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Abstraet=—-Comnvedity closters awgmented with application
accelerators are evolving as competitive high performance ¢om-
puting systems. The Graphical Processing Unil (GPLT) with 5 very
high arithmetle densliy and performance per price ratie s a good
platform far the scientific acceleration. In addldon to
the intereonnect bodtlenecks among the cluster compute nodes,
the cost of memory copies between the hosl and the GPU
device have 16 be carefally somortzed 10 improve the oversll
efficiency of the application. Sclentific applicadons alse rely on
#fficlent on of the Baric Linear Algebra Subroudnes
(BL.AS), among which the General Matrix Multiply {GENM} is
considered 8 the workhorse snbroutine. In this papen we study
the performandce of the memory copies aod GEMM subnoutioes
thal are cruclal to port the computational chemlstyy alporithos
ta the GPU closters. To that end, 3 benchmark based on the
NetPIPE [1] framework iz developed to evaluate the latency
and bandwidth of the memory copies hetween the host and
the GPIF device. The pecformamnee of the giople and douhle
precision GEMM sobroutines from the NVIDIA CUBLAS 28
library are studied, The resnlts have been compared with that of
the BLAS routknes Trons the Inted Math Kernel Library (MKL)
to understand the compulational trade-offs. The test hed is a
Inte] Xeon cluster equipped with NYIIMA Tesla GPUs.

Index Terms—Performance, GPU duster, NeiPIPE, CUDA,
CUBLAS, Teska, Muth Kerngl Liheary

I. INTRODUICTION

Applications that exhibit high amounts of data level par-
allelism show sigmificart amount of perfformance speedups
on Single Instrucion Mulkple Drarta (SIMD)) architectures,
Yeolor processors, such as the Cray X-MP ars one of the
earliest such architechures that pionecred in seientific comput-
ing, Though vector archilerturts had semantic advantages like
tecuced number of instructions per program (leop execukion
in gingle instruction), better mechanisms for branch handling
[2]. ete., expensive high spesd on-chip memory and design
costs limited their use to scientific computing. Many of the
cotcepts revived as short-vectnt instrcions/SIMDY extensions
in pensral purpose computing, Notable among them are the
MWX, Streaming SIMD extensions (SS5E) and Altivec. Com-
putational demands from the real-time graphics and gaming
applications opened new avehues ot specialized hardware
graphics accelerators, The carliest 2-D and 3-D hardware
graphics accelerators had dedicated togic {shader cores} for
different operaiions in the graphics pipeline (venex, tangle,
pixel and endering units). Because of the unbalanced graphics
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workloads, programmable shader cores were desighed to unify
the different graphics operations into a single architecture.
Hence the programmable shader cotes opened 2 new domain
for general purpose computing.

While the motivation for unifisd graphics architecture came
from the netwes of the graphics algorithms, the need for
having & propramming mode] for genem] purpose computing
came from the potential speed ups that could result from
reusing the seme graphics hardware for non-graphics appli-
¢abon acceleration. Developing non-graphics applications via
graphics APT's such as the OpenGL and DirectX was merely
& hack with a limdted exposure 10 hardwar cesources and
dlso reduced portability. Brook for GPU [3], a compiler and
runtime implementation of the Brook stream programming
langmage raade an carlicr attempi to provide gencral purpose
¢omputing on modern graphics hardware. To enable Aexi-
ble programmablz graphics and general purpose computing,
NVIDLA came up with a hardwarsfsoftware architeciure called
as the Compute Unified Device Aschitecture (CUTDA) [4]. A
set of development topls and compiler were released within
this aew framework. With an increasing interest o develop
non-graphicz alporithms for the GPU hardware, thiz field
is rapidly progressing wnder the pmbrella General Purpose
Computing on Graphical Processing Units) (GPGPU) [5], [6].
AMT: (ATT Technologies), ancther major player in developing
the GPLU bardware and standards designed a programming
ivede] Called Brook+ that is based on the Brook GPU [3]
for the FireSoeam GPU series . There are also sustained
efforts towards the development of novel GPGPU technologies
for future such as Intel Larrabes architecturs [7] amd Open
Computing Language framework (E].

