
Performance Analysis of Memory Transfers and
GEMM Subroutines on NVIDIA Tesla GPU Cluster

Veerendra Allada, Troy Benjegerdes
Electrical and Computer Engineering, Ames Laboratory

Iowa State University
Ames, IA, USA

allada@iastate.edu, troy@scl.ameslab.gov

Brett Bode
National Center for Supercomputing Applications

Urbana-Champaign, IL, USA
bbode@ncsa.uiuc.edu

Abstract—Commodity clusters augmented with application
accelerators are evolving as competitive high performance com­
puting systems. The Graphical Processing Unit (GPU) with a very
high arithmetic density and performance per price ratio is a good
platform for the scientific application acceleration. In addition to
the interconnect bottlenecks among the cluster compute nodes,
the cost of memory copies between the host and the GPU
device have to be carefully amortized to improve the overall
efficiency of the application. Scientific applications also rely on
efficient implementation of the Basic Linear Algebra Subroutines
(BLAS), among which the General Matrix Multiply (GEMM) is
considered as the workhorse subroutine. In this paper, we study
the performance of the memory copies and GEMM subroutines
that are crucial to port the computational chemistry algorithms
to the GPU clusters. To that end, a benchmark based on the
NetPIPE [1] framework is developed to evaluate the latency
and bandwidth of the memory copies between the host and
the GPU device. The performance of the single and double
precision GEMM subroutines from the NVIDIA CUBLAS 2.0
library are studied. The results have been compared with that of
the BLAS routines from the Intel Math Kernel Library (MKL)
to understand the computational trade-offs. The test bed is a
Intel Xeon cluster equipped with NVIDIA Tesla GPUs.

Index Terms—Performance, GPU cluster, NetPIPE, CUDA,
CUBLAS, Tesla, Math Kernel Library

I. INTRODUCTION

Applications that exhibit high amounts of data level par­
allelism show significant amount of performance speedups
on Single Instruction Multiple Data (SIMD) architectures.
Vector processors, such as the Cray X-MP are one of the
earliest such architectures that pioneered in scientific comput­
ing. Though vector architectures had semantic advantages like
reduced number of instructions per program (loop execution
in single instruction), better mechanisms for branch handling
[2], etc., expensive high speed on-chip memory and design
costs limited their use to scientific computing. Many of the
concepts revived as short-vector instructions/SIMD extensions
in general purpose computing. Notable among them are the
MMX, Streaming SIMD extensions (SSE) and Altivec. Com­
putational demands from the real-time graphics and gaming
applications opened new avenues for specialized hardware
graphics accelerators. The earliest 2-D and 3-D hardware
graphics accelerators had dedicated logic (shader cores) for
different operations in the graphics pipeline (vertex, triangle,
pixel and rendering units). Because of the unbalanced graphics

workloads, programmable shader cores were designed to unify
the different graphics operations into a single architecture.
Hence the programmable shader cores opened a new domain
for general purpose computing.

While the motivation for unified graphics architecture came
from the nature of the graphics algorithms, the need for
having a programming model for general purpose computing
came from the potential speed ups that could result from
reusing the same graphics hardware for non-graphics appli­
cation acceleration. Developing non-graphics applications via
graphics API's such as the OpenGL and DirectX was merely
a hack with a limited exposure to hardware resources and
also reduced portability. Brook for GPU [3], a compiler and
runtime implementation of the Brook stream programming
language made an earlier attempt to provide general purpose
computing on modern graphics hardware. To enable flexi­
ble programmable graphics and general purpose computing,
NVIDIA came up with a hardware/software architecture called
as the Compute Unified Device Architecture (CUDA) [4]. A
set of development tools and compiler were released within
this new framework. With an increasing interest to develop
non-graphics algorithms for the GPU hardware, this field
is rapidly progressing under the umbrella General Purpose
Computing on Graphical Processing Units) (GPGPU) [5], [6].
AMD (ATI Technologies), another major player in developing
the GPU hardware and standards designed a programming
model called Brook+ that is based on the Brook GPU [3]
for the FireStream GPU series . There are also sustained
efforts towards the development of novel GPGPU technologies
for future such as Intel Larrabee architecture [7] and Open
Computing Language framework [8].

