benchmark based on the 
NetPIPE [1] framework is developed to evaluate the latency 
and bandwidth of the memory copies between the host and 
the GPU device. The performance of the single and double 
precision GEMM subroutines from the NVIDIA CUBLAS 2.0 
library are studied. The results have been compared with that of 
the BLAS routines from the Intel Math Kernel Library (MKL) 
to understand the computational trade-offs. The test bed is a 
Intel Xeon cluster equipped with NVIDIA Tesla GPUs. 

Index Terms—Performance, GPU cluster, NetPIPE, CUDA, 
CUBLAS, Tesla, Math Kernel Library 

I. INTRODUCTION 

Applications that exhibit high amounts of data level par­
allelism show significant amount of performance speedups 
on Single Instruction Multiple Data (SIMD) architectures. 
Vector processors, such as the Cray X-MP are one of the 
earliest such architectures that pioneered in scientific comput­
ing. Though vector architectures had semantic advantages like 
reduced number of instructions per program (loop execution 
in single instruction), better mechanisms for branch handling 
[2], etc., expensive high speed on-chip memory and design 
costs limited their use to scientific computing. Many of the 
concepts revived as short-vector instructions/SIMD extensions 
in general purpose computing. Notable among them are the 
MMX, Streaming SIMD extensions (SSE) and Altivec. Com­
putational demands from the real-time graphics and gaming 
applications opened new avenues for specialized hardware 
graphics accelerators. The earliest 2-D and 3-D hardware 
graphics accelerators had dedicated logic (shader cores) for 
different operations in the graphics pipeline (vertex, triangle, 
pixel and rendering units). Because of the unbalanced graphics 

workloads, programmable shader cores were designed to unify 
the different graphics operations into a single architecture. 
Hence the programmable shader cores opened a new domain 
for general purpose computing. 

While the motivation for unified graphics architecture came 
from the nature of the graphics algorithms, the need for 
having a programming model for general purpose computing 
came from the potential speed ups that could result from 
reusing the same graphics hardware for non-graphics appli­
cation acceleration. Developing non-graphics applications via 
graphics API's such as the OpenGL and DirectX was merely 
a hack with a limited exposure to hardware resources and 
also reduced portability. Brook for GPU [3], a compiler and 
runtime implementation of the Brook stream programming 
language made an earlier attempt to provide general purpose 
computing on modern graphics hardware. To enable flexi­
ble programmable graphics and general purpose computing, 
NVIDIA came up with a hardware/software architecture called 
as the Compute Unified Device Architecture (CUDA) [4]. A 
set of development tools and compiler were released within 
this new framework. With an increasing interest to develop 
non-graphics algorithms for the GPU hardware, this field 
is rapidly progressing under the umbrella General Purpose 
Computing on Graphical Processing Units) (GPGPU) [5], [6]. 
AMD (ATI Technologies), another major player in developing 
the GPU hardware and standards designed a programming 
model called Brook+ that is based on the Brook GPU [3] 
for the FireStream GPU series . There are also sustained 
efforts towards the development of novel GPGPU technologies 
for future such as Intel Larrabee architecture [7] and Open 
Computing Language framework [8]. 

The higher performance per price ratio and the general pur­
pose computing model using the CUDA toolkit has placed the 
NVIDIA GPUs abreast to the contemporary High Performance 
Computing (HPC) technologies. Among the NVIDIA CUDA 
enabled GPUS, the Tesla series is specifically designed for 
the scientific computing domain. Clusters equipped with Tesla 
GPUs might not be readily usable by many scientific codes 
which have been traditionally parallelized to execute on a 
homogeneous system of compute nodes. The cost of the data 
transfers between the host and co-processor (GPU) memory 
spaces, cache effects, sustained floating point operation (flop) 
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rate, hardware speed and software overheads are some of the 
important factors that need to be well understood to redesign 
and develop efficient parallel algorithms that can utilize the 
hardware resources on the modern heterogeneous GPU clus­
ters. These insights would also in a a broader scope be useful 
to develop a unified framework under which a comparative 
analysis can be made among clusters deployed with other types 
of application accelerators such as PowerXCell 8i [9] and Field 
Programmable Gate Arrays (FPGA) [10]. 