The higher performance per price ratio and the genecal pur-
pose computing modet wsing the CUDA toolkit has placed the
NVIDIA GPUs abregst to the contemnporary High Performance
Computing (HPC) technologies. Among the NVIDIA CUDA
emabled GPUS, the Tesla series is specificelly designed for
the scientifc computing domain. Clusters equipped with Tesla
GPUs might not be readily wsable by many scientific codes
which have been traditipnally parsllelized w0 execute on a
hemogeneous system of computs nodes. The cost of the data
tranzferz between the host and co-processor {GPL) memory
spaces, cache effects, sustained Roating point operation (flop)
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rate, hardware speed and software overheads are some of the
impontant fackors that need ta be well understood te redesiyn
and develop effictent paralle] algorithms thar can utiltze the
hardware resources on the modern heterogeneous GPU clus-
ters, These insights would alsa in a 2 broader scope be useful
to develop & unified Framework under which a comparative
analysis can be made among clusters deployed with other types
of applicetion accelerators such as PowerXCell & [9] and Field
Programmable Gate Arrays (FPGA) [10].

An important issue that pops up in the to-processor com-
puting model is the overhead involved in traneferming data
the fevice memory space vs. the actual computation time. This
may be exacerhated in scientific algorithms where data has o
be fatched aoross fterations from o storage device, Many scien-
tific applications also depend on fine-tuned numerical libraties
such as the Besic Linear Algebra Subroutings (BLAS), In this
paper, we present the results of the the latency and throughput
of the memory copies between the host and the GPL device
and Single, Doubde precision General Matrix Multiplication
(SGEMMDGEMM) subroutines provided by the CUBLAS
library. The latency-throughput test is based on the Network
Protocol Independent Performance Emulator {(NetPIPE} [1]
benchmark. Memoty mansfers between the paged/page-locked
(pinned) puffers on the host and the device are studied. The
performance results of the GEMM toutines from the CTUTBLAS
library are compared 1o that of the routines from the threaded
implementation of the Intel Math Kemel Library {MEL}. All
the tests are mun om oan Intel Meon closter squipped with
NVIDIA Teslz S1070 GPUs,

The remeining paper is organized as follows, Section 2
provides an overview of tw GPD wechnologes that are mostly
relevant 1o the HPC domain - the Tesla SLOT0 compute
gystem, CUDA programming mode] and the CUBLAS library,
Section 3 explains the NePIPE benchmark mechanism and
reports the performance vesults of the memory mransfers,
Section 4 compares the performance results of the CUBLAS
SGEMMMGEMM subroutines and the Intel MEL BLAS
routines. The subsequent sections give the elated work, future
work and conclusions.

A NVIDIA Testa for Sciendfic Computing

The unified GPU hardware architecture [11] is built around
a scalable array of Streaming Multipracessors {SM}. Each
3M consists of eight scalar Streaming Processors (SP), two
special funchonal units, multi-thresded instrucbion wnit (WT-
Iy and on-chip shared memory. The NVIDIA Tesla com-
puting cardsfsystem for BPC differs from the graphics coun-
terparts (Quadro and GeForce) in terms of the processor
clocks, memory configuration, and computing features, The
carlier generaion Tesla GPUs (C870 graphics card and S870
graphics systemn) offered single precision suppont. The latest
feature in the Tesla processor series is the inmoduction of
double precision floating point support in the hardware {Tesla
T10 processor and its desivatives) that make them amenable
ko scientific applications that rely on the higher numerical

precision. The architecture of the Teslz hardware iz shown
in Figure 1
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Each Tesla T10 computing processor has 408 of dedicated
memory and 240 SPs. Table T summarizes the key differences
between the Tesla S370 and S1070 compute systems. Bither
of these processors can be programmed using the CUDA
framework, 25 explained in the next section.