The higher performance per price ratio and the general pur­
pose computing model using the CUDA toolkit has placed the
NVIDIA GPUs abreast to the contemporary High Performance
Computing (HPC) technologies. Among the NVIDIA CUDA
enabled GPUS, the Tesla series is specifically designed for
the scientific computing domain. Clusters equipped with Tesla
GPUs might not be readily usable by many scientific codes
which have been traditionally parallelized to execute on a
homogeneous system of compute nodes. The cost of the data
transfers between the host and co-processor (GPU) memory
spaces, cache effects, sustained floating point operation (flop)

mailto:allada@iastate.edu
mailto:troy@scl.ameslab.gov
mailto:bbode@ncsa.uiuc.edu

rate, hardware speed and software overheads are some of the
important factors that need to be well understood to redesign
and develop efficient parallel algorithms that can utilize the
hardware resources on the modern heterogeneous GPU clus­
ters. These insights would also in a a broader scope be useful
to develop a unified framework under which a comparative
analysis can be made among clusters deployed with other types
of application accelerators such as PowerXCell 8i [9] and Field
Programmable Gate Arrays (FPGA) [10].

An important issue that pops up in the co-processor com­
puting model is the overhead involved in transferring data to
the device memory space vs. the actual computation time. This
may be exacerbated in scientific algorithms where data has to
be fetched across iterations from a storage device. Many scien­
tific applications also depend on fine-tuned numerical libraries
such as the Basic Linear Algebra Subroutines (BLAS). In this
paper, we present the results of the the latency and throughput
of the memory copies between the host and the GPU device
and Single, Double precision General Matrix Multiplication
(SGEMM/DGEMM) subroutines provided by the CUBLAS
library. The latency-throughput test is based on the Network
Protocol Independent Performance Emulator (NetPIPE) [1]
benchmark. Memory transfers between the paged/page-locked
(pinned) buffers on the host and the device are studied. The
performance results of the GEMM routines from the CUBLAS
library are compared to that of the routines from the threaded
implementation of the Intel Math Kernel Library (MKL). All
the tests are run on an Intel Xeon cluster equipped with
NVIDIA Tesla S1070 GPUs.

The remaining paper is organized as follows. Section 2
provides an overview of the GPU technologies that are mostly
relevant to the HPC domain - the Tesla SI070 compute
system, CUDA programming model and the CUBLAS library.
Section 3 explains the NetPIPE benchmark mechanism and
reports the performance results of the memory transfers.
Section 4 compares the performance results of the CUBLAS
SGEMM/DGEMM subroutines and the Intel MKL BLAS
routines. The subsequent sections give the related work, future
work and conclusions.

precision. The architecture of the Tesla hardware is shown
in Figure 1

Fig. 1. Tesla Hardware Architecture
Streaming Multiprocessor N

Streaming Multiprocessor 2
Streaming Multiprocessor 1

Shared Memory

| Registers"] | Registers | | Registers"]

D Processor 1 CZ Processor 2 ~ ^ ~ Processor 8 L Precision —
Double

ecisio
Unit

Multithreaded
Instruction

Unit

Constant Cache

Texture Cache

Device Memory

Each Tesla T10 computing processor has 4GB of dedicated
memory and 240 SPs. Table I summarizes the key differences
between the Tesla S870 and SI070 compute systems. Either
of these processors can be programmed using the CUDA
framework, as explained in the next section.

TABLE I
COMPARISON OF TESLA S870 AND S1070 COMPUTE SYSTEMS

Features
No. of GPUs
No. of SP cores/GPU
Processor frequency
Numerical precision

Memory per GPU
Peak memory bandwidth
Memory interface

System interface

Tesla S870
4
128
1.35 GHz
IEEE 754
single

1.5GB
76.8 GB/sec
384-bit,
800MHz
GDDR3
Two PCIe
xl6 Genl

Tesla S1070
4
240
1.296 GHz
IEEE 754
single and
double
4 GB
102 GB/sec
512-bit,
800MHz
GDDR3
Two PCIe
xl6 Gen2

A. NVIDIA Tesla for Scientific Computing

The unified GPU hardware architecture [11] is built around
a scalable array of Streaming Multiprocessors (SM). Each
SM consists of eight scalar Streaming Processors (SP), two
special functional units, multi-threaded instruction unit (MT-
IU) and on-chip shared memory. The NVIDIA Tesla com­
puting cards/system for HPC differs from the graphics coun­
terparts (Quadro and GeForce) in terms of the processor
clocks, memory configuration, and computing features. The
earlier generation Tesla GPUs (C870 graphics card and S870
graphics system) offered single precision support. The latest
feature in the Tesla processor series is the introduction of
double precision floating point support in the hardware (Tesla
T10 processor and its derivatives) that make them amenable
to scientific applications that rely on the higher numerical