An important issue that pops up in the co-processor com­
puting model is the overhead involved in transferring data to 
the device memory space vs. the actual computation time. This 
may be exacerbated in scientific algorithms where data has to 
be fetched across iterations from a storage device. Many scien­
tific applications also depend on fine-tuned numerical libraries 
such as the Basic Linear Algebra Subroutines (BLAS). In this 
paper, we present the results of the the latency and throughput 
of the memory copies between the host and the GPU device 
and Single, Double precision General Matrix Multiplication 
(SGEMM/DGEMM) subroutines provided by the CUBLAS 
library. The latency-throughput test is based on the Network 
Protocol Independent Performance Emulator (NetPIPE) [1] 
benchmark. Memory transfers between the paged/page-locked 
(pinned) buffers on the host and the device are studied. The 
performance results of the GEMM routines from the CUBLAS 
library are compared to that of the routines from the threaded 
implementation of the Intel Math Kernel Library (MKL). All 
the tests are run on an Intel Xeon cluster equipped with 
NVIDIA Tesla S1070 GPUs. 

The remaining paper is organized as follows. Section 2 
provides an overview of the GPU technologies that are mostly 
relevant to the HPC domain - the Tesla SI070 compute 
system, CUDA programming model and the CUBLAS library. 
Section 3 explains the NetPIPE benchmark mechanism and 
reports the performance results of the memory transfers. 
Section 4 compares the performance results of the CUBLAS 
SGEMM/DGEMM subroutines and the Intel MKL BLAS 
routines. The subsequent sections give the related work, future 
work and conclusions. 

precision. The architecture of the Tesla hardware is shown 
in Figure 1 

Fig. 1. Tesla Hardware Architecture 
Streaming Multiprocessor N 

Streaming Multiprocessor 2 
Streaming Multiprocessor 1 

Shared Memory 

| Registers"] | Registers | | Registers"] 

D Processor 1 CZ Processor 2 ~ ^ ~ Processor 8 L Precision — 
Double 

ecisio 
Unit 

Multithreaded 
Instruction 

Unit 

Constant Cache 

Texture Cache 

Device Memory 

Each Tesla T10 computing processor has 4GB of dedicated 
memory and 240 SPs. Table I summarizes the key differences 
between the Tesla S870 and SI070 compute systems. Either 
of these processors can be programmed using the CUDA 
framework, as explained in the next section. 

TABLE I 
COMPARISON OF TESLA S870 AND S1070 COMPUTE SYSTEMS 

Features 
No. of GPUs 
No. of SP cores/GPU 
Processor frequency 
Numerical precision 

Memory per GPU 
Peak memory bandwidth 
Memory interface 

System interface 

Tesla S870 
4 
128 
1.35 GHz 
IEEE 754 
single 

1.5GB 
76.8 GB/sec 
384-bit, 
800MHz 
GDDR3 
Two PCIe 
xl6 Genl 

Tesla S1070 
4 
240 
1.296 GHz 
IEEE 754 
single and 
double 
4 GB 
102 GB/sec 
512-bit, 
800MHz 
GDDR3 
Two PCIe 
xl6 Gen2 

A. NVIDIA Tesla for Scientific Computing 

The unified GPU hardware architecture [11] is built around 
a scalable array of Streaming Multiprocessors (SM). Each 
SM consists of eight scalar Streaming Processors (SP), two 
special functional units, multi-threaded instruction unit (MT-
IU) and on-chip shared memory. The NVIDIA Tesla com­
puting cards/system for HPC differs from the graphics coun­
terparts (Quadro and GeForce) in terms of the processor 
clocks, memory configuration, and computing features. The 
earlier generation Tesla GPUs (C870 graphics card and S870 
graphics system) offered single precision support. The latest 
feature in the Tesla processor series is the introduction of 
double precision floating point support in the hardware (Tesla 
T10 processor and its derivatives) that make them amenable 
to scientific applications that rely on the higher numerical 