TABLE 1
COMPARISON OF TESLA 5370 AND 21070 COMPUTE SYSTEMS
[ Fratmrs Tds 5570 | Treln G170
No. of GFLs £ E]
Ne. of 3P corss5PU 128 240
Process freaquency 1.35 GHz 12896 GHz
Numerical precizton IFEE T8 | [EEE  TM
single single  and
diowutslz
Memwery per GFU 1568 F Y]
Prak memory bandwidth | 768 GBisec 12 GRfeex
Memory mterface 354 hit, S12-hit,
BOONHz M Hz
GODR3 GRS
System mterfoce Tenr PCle [ Twe Pl
x16 Genl | %16 Gen2

B. CUDA Programmitg Model

One of the main objectives of the CUDA programming sorvi-
comiskint is 1o develop scalable and efficient paratlel programs
[4]. In thi= model, the GPU iz viewed as a highly mulii-
threaded computs device capable of executing many (heads
in paraflel. The thrsads exzeutd a sequence of instructions in
a gingle-insruction multi-threaded faghion (SIMT), Compute
intensive pans of the applicaiion are isolated into functons
(called in the NVIDIA terminolopy as the kernel) and com-
piled into the instruction set architecture of the GPU deviee,
The CUDA programming interface is designed with & minimal
set of extensions to the CAC4++ languape [12]. To manage
the device contexts, memory, and data ransfers bervezn the
host ard device, the CUDA framework provides two types of



application prograneming interfaces (APT's}. They are the Iow-
level CUDA driver APl and the high-leve] CUDA runtime AFL
The low-level APT offers a better level of conmol, is langpage
independent, but is barder to program, The CUDA autiting: APL
i5 easy to program and provides 3 subset of the C stendard
libraty and buiit-in vector types.

C CUBLAS Library

The BLAS libeary [13] is a =t of subroutines that provide
standard toilding blocks for performing the basic vector
and matrix operations. Level 3 BLAS routines hundle the
MAlE-marix operations and 2re computationally expensive,
An efficient implementalion of BLAS is highly desivable, as
many scientific applications and other oumerical linear alpebma
software packages such as the LAPACK, ScalAPACK are
build on those routines. CUBLAS [14] is the implementation
af the BLAS on the top of NVIDIA CIUDA driver for the
GPUs, The CUBLAS library calls are used o create mabix
and vector objects in the GPU memory space and fll them
with data from the host memory. A saguence of CUBLAS
calls are executed and the results are copied from the GPU
space to the host memwory. The CUBLAS APT uses & calling
convention zkin to that of the C programming lanpuage and
a FORTRAN wype column-major order for storing metrix
objects. To be compatible with legacy FORTEAN codes, two
interfaces (thunking and non-thunking) are provided by the
vendor that can be compiled vsing the standard FORTRAN
compilers. The thunking interface can be used directly in an
application without any modifications. When using the noo-
thunking interface, the application has to allocate and deal-
locate the matix objecis using device pointers and explicitly
handle the data movement between the CPU and GPU memory
spaces.

D GPU Cluster

The GPU ¢luster is configured with compute nodes compris-
ing of the Intel Xeon processors and Tesla 51070 blade server
as shown in the Figure 2. The Tesla 31070 blade server has
four Tesla T10 GPLUs and two PCL express x16 interfaces to
the host systems. In our particular configuration, two compute
nodes are connected to the 51070,

Each compute node of the cluster has two Core2 Quad
processors (Intel(R) Neon(E) BE54035) that are clocked ar 3.0
GHe amd has 8 GB of main memory. The Core? Cuad
processor has 2 X 6MB L2 cache per core pair and a fromt
side bus running at 1333MHz. Each compute node has access
to 2 GPUs of the 31070 server. Each Tesla GPU has 4 GB of
dedicated device memory connected via 2 GDDRS intecface.
The CPU-GPU subsystem architecture is shown in Figure 3.
The BLAS implementation frm the Intel Mah Kemnel Library
(MEKL - Version No: 10.0.1.014) [15] is used to evadeats the
performance of e GEWMM sutroutines on the CPUL The Intel
MEL library provides highly optimized and multi-threaded
math toutines based on the OpenMP by implamentation.