B. CUDA Programming Model
One of the main objectives of the CUDA programming envi­

ronment is to develop scalable and efficient parallel programs
[4]. In this model, the GPU is viewed as a highly multi­
threaded compute device capable of executing many threads
in parallel. The threads execute a sequence of instructions in
a single-instruction multi-threaded fashion (SIMT). Compute
intensive parts of the application are isolated into functions
(called in the NVIDIA terminology as the kernel) and com­
piled into the instruction set architecture of the GPU device.
The CUDA programming interface is designed with a minimal
set of extensions to the C/C++ language [12]. To manage
the device contexts, memory, and data transfers between the
host and device, the CUDA framework provides two types of

application programming interfaces (API's). They are the low-
level CUDA driver API and the high-level CUDA runtime API.
The low-level API offers a better level of control, is language
independent, but is harder to program. The CUDA runtime API
is easy to program and provides a subset of the C standard
library and built-in vector types.

C CUBLAS Library

The BLAS library [13] is a set of subroutines that provide
standard building blocks for performing the basic vector
and matrix operations. Level 3 BLAS routines handle the
matrix-matrix operations and are computationally expensive.
An efficient implementation of BLAS is highly desirable, as
many scientific applications and other numerical linear algebra
software packages such as the LAPACK, ScaLAPACK are
build on those routines. CUBLAS [14] is the implementation
of the BLAS on the top of NVIDIA CUDA driver for the
GPUs. The CUBLAS library calls are used to create matrix
and vector objects in the GPU memory space and fill them
with data from the host memory. A sequence of CUBLAS
calls are executed and the results are copied from the GPU
space to the host memory. The CUBLAS API uses a calling
convention akin to that of the C programming language and
a FORTRAN type column-major order for storing matrix
objects. To be compatible with legacy FORTRAN codes, two
interfaces (thunking and non-thunking) are provided by the
vendor that can be compiled using the standard FORTRAN
compilers. The thunking interface can be used directly in an
application without any modifications. When using the non-
thunking interface, the application has to allocate and deal­
locate the matrix objects using device pointers and explicitly
handle the data movement between the CPU and GPU memory
spaces.

D. GPU Cluster

The GPU cluster is configured with compute nodes compris­
ing of the Intel Xeon processors and Tesla SI070 blade server
as shown in the Figure 2. The Tesla S1070 blade server has
four Tesla T10 GPUs and two PCI express xl6 interfaces to
the host systems. In our particular configuration, two compute
nodes are connected to the S1070.

Each compute node of the cluster has two Core2 Quad
processors (Intel(R) Xeon(R) E5405) that are clocked at 3.0
GHz and has 8 GB of main memory. The Core2 Quad
processor has 2 X 6MB L2 cache per core pair and a front
side bus running at 1333MHz. Each compute node has access
to 2 GPUs of the SI070 server. Each Tesla GPU has 4 GB of
dedicated device memory connected via a GDDR3 interface.
The CPU-GPU subsystem architecture is shown in Figure 3.
The BLAS implementation from the Intel Math Kernel Library
(MKL - Version No: 10.0.1.014) [15] is used to evaluate the
performance of the GEMM subroutines on the CPU. The Intel
MKL library provides highly optimized and multi-threaded
math routines based on the OpenMP library implementation.

Fig. 2. Cluster of compute nodes connected to the Tesla S1070

wm4

m>

En*

Compute Node

Compute N*«ft

j ' tk*mk1Wb&)

G P U C l u s t e r

comjHtf* mat

Compute N«de

PCI
Express 2.0

*«
Express 2.0

Fig. 3. Compute node sharing two GPUs from Tesla S1070

aiteiCerti

5495

Mei&ary

Intel Corei
JDttOXttH*

I

2 /#f&^,

C P U - G P U Subsystem Architecture

4&B GW
M .flfey U

NVIDIA Tesla

II. N E T P I P E CUDAMEMCPY

The micro benchmark is based on the Network Protocol
Independent Performance Emulator (NetPIPE) [1] framework
and measures the latency and throughput of the memory copies
between the host and the GPU device. NetPIPE is a variable
time benchmark , based on the principles developed in the
HINT benchmark by Gustafson et al. [16]. The buffer sizes are
increased at regular intervals with slight perturbations, i.e. for
each buffer size of c bytes, three measurements are taken for
c-p, p and c+p bytes, where p is the user defined perturbation
value. To evaluate the memory transfer performance, the
NetPIPE benchmark program performs streaming i.e one-sided
memory copies between the host and device or vice-versa
and a round-trip host to device memory copy in a ping-pong
fashion. An additional test to measure the performance of
the device to device memory copies is also available. The
default test is the round-trip host-to-device memory copy. The
latency and throughput of the memory copies are the measured
performance metrics. The latency is used to calculate the
throughput of the memory copies.