B. CUDA Programming Model 
One of the main objectives of the CUDA programming envi­

ronment is to develop scalable and efficient parallel programs 
[4]. In this model, the GPU is viewed as a highly multi­
threaded compute device capable of executing many threads 
in parallel. The threads execute a sequence of instructions in 
a single-instruction multi-threaded fashion (SIMT). Compute 
intensive parts of the application are isolated into functions 
(called in the NVIDIA terminology as the kernel) and com­
piled into the instruction set architecture of the GPU device. 
The CUDA programming interface is designed with a minimal 
set of extensions to the C/C++ language [12]. To manage 
the device contexts, memory, and data transfers between the 
host and device, the CUDA framework provides two types of 



application programming interfaces (API's). They are the low-
level CUDA driver API and the high-level CUDA runtime API. 
The low-level API offers a better level of control, is language 
independent, but is harder to program. The CUDA runtime API 
is easy to program and provides a subset of the C standard 
library and built-in vector types. 

C CUBLAS Library 

The BLAS library [13] is a set of subroutines that provide 
standard building blocks for performing the basic vector 
and matrix operations. Level 3 BLAS routines handle the 
matrix-matrix operations and are computationally expensive. 
An efficient implementation of BLAS is highly desirable, as 
many scientific applications and other numerical linear algebra 
software packages such as the LAPACK, ScaLAPACK are 
build on those routines. CUBLAS [14] is the implementation 
of the BLAS on the top of NVIDIA CUDA driver for the 
GPUs. The CUBLAS library calls are used to create matrix 
and vector objects in the GPU memory space and fill them 
with data from the host memory. A sequence of CUBLAS 
calls are executed and the results are copied from the GPU 
space to the host memory. The CUBLAS API uses a calling 
convention akin to that of the C programming language and 
a FORTRAN type column-major order for storing matrix 
objects. To be compatible with legacy FORTRAN codes, two 
interfaces (thunking and non-thunking) are provided by the 
vendor that can be compiled using the standard FORTRAN 
compilers. The thunking interface can be used directly in an 
application without any modifications. When using the non-
thunking interface, the application has to allocate and deal­
locate the matrix objects using device pointers and explicitly 
handle the data movement between the CPU and GPU memory 
spaces. 

D. GPU Cluster 

The GPU cluster is configured with compute nodes compris­
ing of the Intel Xeon processors and Tesla SI070 blade server 
as shown in the Figure 2. The Tesla S1070 blade server has 
four Tesla T10 GPUs and two PCI express xl6 interfaces to 
the host systems. In our particular configuration, two compute 
nodes are connected to the S1070. 

Each compute node of the cluster has two Core2 Quad 
processors (Intel(R) Xeon(R) E5405) that are clocked at 3.0 
GHz and has 8 GB of main memory. The Core2 Quad 
processor has 2 X 6MB L2 cache per core pair and a front 
side bus running at 1333MHz. Each compute node has access 
to 2 GPUs of the SI070 server. Each Tesla GPU has 4 GB of 
dedicated device memory connected via a GDDR3 interface. 
The CPU-GPU subsystem architecture is shown in Figure 3. 
The BLAS implementation from the Intel Math Kernel Library 
(MKL - Version No: 10.0.1.014) [15] is used to evaluate the 
performance of the GEMM subroutines on the CPU. The Intel 
MKL library provides highly optimized and multi-threaded 
math routines based on the OpenMP library implementation. 

Fig. 2. Cluster of compute nodes connected to the Tesla S1070 
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II. N E T P I P E CUDAMEMCPY 

The micro benchmark is based on the Network Protocol 
Independent Performance Emulator (NetPIPE) [1] framework 
and measures the latency and throughput of the memory copies 
between the host and the GPU device. NetPIPE is a variable 
time benchmark , based on the principles developed in the 
HINT benchmark by Gustafson et al. [16]. The buffer sizes are 
increased at regular intervals with slight perturbations, i.e. for 
each buffer size of c bytes, three measurements are taken for 
c-p, p and c+p bytes, where p is the user defined perturbation 
value. To evaluate the memory transfer performance, the 
NetPIPE benchmark program performs streaming i.e one-sided 
memory copies between the host and device or vice-versa 
and a round-trip host to device memory copy in a ping-pong 
fashion. An additional test to measure the performance of 
the device to device memory copies is also available. The 
default test is the round-trip host-to-device memory copy. The 
latency and throughput of the memory copies are the measured 
performance metrics. The latency is used to calculate the 
throughput of the memory copies. 