Fig. 2. Closker of computs nades connected to the Tesla 31070
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II. NETPIPE cunDAMEMCPY

The micro benchmark is based on the Network Protocol
Independent Performance Emwlator (NetPIPE} [1] framework
and medsures the lateney and thooughput of the memory copies
between the host and the GPU device. NetPIFE is a variabie
time benchmark . based on the principles developed in the
HINT benchmark By Gustafzon et al. [16], The baffer sizes ar
increased at regular indervals with slight perturbations, i¢. for
each buffer size of ¢ bytes, three measurements zre taken for
¢-p. p and c+p bytes, where p i3 the user defined petirbation
value, To evaluste the memooy wansfer performance, the
MNetPTPE benchmark program performs streaming i.e ome-sided
memory Copies between the host and device or yice-versa
and a round-tiip host W devics MEmoTY Copy in a ping-pong
fashion. An additonal test to measure the performance of
the device 1o device memory copies i5 also available, The
detfanlt test is the round-trip host-to-device memory copy. The
lateney and throughput of the memory copies are the measurad
performance metrics. The latency is wsed ko celculate the
throwghput of the memaory copies.

The core alporithm wsed by the MetPIPE benchmark ool



is shown in Algorithm 1. The value of mepeat is caleulated
based on the Gme of the last deta transfer as explained in the
ariginal NetPIPE paper [1]. This allows the tests to run etiough
times such that the wyal tme of the uns is greater than the
timer resolution. The defouli target time is 0.25 seconds. Bq,
i1) gives the formwla v compute the nrepeat. The minimum
value of latency is taken after ranning the test for a fixed
number of times (NTRATLS}, which by default is set to 7.

nrepeat = TARGET [{{bez2/be21) + Hast) {1}

where tlast is the last transfer time for the buffer of size
bszl and bez2 is the buffer size for which the value of nrepeat
15 caleulated.

Inpwt; sircaming/ping-pong
Input: host-devicardavice-device
Inpaat: pagedipinbed host menory
Owtput: Latency in seconds
Ohatput: Throughput in {Gigabits per seoomd
#* Set the variables based on the inpul *f
BT +« 1 if roundHnip, elee KT «— 0
FPaged — 1 if papged, else Paged «— 0 if pinged
i* St T to a farge value */
T = MAXTIME
for i = [ v WITRIALS die
1] = Time=(}
for | = } v NREPFAT do
if T then
copy buf from host (paged/pinnedii dev
a copy buf fom dev to host {paged/pinned)
5 |
b
| copy data from host'device to devicahost
end
% |
tl = Time{)
H* Keep the minimum value of T */
T = min{T.t1-t)

end

T= Tmr_l-n-rL]|*1~~{r'::>3.r=5::znip,zE
Algprithm 1 algcrithm for memory copies

The NetPIPE benchimark meodules pamely the cudaMemcpy
and cuMemepy are developed using the CUDA runtime APT
and driver APT respectively (These APIs are discussed in the
next sechion). The benchmatk mechanism i1s however the same
irrespectve of the moduls. The results that are reported in this
papet #re using the NetPTPE codaMemcpy module. The ourput
file containg the buffer size, throughpot and the wanstar time.

A Evaluation of Memery Latency and Throughput

The metmory buffes is allocaed a3 a hnsar atay on the
device. The memoery buffer on the host can be allocated in one
of the following two ways - a5 2 paged memory amey using
the malloc) syster call or 45 8 page-locked (pittwed) memory
buffer using the CUDA APIL The advantage in the later case
i3 that the device to host memory bandwidih is higher due
to asynchronous access of the memory using DMA, however
at the expense of reduced available syztem memory for the
operating systenl and other applications.