The core algorithm used by the NetPIPE benchmark tool

is shown in Algorithm 1. The value of nrepeat is calculated
based on the time of the last data transfer as explained in the
original NetPIPE paper [1]. This allows the tests to run enough
times such that the total time of the runs is greater than the
timer resolution. The default target time is 0.25 seconds. Eq.
(1) gives the formula to compute the nrepeat. The minimum
value of latency is taken after running the test for a fixed
number of times (NTRAILS), which by default is set to 7.

nrepeat = TARGET/\{bsz2/bszl) * tlast) (1)

where tlast is the last transfer time for the buffer of size
bszl and bsz2 is the buffer size for which the value of nrepeat
is calculated.

Input: streaming/ping-pong
Input: host-device/device-device
Input: paged/pinned host memory
Output: Latency in seconds
Output: Throughput in Gigabits per second
/* Set the variables based on the input */
BT<-lif round-trip, else RT <- 0
Paged <— 1 if paged, else Paged —̂ 0 if pinned
/* Set T to a large value */
T = MAXTIME
for i = 1 to NTRIALS do

tO = TimeO
forj = 1 to NREPEAT do

if RT then
I copy buf from host (paged/pinned)to dev
I copy buf from dev to host (paged/pinned)

end
else
I copy data from host/device to device/host

end
end
tl = Time()
/* Keep the minimum value of T */
T = min(T,tl-tO)

end
T = T/((l+rt)*NREPEAT)
Algorithm 1: NetPIPE algorithm for memory copies

The NetPIPE benchmark modules namely the cudaMemcpy
and cuMemcpy are developed using the CUDA runtime API
and driver API respectively (These APIs are discussed in the
next section). The benchmark mechanism is however the same
irrespective of the module. The results that are reported in this
paper are using the NetPIPE cudaMemcpy module. The output
file contains the buffer size, throughput and the transfer time.

A. Evaluation of Memory Latency and Throughput

The memory buffer is allocated as a linear array on the
device. The memory buffer on the host can be allocated in one
of the following two ways - as a paged memory array using
the mallocO system call or as a page-locked (pinned) memory
buffer using the CUDA API. The advantage in the later case
is that the device to host memory bandwidth is higher due
to asynchronous access of the memory using DMA, however
at the expense of reduced available system memory for the
operating system and other applications.

For the NetPIPE throughput plot, the packet size in Bytes is
shown in a logarthmic scale on the x-axis and the throughput
achieved in Gigabits/sec on the y-axis. The throughput value
in the plot is shown in bits/sec rather than Bytes/sec in order
to maintain the consistency with the other NetPIPE modules
that traditionally reported the throughput in Megabits/sec.
However, the results that are discussed in the text are in GB/s
to compare with the physical link speeds that are usually
reported in GB/s. The NetPIPE latency plot has the packet
size in Bytes on the x-axis and latency in Seconds on the
y-axis. Both axes are represented in the logarithmic scale.

As a verification step, the results that are obtained using Net­
PIPE benchmark are validated against the reference benchmark
results provided by the CUDA SDK. The timing measurements
by the reference benchmark are done using the CUDA timer
functions. The timing function that is used for NetPIPE is
based on the gettimeofdayO function. The results seem to be
consistent to that of the reference benchmark. In all the results
that are discussed below, the NetPIPE test is executed up to
buffer sizes of 192 MB.

Figures 4 shows the throughput and latency of the streaming
or one-way memory copies from the host to the device. With
the paged memory buffers on the host, we found that that
throughput increased linearly and attains a maximum at 6MB
of buffer size. The variation towards perturbation is not seen.
For the host pinned memory, throughput reaches the saturation
of 2.85 GB/s around buffer size of 8MB.