The core algorithm used by the NetPIPE benchmark tool 



is shown in Algorithm 1. The value of nrepeat is calculated 
based on the time of the last data transfer as explained in the 
original NetPIPE paper [1]. This allows the tests to run enough 
times such that the total time of the runs is greater than the 
timer resolution. The default target time is 0.25 seconds. Eq. 
(1) gives the formula to compute the nrepeat. The minimum 
value of latency is taken after running the test for a fixed 
number of times (NTRAILS), which by default is set to 7. 

nrepeat = TARGET/\{bsz2/bszl) * tlast) (1) 

where tlast is the last transfer time for the buffer of size 
bszl and bsz2 is the buffer size for which the value of nrepeat 
is calculated. 

Input: streaming/ping-pong 
Input: host-device/device-device 
Input: paged/pinned host memory 
Output: Latency in seconds 
Output: Throughput in Gigabits per second 
/* Set the variables based on the input */ 
BT<-lif round-trip, else RT <- 0 
Paged <— 1 if paged, else Paged —̂ 0 if pinned 
/* Set T to a large value */ 
T = MAXTIME 
for i = 1 to NTRIALS do 

tO = TimeO 
forj = 1 to NREPEAT do 

if RT then 
I copy buf from host (paged/pinned)to dev 
I copy buf from dev to host (paged/pinned) 

end 
else 
I copy data from host/device to device/host 

end 
end 
tl = Time() 
/* Keep the minimum value of T */ 
T = min(T,tl-tO) 

end 
T = T/((l+rt)*NREPEAT) 
Algorithm 1: NetPIPE algorithm for memory copies 

The NetPIPE benchmark modules namely the cudaMemcpy 
and cuMemcpy are developed using the CUDA runtime API 
and driver API respectively (These APIs are discussed in the 
next section). The benchmark mechanism is however the same 
irrespective of the module. The results that are reported in this 
paper are using the NetPIPE cudaMemcpy module. The output 
file contains the buffer size, throughput and the transfer time. 

A. Evaluation of Memory Latency and Throughput 

The memory buffer is allocated as a linear array on the 
device. The memory buffer on the host can be allocated in one 
of the following two ways - as a paged memory array using 
the mallocO system call or as a page-locked (pinned) memory 
buffer using the CUDA API. The advantage in the later case 
is that the device to host memory bandwidth is higher due 
to asynchronous access of the memory using DMA, however 
at the expense of reduced available system memory for the 
operating system and other applications. 

For the NetPIPE throughput plot, the packet size in Bytes is 
shown in a logarthmic scale on the x-axis and the throughput 
achieved in Gigabits/sec on the y-axis. The throughput value 
in the plot is shown in bits/sec rather than Bytes/sec in order 
to maintain the consistency with the other NetPIPE modules 
that traditionally reported the throughput in Megabits/sec. 
However, the results that are discussed in the text are in GB/s 
to compare with the physical link speeds that are usually 
reported in GB/s. The NetPIPE latency plot has the packet 
size in Bytes on the x-axis and latency in Seconds on the 
y-axis. Both axes are represented in the logarithmic scale. 

As a verification step, the results that are obtained using Net­
PIPE benchmark are validated against the reference benchmark 
results provided by the CUDA SDK. The timing measurements 
by the reference benchmark are done using the CUDA timer 
functions. The timing function that is used for NetPIPE is 
based on the gettimeofdayO function. The results seem to be 
consistent to that of the reference benchmark. In all the results 
that are discussed below, the NetPIPE test is executed up to 
buffer sizes of 192 MB. 

