Workload-Adaptive Management of Energy-Smart Disk Storage
Systems

Ekow Otoo, Doron Rotem, Shih-Chiang Tsao
Lawrence Berkeley National Laboratory
University of California
Berkeley, CA 94720
{ejotoo, drotem, weafoh@Ibl.gov

Abstract

Recent studies have identified disk storage systems as dhe ofajor consumers of power in data
centers. Many disk power management (DPM) schemes wereesteggwhere the power consumed
by disks is reduced by spinning them down during long idleqak. Spinning the disks down and up
results in additional energy and response time costs. Boréason, DPM schemes are effective only
if the disks experience relatively long idle periods andgbkeme does not introduce a severe response
time penalty. In this paper we introduce a dynamic block exge algorithm which switches data
between disks based on the observed workload such thaeftg@accessed blocks end up residing on
a few “hot” disks thus allowing the majority of disks to ex@erce longer idle periods. We validate the
effectiveness of the algorithm with trace-driven simuas showing power savings of up to 60% with
very small response time penalties.

keywords: Disk storage, Energy Efficiency, File allocation, Scientifiorkload, Workload-Adaptive
Management.

1 Introduction

High energy costs of data centers have become an emerging critical Assoag the various components
of a data center, spinning disks and their cooling are known to be one ofidf@ consumers of energy
with budget estimations of about $7-9 million per year in medium size data cemtesstrend is expected
to continue as both commercial and scientific organizations need to store/blugees of data and on the
other hand disk vendors are introducing faster spinning disks whiahtiigher power requirements. [21].

Recognizing this trend, researchers and vendors developed theptaidIAID (massive array of idle
disks) [2, 4] storage systems where only a small fraction of the disks irtdrege array are spinning while
the rest of the disks are kept in standby mode until some data residing orighequested. Powering up
a standby disk to serve a request incurs a penalty of both time (typically 40€lb seconds) and energy.
For that reason, careful optimizations must be performed to determine wwhaower off disks. More
specifically, a decision during runtime must be made concerning the optimshtideon the length of the
idle period after which it is beneficial to power the disk off. The main factioas must be considered are
the expected energy to spin up a powered-off (standby) disk as cechpédth the energy savings realized
during the standby period. Another factor that must be weighed is thetdeesponse time penalties
incurred by requests made to standby disks.

It is well known that energy savings can be improved by extending thecteg length of the disk idle
period. Several methods have been used to extend the expected idle timsksoftldese include using a
memory or SSD based cache such that disks do not need to be powavbdmreading blocks which are in

the cache. Although the use of a cache may reduce response time artithrtetie period of disks, it may
not reduce much power if the idle period is not long enough. Our expetinaerd several recent research
papers show that the presence of a cache by itself provides only smalMiempents to energy consumption.
More details about these solutions are presented in Section 2. Thusgdeathe, we need other ways to
further prolong the idle time of disks.

Another approach for extending the disk idle period is to exchange dateede disks such that the
most frequently accessed data ends up residing on a few of the disks avhikept almost always spinning
(active state) while the rest of the disks can be powered off most of the timthis paper we present a
new dynamic algorithm for performing such data exchanges. The dédesas best explained in terms of
temperatures of the disks and of Exchange Blocks (XB), where eagha§Bconsist of several physical disk
blocks. The temperature of a disk is determined by the arrival rate oéstg)to it. It becomes hotter with
higher arrival rates. Similarly, an XB is hot if it is accessed frequentlgmtise it is considered cool. Our
exchange algorithm moves relatively cool XBs from hot disks and repl#tem with hot XBs taken from
cool disks. At the same time, to guarantee desirable response times, disketbeerloaded are cooled off
by removing hot XBs from them to cooler disks.

Our main contributions are:

e We propose a new dynamic block exchange algorithm which may save upto&€nergy consump-
tion while satisfying response time constraints.

e We use a queuing model and measurements of observed workloadsrimooretelistribute the work-
load among the disks by exchanging blocks such that a small fraction ofske ate kept spinning
while the rest can be placed in standby mode.

e The algorithm can be used with off-the-shelf disk storage systems suobsted RAID or MAID
with or without the presence of SSD caches.

e We developed efficient data structures to keep track of disk block mapiewofast location of blocks
that can be beneficially exchanged.

e We developed a simulation program (written in SimPy [5]) based on modernctetacteristics
found in data centers rather than the commonly used DiskSim program witiakeasl on older disks
models. Results showing power savings of over 50% with small respongeetiadties were obtained
for workloads taken from two real life traces as well as a synthetic watklo

The rest of the paper is organized as follows. In Section 2 we surveg salditional related work. In
Section 3 we present the exchange algorithm and the computations thaedeglrio determine which disks
will participate in block exchanges. In section 4 we describe the data gesaiged in locating blocks that
can be exchanged. In Section 5 we present our experimental resiigdly,in Section 6 we present our
conclusions and topics for future work.