A comparison of the results from the NetPIPE and the
reference benchmark for the streaming host (paged) to device
memory copy is shown in Table II

TABLE II
COMPARISON OF NETPIPE RESULTS WITH CUDA SDK BANDWIDTH TEST

SDK Results
Size (Bytes)
16855040
33632256
67186688

MB/s
2012.5
2075
2102

NetPIPE Results
Size (Bytes)
16777216
33554432
67108864

MB/s
2043
2087
2103

Figure 5 shows the throughput of the one-way memory
copies from the device to the host. For transfers between
the device and host paged memory, the throughput reaches a
maximum value of 2.0 GB/s around 64 MB. The throughput
behaviour hence is similar to the host to device copy. It rises
linearly and reaches the knee of saturation around 8 MB.
With the pinned buffers on the host, the maximum through­
put achieved is 3.11 GB/s .The latency plots show relatively
constant latency until 10 KB and rises roughly linearly with
packet size beyond 1 MB.

Figure 6 shows the ping-pong throughput and latency curves
for memory copies between the host paged/pinned buffers and
the device. For ping-pong copies between the host paged mem­
ory buffers and the device, a maximum throughput of 1.6 GB/s
is observed. For the pinned buffer on the host, the throughput is
2.9 GB/s. The PCIe 2.0 bidirectional bandwidth is 8 GB/s and
hence the link is not completely saturated. For pinned memory

NetPIPE streaming memory copies from host(paged/pinned) to device x NetPIPE streaming latency test from host(paged/pinned) to device memory

Paged Host Memory and Device
Pinned Host Memory Device

10 10 10 10 10 10 10 10 10 10
Packet Size, Bytes

(a)

Paged Host Memory and Device
Pinned Host Memory Device

1 0 0 1 2 3
10 10 10 10 10 10 10 10 10 10

Packet-Size, Bytes

(b)

Fig. 4. (a) NetPIPE throughput curve for streaming memory copies from host (paged/pinned) memory to the device (b)NetPIPE latency curve for streaming
memory copies from host (paged/pinned) memory to the device

NetPIPE streaming memory copies from device to host (paged/pinned) _x NetPIPE streaming latency test from device to host(paged/pinned) memory

Paged Host Memory and Device
Pinned Host Memory Device

10 10 10 10 10 10 10 10 10 10
Packet Size, Bytes

(a) (b)

Fig. 5. (a) NetPIPE throughput curve for streaming memory copies from device to host (paged/pinned) memory (b)NetPIPE latency curve for streaming
memory copies from device to host (paged/pinned) memory

the curve linearly rises till 8 MB buffer size, beyond which
the throughput remains constant. The throughput plot doesn't
show any affects due to the perturbations. From the data set
we found that the ratio of the average round-trip latencies
for paged memory copies to that of pinned memory varies
between 1 and 3. This shows that the pinned memory buffers
show a considerable advantage for the application.

Each GPU in the S1070 has access to 4GB of dedicated
memory. The memory interface is 512-bit GDDR3 and has
a peak bandwidth of 102 GB/s. Figure 7 shows the device to
device throughput and latency curves. We had achieved a peak
device throughput of 72 GB/s around 16 MB of buffer size.
As evident from the throughput curves, there are perturbation
affects on the throughput for the odd buffer sizes (c - p and
c + p bytes). The latency curve remains constant till 1 KB
(we presumed some startup overhead) beyond which it rises
linearly.

III. PERFORMANCE OF SGEMM AND DGEMM
Single/Double Precision General Matrix Multiply

(SGEMM/DGEMM) are BLAS3 matrix-matrix subroutines.
The DGEMM is considered to be one of the important
subroutines that is used in scientific computing and is often
tuned by vendors for their own architectures to achieve the
best performance. Moreover, the widely accepted LINPACK
benchmark [17] that measures the systems floating point
performance uses the DGEMM subroutines.

The GEMM function performs one of the operations given
by

C := alpha * op(A) * op(B) + beta * C ,

where alpha and beta are double precision scalars and A,
B, C are matrices of dimensions m x k, k x n and m x n
respectively.

The operation op(X) is defined as

NetPIPE ping-pong memory copies between host(paged/pinned) and device NetPIPE ping-pong latency test between host(paged/pinned) and device memory

■ Paged Host Memory and Device
- Pinned Host Memory Device

10 10 10 10 10
Packet Size, Bytes

(a)

| 10"

Paged Host Memory and Device
Pinned Host Memory Device

•

10 10 10 10 10
Packet Size, Bytes

(b)

Fig. 6. (a) NetPIPE ping­pong memory copy throughput between the host paged and page­locked(pinned) memories and the device (b)NetPIPE ping­pong
memory copy latency between the host and device for paged and page­locked memories

NetPIPE Throughput test for device to device memory copies NetPIPE latency test for device to device memory copies