Figures 4 shows the throughput and latency of the streaming 
or one-way memory copies from the host to the device. With 
the paged memory buffers on the host, we found that that 
throughput increased linearly and attains a maximum at 6MB 
of buffer size. The variation towards perturbation is not seen. 
For the host pinned memory, throughput reaches the saturation 
of 2.85 GB/s around buffer size of 8MB. 

A comparison of the results from the NetPIPE and the 
reference benchmark for the streaming host (paged) to device 
memory copy is shown in Table II 

TABLE II 
COMPARISON OF NETPIPE RESULTS WITH CUDA SDK BANDWIDTH TEST 

SDK Results 
Size (Bytes) 
16855040 
33632256 
67186688 

MB/s 
2012.5 
2075 
2102 

NetPIPE Results 
Size (Bytes) 
16777216 
33554432 
67108864 

MB/s 
2043 
2087 
2103 

Figure 5 shows the throughput of the one-way memory 
copies from the device to the host. For transfers between 
the device and host paged memory, the throughput reaches a 
maximum value of 2.0 GB/s around 64 MB. The throughput 
behaviour hence is similar to the host to device copy. It rises 
linearly and reaches the knee of saturation around 8 MB. 
With the pinned buffers on the host, the maximum through­
put achieved is 3.11 GB/s .The latency plots show relatively 
constant latency until 10 KB and rises roughly linearly with 
packet size beyond 1 MB. 

Figure 6 shows the ping-pong throughput and latency curves 
for memory copies between the host paged/pinned buffers and 
the device. For ping-pong copies between the host paged mem­
ory buffers and the device, a maximum throughput of 1.6 GB/s 
is observed. For the pinned buffer on the host, the throughput is 
2.9 GB/s. The PCIe 2.0 bidirectional bandwidth is 8 GB/s and 
hence the link is not completely saturated. For pinned memory 



NetPIPE streaming memory copies from host(paged/pinned) to device x NetPIPE streaming latency test from host(paged/pinned) to device memory 
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Fig. 4. (a) NetPIPE throughput curve for streaming memory copies from host (paged/pinned) memory to the device (b)NetPIPE latency curve for streaming 
memory copies from host (paged/pinned) memory to the device 

NetPIPE streaming memory copies from device to host (paged/pinned) _x NetPIPE streaming latency test from device to host(paged/pinned) memory 
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Fig. 5. (a) NetPIPE throughput curve for streaming memory copies from device to host (paged/pinned) memory (b)NetPIPE latency curve for streaming 
memory copies from device to host (paged/pinned) memory 

the curve linearly rises till 8 MB buffer size, beyond which 
the throughput remains constant. The throughput plot doesn't 
show any affects due to the perturbations. From the data set 
we found that the ratio of the average round-trip latencies 
for paged memory copies to that of pinned memory varies 
between 1 and 3. This shows that the pinned memory buffers 
show a considerable advantage for the application. 

Each GPU in the S1070 has access to 4GB of dedicated 
memory. The memory interface is 512-bit GDDR3 and has 
a peak bandwidth of 102 GB/s. Figure 7 shows the device to 
device throughput and latency curves. We had achieved a peak 
device throughput of 72 GB/s around 16 MB of buffer size. 
As evident from the throughput curves, there are perturbation 
affects on the throughput for the odd buffer sizes (c - p and 
c + p bytes). The latency curve remains constant till 1 KB 
(we presumed some startup overhead) beyond which it rises 
linearly. 

III. PERFORMANCE OF SGEMM AND DGEMM 
Single/Double Precision General Matrix Multiply 

(SGEMM/DGEMM) are BLAS3 matrix-matrix subroutines. 
The DGEMM is considered to be one of the important 
subroutines that is used in scientific computing and is often 
tuned by vendors for their own architectures to achieve the 
best performance. Moreover, the widely accepted LINPACK 
benchmark [17] that measures the systems floating point 
performance uses the DGEMM subroutines. 

The GEMM function performs one of the operations given 
by 

C := alpha * op(A) * op(B) + beta * C , 

where alpha and beta are double precision scalars and A, 
B, C are matrices of dimensions m x k, k x n and m x n 
respectively. 