For the NetPIPE throughput plod, the packet size in Bytes is
shown in 2 logarthmic scale on the x-axis and the trooghput
achieved in Gigabits/ser on the y-axiz, The throughput value
in the plot is shown in bitsfsec midwr than Bytesfsec in arder
ty maintain the consistency with ibe other NetPIPE modules
that tadifionally reported the throughput in Megabisfsec,
However, the resulis that are discussed in the text are in GBfs
to compare with the physicel link speeds that are wsually
reported im GHfs. The NetPIPE latency plot has the pachet
size in Bytes on the x-axis and latency in Secomuls on the
y-axuis. Both axes sre reprogented in the lopanithmic scale.

Ax a verification step, the results that are obtzined u=ing Net-
FIFE benchmadk are validated against the reference benchimack
resuits provided by the CUDA SDEK. The timing measuieiments
by the reference benchmark are dere wsing the CUDA timer
fonctions. The timing function that is uvsed for NetPIFE is
based on the gettimeofday{) function, The msulls secm to be
conststent 1o that of the reference benchmark. In all the resuks
that are diseussed below, the NetPIPE wst 19 executed up to
buffer sizes of 192 MB.

Figures 4 shows the throughput and laterwey of the streaming
OF DhEe-WAY MEmory copies from the host to the device, With
the paged memory buffers on the host, we found that that
throughput increased linearly and attains a maximum at 6ME
of buffer size. The vanation towands perturbation is not seen.
For the host pinned memory, throughput reaches the saturation
of 2,85 GB/s around buffer size of 8MB.

A comparison of the results from the NetPIPE and the
teference benchmark for the streaming host (peged) to device
memory copy 1% shown in Table IT

TABLE Il
Compakizon oF NETPIPE RESULTS WiTH CUDA SDE PANDWIRTH TEST
DR ReEsuls HeP PR Fesulia
Si2e (Byies) | MBS iz [Hynsw | MESS
(TR0 IS CRikiar) 1)
LR R R hEE R [T
L b7 130088 210 G f[GEEES JrALEE)

Figore 5 shows the throughpul of the onc-way memory
copies fromy the device tp the hosi. For wansfers berween
the device and host paged memory, the throughput reaches &
maximurm value of 2.0 GBfs around 64 MB. The throughput
behaviour hence is similar to the host to device copy. It rises
lincarly and reaches the knee of saturation arcund § MB.
With the pinned boffers on the host, the maximum through-
put achieved is 3.11 GB/s.The latency piotzs show relatively
constant latency uiatid 10 KB and tises roughly linearly with
pecket gize beyond 1 MB.

Figure & shows the ping-pong throughput and 13tency curves
for memory copics between the st paped/pinmed buffars and
the device. For ping-pong copies betaeen the host paged men-
ary buffers and the device, a maximum throughpat of 1.6 GBfs
is observed, For the pinned butfer on the host, the throughput is
2.9 GB/s. The PCle 2.0 bidirectional bandwidth is & CBf5s and
hence the Link is not completely samrated. For pinned memory
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the curve lincarly mises B!l 3 MB buffer size, beyond which
the throughput remains constant. The throughpur plot dossn’t
show any affects due 10 the periurbations. From the data set
we found that the ratio of the average round-inp lsencies
for paged memory copies o that of pinned memory varies
between 1 and 3. This shows that the pinned memory boffers
show a considerable advantage for the application.