1 2 3 4 5 6 7 8 9
10 10 10 10 10 10 10 10 10 10

Packet Size, Bytes

1 0 0 1 2 3 4 5 6 7 8 9
10 10 10 10 10 10 10 10 10 10

Packet Size, Bytes

(a) (b)

Fig. 7. (a) NetPIPE device to device memory copy throughput curve (b) NetPIPE device to device memory copy latency curve

op(X) = X or op(X) = X'

The Tesla T10 processor has 30 SM's with each SM having
8 SPs. Each SM has one double precision floating point
unit and a special functional unit. A single double precision
multiply and add operation (1 MAD = 2FLOPS) can be
performed by the double precision unit. Using the standard
convention of measuring theoretical FLOPS as a product of
the floating point operations per cycle, clock frequency, and
the number of functional units, the double precision theoretical
peak for the T10 processor is 30 * 1.3 GHz * 2 FLOPS = 78
GFLOPS. The single­precision theoretical peak is 240 * 1.3
GHz * 3 = 936 GFLOPS.

The performance of the cublasSgemm and cublasDgemm
subroutines is shown in Figure 8. The results are plotted
for square matrices (m = n = k). The size of the matrices
are increased in steps of 8 in each dimension (row and
column). The GFLOPS are calculated without taking the

memory transfer time into account. This gives an indication
of the raw performance of the GPU device. The data set
obtained for the cublasSgemm showed a particular pattern
in terms of the performance. When m, n, k dimensions are
exactly divisible by 64 (64 x 64 blocking), the subroutine
showed peak performances. With multiples of 8 or 16 it shows
the minimal performance and intermediate performance for
multiples of 32. A partial dataset for both the precisions is
shown in Table in with sizes varying from 8128 to 8180 in
increments of 8.

The performance of cublasDgemm also showed a similar
pattern with the peak performance for multiples of 64, 32,
intermediate performance for multiples of 16 and worst perfor­

mance for 8. However, when compared to the cublasSgemm,
the difference between the highest and the intermediate per­

formance curves is relatively very small.

For the GEMM routines, the ratio of the number of floating

CUBLAS SGEMM Performance

m = n = k are multiples of 64
m = n = k are multiples of 32
m = n = k are multiples of 8 and 16

1000 2000 3000 4000 5000 6000 7000 8000 9000
m = n = k (Bytes)

60

50

40

30

20

10

CUBLAS DGEMM Performance
J V ^ - ^ -

w ■ " v . . . ■

/ r - «
/

(V
■

■

m = n = k are multiples of 64
m = n = k are multiples of 16
m = n = k are multiples of 8

1000 2000 3000 4000 5000 6000 7000 8000 9000
= n = k (Bytes)

(a) (b)

Fig. 8. (a) cublasSgemm performance for different matrix sizes (b) cublasDgemm performance for different matrix sizes

point operations to the data transfers to the GPU memory space
is in the order of 0{j^). For matrices of larger dimensions,
the GFLOPS calculated by taking into account the memory
transfer times is slightly lesser than that of the GFLOPS
obtained from the computations alone. The ratio is 0.95
for the cublasDgemm and 0.87 for the cublasSgemm. Since
many scientific applications run GEMM's on matrices with
large dimensions the plots shown can be taken as real­time
performance metrics.

TABLE III
CUBLAS SGEMM AND DGEMM PERFORMANCE

cublasSgemm
Size (m=n=k)
8128
8136
8144
8152
8160
8168
8172
8180

GFLOPS
344.32
167.08
167.42
167.46
245.67
167.13
166.58
166.08

cublasDgemm
Size (m=n=k)
8128
8126
8144
8128
8126
8144
8126
8144

GFLOPS
69.96
48.46
62.11
48.46
62.11
48.46
62.11
48.44

A. Performance of SGEMM and DGEMM on CPU
Figure 9 shows the performance scaling of the GEMM

operation on the Dual Core2 Quads on the machine. The
number of double precision floating point operations per cycle
for the Core2 Quad is 4 and the theoretical GLOPS are 4
* 3GHz * 4 cores = 48 GFLOPS. The number of single
precision floating point operations per cycle is 8 and has
96 GFLOPS of theoretical performance. The scaling curves
show the performance of the MKL GEMM subroutines for
1, 2, 4, 8 threads of execution. The number of threads that
can be executed is controlled via OMP_NUM_THREADS
environmental variable on the Linux systems. The peak single
and double precision GFLOPS when running with 8 threads
are 157.8 and 75.82 respectively. The performance scales

linearly with the number of threads. Hence, we conclude that
the subroutines are well parallelized with good utilization of
the processor cores.