The operation op(X) is defined as 



NetPIPE ping-pong memory copies between host(paged/pinned) and device NetPIPE ping-pong latency test between host(paged/pinned) and device memory 
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Fig. 6. (a) NetPIPE ping­pong memory copy throughput between the host paged and page­locked(pinned) memories and the device (b)NetPIPE ping­pong 
memory copy latency between the host and device for paged and page­locked memories 
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Fig. 7. (a) NetPIPE device to device memory copy throughput curve (b) NetPIPE device to device memory copy latency curve 

op(X) = X or op(X) = X' 

The Tesla T10 processor has 30 SM's with each SM having 
8 SPs. Each SM has one double precision floating point 
unit and a special functional unit. A single double precision 
multiply and add operation (1 MAD = 2FLOPS) can be 
performed by the double precision unit. Using the standard 
convention of measuring theoretical FLOPS as a product of 
the floating point operations per cycle, clock frequency, and 
the number of functional units, the double precision theoretical 
peak for the T10 processor is 30 * 1.3 GHz * 2 FLOPS = 78 
GFLOPS. The single­precision theoretical peak is 240 * 1.3 
GHz * 3 = 936 GFLOPS. 

The performance of the cublasSgemm and cublasDgemm 
subroutines is shown in Figure 8. The results are plotted 
for square matrices (m = n = k). The size of the matrices 
are increased in steps of 8 in each dimension (row and 
column). The GFLOPS are calculated without taking the 

memory transfer time into account. This gives an indication 
of the raw performance of the GPU device. The data set 
obtained for the cublasSgemm showed a particular pattern 
in terms of the performance. When m, n, k dimensions are 
exactly divisible by 64 ( 64 x 64 blocking), the subroutine 
showed peak performances. With multiples of 8 or 16 it shows 
the minimal performance and intermediate performance for 
multiples of 32. A partial dataset for both the precisions is 
shown in Table in with sizes varying from 8128 to 8180 in 
increments of 8. 

The performance of cublasDgemm also showed a similar 
pattern with the peak performance for multiples of 64, 32, 
intermediate performance for multiples of 16 and worst perfor­

mance for 8. However, when compared to the cublasSgemm, 
the difference between the highest and the intermediate per­

formance curves is relatively very small. 

For the GEMM routines, the ratio of the number of floating 
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Fig. 8. (a) cublasSgemm performance for different matrix sizes (b) cublasDgemm performance for different matrix sizes 

point operations to the data transfers to the GPU memory space 
is in the order of 0{j^). For matrices of larger dimensions, 
the GFLOPS calculated by taking into account the memory 
transfer times is slightly lesser than that of the GFLOPS 
obtained from the computations alone. The ratio is 0.95 
for the cublasDgemm and 0.87 for the cublasSgemm. Since 
many scientific applications run GEMM's on matrices with 
large dimensions the plots shown can be taken as real­time 
performance metrics. 

TABLE III 
CUBLAS SGEMM AND DGEMM PERFORMANCE 

cublasSgemm 
Size (m=n=k) 
8128 
8136 
8144 
8152 
8160 
8168 
8172 
8180 

GFLOPS 
344.32 
167.08 
167.42 
167.46 
245.67 
167.13 
166.58 
166.08 

cublasDgemm 
Size (m=n=k) 
8128 
8126 
8144 
8128 
8126 
8144 
8126 
8144 

GFLOPS 
69.96 
48.46 
62.11 
48.46 
62.11 
48.46 
62.11 
48.44 

A. Performance of SGEMM and DGEMM on CPU 
Figure 9 shows the performance scaling of the GEMM 

operation on the Dual Core2 Quads on the machine. The 
number of double precision floating point operations per cycle 
for the Core2 Quad is 4 and the theoretical GLOPS are 4 
* 3GHz * 4 cores = 48 GFLOPS. The number of single 
precision floating point operations per cycle is 8 and has 
96 GFLOPS of theoretical performance. The scaling curves 
show the performance of the MKL GEMM subroutines for 
1, 2, 4, 8 threads of execution. The number of threads that 
can be executed is controlled via OMP_NUM_THREADS 
environmental variable on the Linux systems. The peak single 
and double precision GFLOPS when running with 8 threads 
are 157.8 and 75.82 respectively. The performance scales 

linearly with the number of threads. Hence, we conclude that 
the subroutines are well parallelized with good utilization of 
the processor cores. 