Each GPU in the 51070 has access to 4GB of dedicared
memory. The memory interface is 512-bit GDDR3 and has
a peak bandwidih of 102 GB¢s. Fipure 7 shows the device to
device throughput and latency curves, We had achieved a peak
device thooughput of 72 GB/s around 16 MB of buffer size.
Ax evident from the throughput curves, there are perhrrbation
affzcts on the throughpue for the odd buffer sizes (¢ - p and
c + p bytesy The latency cwve remains constant gll 1 KB
fwe presumed some starmp oyverhead} bevond which it rises
lineatly.
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III. PERFORMANCE OF SGEMM AaND DGEMM

Single/Double  Precision General Matrix  Muliiply
{SGEMA/DGEMM) are BLASI mateix-matrix subroolines,
The DGEMM sz conzidersd to be one of the important
subroutines that iz used in scientific computing and is often
mned by vendors for therr own architeciures (0 achisve the
best pecfommance. Moreover, the widely accepted LINFACK
benchmark [17] that measvres the systems focating point
performance uses the DGEMM subroutines.

The GEMM function performs one of the operations given
by

O = aipha s op(A) v op(B) + befa + (7

where alpha and beta are double precision scalars and A,
B, C are matrices of dimensions m X ¥, K Xxnand m x n
respectively.

The operation op{X) is defined as
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op(X) = X or op(X) = X"

The Tesla T10 processor has 30 SM's with each SM having
8 5Ps. Back EM has one double precision flosting point
unit ard 2 special functional unit. A single double precizion
muliply and add operation (1 MAD = ZFLOPS) can be
performed by the double precision wnit, Using the standard
convention of measuring theoretcel FLOPS as a product of
the Aoating poinl operations per cycle, clock frequency, and
the number of functional units, the double precizion theoretcal
peak for the T10 processor is 30 * 1.3 GHz = 2 FLOPS =78
GFLOPS. The single-precision theoretical peak is 240 % 13
GHe * 3 = 936 GFLOPS,

The performance of the cublasSgemm and coblasDgemm
submoutines is shown in Figuee 8 The results are plotled
for square meatrices (m = n = k). The size of the matrices
are increased in seps of £ in each dimepsion (row and
column). The GFLOPE are cakulated without lking the
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memory tranefer time into account. This gives an indicadon
of the raw performance of the GPU device. The data set
obiained for the coblasSgemm showed a particular pattern
in terms of the performance. When m, n, k dimensions are
exactly divisible by 84 { 64 x 64 blocking), the subroutipe
showed peak performances. With multiples of 8 or 16 1t shows
the mininal performance amd intermediate performance for
nuditiples of 32, A pardal dataset for both the precisions is
shown in Table ITT with sizes varying from 8128 o K180 in
increments of 8.

The performance of cublasDigemm alse showed a similar
pattern with the peak performance for moitiples of 64, 32,
intermediate performance for multiples of 16 and worst perfor-
mance for 8. However, when compared (o the cublasSgemm,
tive difference between the highest and the intermediatz per-
formance curves is relabvely very small.

For the GEMM routines, the ratic of the number of floating
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poitt operations (o the d!ma trans=fers o the GPL memory space
is in the order of Oz ). For matrices of larger dimensions,
the GFLOPS calculated by taking into account the semory
transfer titnes is slightly lesser than that of the GFLOPS
obtained from the computations alone. The ratic is (95
for the cublasDgermunt and (.87 for the cublasSgemm. Since
many scientific applications run GEMM's on malnices with
large dimensions the ploss shown can be taken as realdime
performance: metrics,
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A Performance of SOEMM and INGEMM on CPU

Figure 2 shows the performance sceling of the GEMM
operation on the Dual Core2 Quads on the machine. The
number of double precizion floating point operations per cycle
for the Core? Quad is 4 and the theoretical GLOPS are 4
* 3GHz * 4 cores = 48 GFLOPS. The number of single
precizion floating point operations per cycle is B and has
95 QFLOPS of theoretical performance. The scaling curves
show the performence of the MEL GEMM sobroutines for
1, 2, 4, 3 tueads of execution, The number of threads that
can be executed is controlled wia OMP MNUM _THREADS
environmental veriable on the Linux systems. The peak single
and dooble preciston GFLOPS when running with 8 threads
gre 157.8 and 75.82 respectively. The performance scales
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lineatly with the aumber of threads, Hence, we conclude that
the subroutines arz well parallelized with good wibization of
the processor cores.