When running with 8 OMP threads, the Thread Affinity
Interface is used to bind all the threads to the available
physical processing units. The interface is controlled via the
KMP_AFFINITY environment variable. This interface is a
very powerful mechanism to control the thread execution on
Intel multicore processors. A detailed reference is available
from the Intel Compiler documentation [18].

B. Performance Comparison of CPU and GPU
The DGEMM subroutine from the CUBLAS library

achieves a peak of 69 GFLOPS than that of the single Core2
Quad processor which is close to 40 GFLOPS. However,
there is a very close match in performance (76GFLOPS)
when the MKL DGEMM call is executed using 8 threads on
the compute node (dual Quads). However the cublasSgemm
performance largely surpasses the MKL sgemm call. This
brings up an important issue for the application developers
to perform computations in single precision whenever the
precision effects do not impact the application behaviour. The
overall performance of the application might be significantly
improved by using this mixed approach on GPUs. Since
many scientific applications run iteratively, data would be
available in the GPU memory space and hence may show
good performance for matrices of lower dimensions, where
the transfer time might have affected otherwise.

IV. RELATED WORK

The use of GPUs as a co­processor in cluster computing
was studied by Fan et al. [19] for simulating the airborne
contaminants using the lattice Boltzmann model from the
Computational Fluid Dynamics (CFD). Since CUDA frame­

work was not available at that time, they used the graphics API
for accelerating the application. However, the scaling curves
might behave in a similar way with the CUDA framework.

160

140

120

100

Intel MKL BLAS3 SGEMM Performance Scaling Intel MKL BLAS3 DGEMM Performance Scaling

. OMP_NUM_THREADS = 8

. OMP_NUM_THREADS = 4

. OMP_NUM_THREADS = 2
OMP_NUM_THREADS = 1

1000 2000 3000 4000 5000 6000 7000 8000 9000
Matrix Dimension, (m = n = k)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Matrix Dimension, (m = n = k)

(a) (b)

Fig. 9 (a) Scaling of Intel MKL SGEMM subroutine using multiple threads (b) Scaling of Intel MKL DGEMM subroutine using multiple threads

Barrachina et al. [20] evaluated the performance of the single
precision CUBLAS routines and proposed hybrid algorithms
with computations split across the CPU and the GPU. Ryoo
et al. [21] studied performances on the Geforce 8800 GTX
architectures and compared various parameters like concurrent
active threads, speedup achieved, % of cpu-gpu transfer time,
% of GPU execution time for a suite of application kernels
developed using the CUDA framework. After analyzing some
of the classical optimization principles like loop unrolling and
shared memory buffering for improving the access patterns
of the global memory, they observed that compute-intensive
kernels that have low global memory accesses showed good
speedups over the CPU. The most dated evaluation of the
GPU for linear algebra subroutines and memory performance
is done by Vasily Volkov et al. [22]. For larger matrices,
the performance speedups were shown to be attaining 80 to
90% of the the theoretical peak. The NVIDIA CUDA SDK
also provided a reference bandwidth benchmark program that
helped us validate the results. Unlike the reference benchmark,
NetPIPE is a variable time benchmark that can take into
account a user-defined perturbation value and runs the test
for a wide range of buffer sizes.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the performance of the
SGEMM/DGEMM subroutines from the CUBLAS 2.0 library
on the latest NVIDIA Tesla compute system. Also presented
are the overheads in memory copies between the device and
host. During the development of NetPIPE cudaMemcpy mod­
ule the results were validated against the reference benchmark
results provided by the CUDA SDK. Based on the results
in this paper, we conclude that the cudaMemcpy module
of NetPIPE is accurate and can be used to measure data
movement performance between the host and the GPU device.
As a future work, we would like to integrate this module with
the NetPIPE Infiniband module to incorporate memory copies
to remote GPU devices using the Remote Direct Memory

Access (RDMA) features of the Infiniband. We also intend to
extend the NetPIPE framework to incorporate the performance
of the asynchronous memory copies. These findings may be
useful for GPU cluster application developers and system
administrators likewise.