When running with 8 OMP threads, the Thread Affinity 
Interface is used to bind all the threads to the available 
physical processing units. The interface is controlled via the 
KMP_AFFINITY environment variable. This interface is a 
very powerful mechanism to control the thread execution on 
Intel multicore processors. A detailed reference is available 
from the Intel Compiler documentation [18]. 

B. Performance Comparison of CPU and GPU 
The DGEMM subroutine from the CUBLAS library 

achieves a peak of 69 GFLOPS than that of the single Core2 
Quad processor which is close to 40 GFLOPS. However, 
there is a very close match in performance (76GFLOPS) 
when the MKL DGEMM call is executed using 8 threads on 
the compute node (dual Quads). However the cublasSgemm 
performance largely surpasses the MKL sgemm call. This 
brings up an important issue for the application developers 
to perform computations in single precision whenever the 
precision effects do not impact the application behaviour. The 
overall performance of the application might be significantly 
improved by using this mixed approach on GPUs. Since 
many scientific applications run iteratively, data would be 
available in the GPU memory space and hence may show 
good performance for matrices of lower dimensions, where 
the transfer time might have affected otherwise. 

IV. RELATED WORK 

The use of GPUs as a co­processor in cluster computing 
was studied by Fan et al. [19] for simulating the airborne 
contaminants using the lattice Boltzmann model from the 
Computational Fluid Dynamics (CFD). Since CUDA frame­

work was not available at that time, they used the graphics API 
for accelerating the application. However, the scaling curves 
might behave in a similar way with the CUDA framework. 
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Fig. 9 (a) Scaling of Intel MKL SGEMM subroutine using multiple threads (b) Scaling of Intel MKL DGEMM subroutine using multiple threads 

Barrachina et al. [20] evaluated the performance of the single 
precision CUBLAS routines and proposed hybrid algorithms 
with computations split across the CPU and the GPU. Ryoo 
et al. [21] studied performances on the Geforce 8800 GTX 
architectures and compared various parameters like concurrent 
active threads, speedup achieved, % of cpu-gpu transfer time, 
% of GPU execution time for a suite of application kernels 
developed using the CUDA framework. After analyzing some 
of the classical optimization principles like loop unrolling and 
shared memory buffering for improving the access patterns 
of the global memory, they observed that compute-intensive 
kernels that have low global memory accesses showed good 
speedups over the CPU. The most dated evaluation of the 
GPU for linear algebra subroutines and memory performance 
is done by Vasily Volkov et al. [22]. For larger matrices, 
the performance speedups were shown to be attaining 80 to 
90% of the the theoretical peak. The NVIDIA CUDA SDK 
also provided a reference bandwidth benchmark program that 
helped us validate the results. Unlike the reference benchmark, 
NetPIPE is a variable time benchmark that can take into 
account a user-defined perturbation value and runs the test 
for a wide range of buffer sizes. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we studied the performance of the 
SGEMM/DGEMM subroutines from the CUBLAS 2.0 library 
on the latest NVIDIA Tesla compute system. Also presented 
are the overheads in memory copies between the device and 
host. During the development of NetPIPE cudaMemcpy mod­
ule the results were validated against the reference benchmark 
results provided by the CUDA SDK. Based on the results 
in this paper, we conclude that the cudaMemcpy module 
of NetPIPE is accurate and can be used to measure data 
movement performance between the host and the GPU device. 
As a future work, we would like to integrate this module with 
the NetPIPE Infiniband module to incorporate memory copies 
to remote GPU devices using the Remote Direct Memory 

Access (RDMA) features of the Infiniband. We also intend to 
extend the NetPIPE framework to incorporate the performance 
of the asynchronous memory copies. These findings may be 
useful for GPU cluster application developers and system 
administrators likewise. 
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