When running with 8 OMFP threads, the Thread Afbimicy
Interface 3= used to hind all the threads to the availahle
physical processing units. The interface is controlled via the
KMP_AFFINITY ervironment vanable. Thiz interface Is &
very powerful mechanjsm to control the thread execution on
Intel mwlifcore processors. A detmled reference 15 available
from the Intel Compiler documentation [18].

B. Performance Comparizon of CPU and GPU

The DGEMM subroutine from the CUBLAS library
achieves g peak of 69 GFLOPS than that of the single Core2
Quad processor which 18 clese to 40 GFLOPS. However,
there is a very close match in performance (?6GFLOPS)
when the MEKL DGEMM call is execnled using & threads on
the compute node (dual Quads). However the cublasSpemm
performance largely surpasses the MKL sgemm call. This
brings up an itysonant issue for the application developers
to perform computabions in singlt precision whenever the
precision effects do not impact the application beheviour, The
overall performance of the application might be significantly
improved by using this mixed approsch on GPUs. Since
many scientific applications run itecarively, data would be
availeble in the GPU memory space and hence may show
good performance for mamces of lower dimensions, where
the transfar ime might have affacted gtherwise.

1¥. RELATED WORK

The use of GPUF: 45 & co-procsssor in cluster compubing
was studied by Fan et al. [1%] for simulating the airbome
contaminants using the latice Bolizmann model from the
Computational Fluid Dynamics (CFD. Since CUDA frame-
wonk was not available at that ime, they used the graphics API
for accelerating the application. However, the scaling curves
might behave mn & similar way with e CUDA framework.
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Barraching et al. [20] evaluated the performance of the single
precision CUBLAS roudnes and proposed hybrid algorithms
with computations split across the CPU and the GPU. Ryoo
el al. [21] studied perforimances on the Geforce 5800 GTX
architecturss and compired varous parameters like concurrent
active threads, spesdup achiaved, % of cpu-gpu ransfer Hme,
& of GPU execution time for a suite of application kemels
developed wsing the CUDA framework, After analyzing sorme
of the classical optimization principles like loop unrolling and
shered memory buffering for improving the access patterss
of the global memory, they observed that compute-intensive
kernels that have low global memory accesses showed good
speadups over the CPUL The most dated evaluation of the
OPU for linear algebra subrowines and memery performance
iz done by Vasily Wolkov et al. [22]. For larger matrices,
the performance spesdups were shown to be atzaning 20 1o
9040 of the the theoretical peak. The NVIDLA CUDA SDE
also provided a reference bandwidth benchmark program that
helped us validate the results. Unlike the reference benchmart,
MNetFIFE is a variable time benchmark ithat can ke imto
accout & wser-dened perutbation vafue and runs the test
for a wide range of buffer sizes.

¥. CONCLUSIONS AND FUTURE WORK

In this paper, we smdied the performance of the
SGEMM/DGEMM sobrowtings from the CUBLAS 2.0 Library
oft the latest NVIDIA Tesla compute system. Also presented
are the overhesds it memoy copies between the device and
host. Duting the development of NetPTPE cudaMemcpy mod-
ule the resolis were validated against the reference banchmark
césults provided by the CUDA SDK. Based on the results
in this paper, we conclude that the codaMemcpy moduls
of NetP[PE iz accurate and can be used to measure data
movement perfonnatice betwesn the host and the GPU device.
Az a fumire work, we would like o integrate this medule with
the NetPIPE Infinibend module to incorporate memory copies
to remote GPU deviess using the Kemote Direct Memory
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(8] Scaling of iotel MKL SGEMM subroatios usiog moldpke threads (b Scaliog of el MEL DGEMM sobroutees uwsing, multiple. threads

Acceds (RDMA) feaures of the [nfiniband, We alse intend to
extend the NetPTPE framework 1o ingorporass the performatice
of the ssynchronous memory copies. These findings may be
useful for GPU cluster application developers and system
admipistrators lkawise.
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