VI. ACKNOWLEDGEMENTS

This manuscript has been authored by Iowa State University
of Science and Technology under Contract No. DE-AC02-
07CH11358 with the U.S. Department of Energy. The authors
wish to thank the Air Force Office of Scientific Research and
NVIDIA Corporation for providing funds and equipment to
build the GPU cluster. The authors also wish to thank Professor
Mark S Gordon for his support and Andrey Asadchev for his
useful insights during the CUBLAS and MKL performance
analysis and other CUDA related discussions. We also ac­
knowledge Mark Klein at the Scalable Computing Laboratory
for his efforts in setting up the GPU cluster and other timely
support.

REFERENCES

[1] Q. O. Snell, A. R. Mikler, and J. L. Gustafson, "Netpipe: A network
protocol independent performace evaluator," in In Proceedings of the
IASTED International Conference on Intelligent Information Manage­
ment and Systems, 1996.

[2] J L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita­
tive Approach. San Francisco, CA, USA. Morgan Kaufmann Publishers
Inc, 2003.

[3] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and
P. Hanrahan, "Brook for gpus: stream computing on graphics hardware,"
in SIGGRAPH '04: ACM SIGGRAPH 2004 Papers. New York, NY,
USA: ACM, 2004, pp. 777-786.

[4] J Nickolls, I. Buck, M. Garland, and K Skadron, "Scalable parallel
programming with cuda," Queue, vol 6, no 2, pp. 40-53, 2008

[5] J. Owens, M. Houston, D Luebke, S Green, J. Stone, and J. Phillips,
"Gpu computing," Proceedings of the IEEE, vol 96, no. 5, pp. 879-899,
May 2008.

[6] J. D. Owens, D. Luebke, N. Govindaraju, M Harris, J. Krger,
A. E. Lefohn, and T. J Purcell, "A survey of general-purpose
computation on graphics hardware," Computer Graphics Forum, vol. 26,
no. 1, pp. 80-113, 2007 [Online]. Available. http.//www blackwell-
synergy.com/doi/pdf/10 1111/j. 1467-8659.2007 01012.x

http://http.//www
http://synergy.com/doi/pdf/10

[7] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan, "Larrabee: a many-core x86 architecture for
visual computing," ACM Trans. Graph., vol. 27, no. 3, pp. 1-15, 2008.

[8] http://www.khronos.org/opencl/.
[9] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and

D. Shippy, "Introduction to the cell multiprocessor," IBM J. Res. Dev.,
vol. 49, no. 4/5, pp. 589-604, 2005.

[10] S. Craven and P. Athanas, "Examining the viability of FPGA super-
computing," EURASIP J. Embedded Syst., vol. 2007, no. 1, pp. 13-13,
2007.

[11] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, "Nvidia tesla:
A unified graphics and computing architecture," IEEE Micro, vol. 28,
no. 2, pp. 39-55, 2008.

[12] NVIDIA, CUDA Programming Guide 2.2, 2009.
[13] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, "Basic

linear algebra subprograms for fortran usage," ACM Trans. Math. Softw.,
vol. 5, no. 3, pp. 308-323, 1979.

[14] NVIDIA, cuda CUBLAS Library 2.1, 2008.
[15] Intel, Intel Math Kernel Library for Linux* OS, 2009.
[16] J. Gustafson and Q. Snell, "Hint: A new way to measure computer

performance," Hawaii International Conference on System Sciences,
vol. 0, p. 392, 1995.

[17] J. J. Dongarra, "the Unpack benchmark : an explanation," in Proceedings
of the 1st International Conference on Supercomputing. New York, NY,
USA: Springer-Verlag New York, Inc., 1988, pp. 456-474.

[18] Intel, thread Affinity Interface. [Online]. Available:
http://software.intel.com/en-us/intel-compilers/

[19] Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, "Gpu cluster for
high performance computing," in SC '04: Proceedings of the 2004
ACM/IEEE conference on Supercomputing. Washington, DC, USA:
IEEE Computer Society, 2004, p. 47.

[20] S. Barrachina, M. Castillo, F. Igual, R. Mayo, and E. Quintana-Orti,
"Evaluation and tuning of the level 3 cublas for graphics processors,"
Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE Interna­
tional Symposium on, pp. 1-8, April 2008.

[21] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.
Kirk, and W. mei W. Hwu, "Optimization principles and application
performance evaluation of a multithreaded gpu using cuda," in PPoPP
'08: Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming. New York, NY, USA: ACM,
2008, pp. 73-82.

[22] V. Volkov and J. Demmel, "Benchmarking gpus to tune dense linear
algebra," in SC, 2008, p. 31.

http://www.khronos.org/opencl/
http://software.intel.com/en-us/intel-compilers/