2 Related Work

The area of energy efficient storage systems has received much atietdly from multiple communities
such as storage hardware vendors, software designers, systa@tacis and theoretical computer scientists.
Hardware vendors are now offering energy-friendly alternativéstd disk drives (HDD) generally referred
to as SSD (Solid State Devices). These typically use non-volatile flash membattery backed RAM
which offer great energy savings as there are no mechanical paolsddvin storing or accessing data.
Another recent hardware trend are hybrid-disks [18] that use a sn&8IE drive as a cache in front of the

HDD in order to allow reading of frequently accessed data and alsorlmgfef writes without the need to
power the HDD. Hybrid disks are produced by Samsung as well as athelovs.

Energy efficient storage systems including both hardware and sofaracdfered by companies such as
COPAN mainly targeting write-once/read-occasionally (WORO) data. Theitien is based on the MAID
(Massive Array of Idle Disks) platform which guarantees that onlya8% of the disks in each enclosure
are powered at any one time. Another energy efficient prototype stesegem for this kind of data, called
Pergamum, has been reported in [15]. It is based on a distributed nativdidk-based storage appliances
using the hybrid-disk approach. Pergamum uses a relatively small NVR#dthed to each node, called
Tome, to allow storage of data signatures (used in disk recovery) anthatsadlata.

A different approach is taken by the experimental system Hibernatpwjaith assumes the availability
of multi-speed disks. The system divides the disks into tiers where disksferetif tiers can spin at
different speeds. The system dynamically assigns speeds to diffemenbased on observed workloads
while also automatically migrating data between the disks in order to save enkilgysatisfying response
time constraints. A storage system called PARAID (Power-Aware RAI@s@nted in [19] introduces a
skewed striping pattern that allows RAID devices to use just enough diske¢d the system load. The
system “shifts gears” based on the observed workload by varyingutmber of powered-on disks to meet
the response time constraints while conserving energy. The main difeetmteaieen these systems and
the block exchange algorithm in this paper is that both Hibernator and FARRwW exchange of blocks
only within a single RAID group whereas our algorithm is more powerful asise allow exchanges of
blocks between different RAID groups. Also, Hibernator assumes meétgisks which are not currently
available whereas in this paper we assume the disks can only be in either stbte® (active or standby).
Furthermore PARAID needs to reserve extra space on active disksofing the replicated data from the
standby disks. The idea of concentratingquentlyaccessethlocks on a few disks in this paper, has some
similarity with the populardataconcentratiofPDC), of [10]. However, PDC exchanges popular “files”,
instead of "data blocks”. Exchanging fixed-size blocks below the filéegysnay be more efficient and
portable than exchanging the variable-length files above the file systeamd®eof the response time and
storage allocation issues.

Several interesting theoretical results have been published during tihedasle in the area of Dynamic
Power Management (DPM) for disk systems. Many of these resultsdesvesd in [7]. Most of this work
assumes a single disk and attempts to find an optimal idle waiting period (also cédledsisl threshold
time) after which a disk should be moved to a state which consumes less poegued®s can only be
served when the disk is at the highest power state (active state) andstagrenalty associated with moving
from a lower power state to the active state. The problem is that of devigimanic on-line algorithms
for selecting optimal idleness threshold times, based on observed idle pbabdeen request arrivals, to
transition the disk from one power state to another. The most common casalizas/o states namely,
active state (full power) and standby (sleep) state. The quality of tHgeatams is measured by their
competitive ratio which compares their power consumption to that of an optirfialec&lgorithm. It has
been shown that in the two state case a competitive ratio of 2 is the best po&sibieer type of theoretical
work uses a probabilistic model checking tool PRISM used to explore D§tiMyyrobabilistic models.

Other algorithmic approaches to conserve energy include power-aaeiég policies where replace-
ment is based on minimizing energy consumption rather that minimizing cache m&sesral caching
algorithms that use dynamic programming are presented in [22, 23]. Y#teanoethod to save power in
disk systems uses a compiler-driven approach targeted at scientificaiopigcthat use arrays and execute
on parallel architectures [14]. This is done by exposing disk layoutrmition to the compiler and deriving
optimal disk access patterns in terms of the order in which parallel disksegssed.

Another area of active research is that of devising new benchmarksdgasuring energy efficiency of
database servers, and storage subsystems. Recently the Transaxt@ssing Performance Council (TPC)
has formed a working group to look into adding energy efficiency metrich its #enchmarks. In [11] this

is done by extending benchmarks such as TPC-C with power measureraemes. In [12] an external sort
benchmark, for evaluating the energy efficiency of a wide range of atengystems is presented.

3 The Block Exchange Algorithm

3.1 The Disk Storage Configuration

Our storage architecture is illustrated in Figure 1. It consists of an afregnwentional disk storage con-
figured into identicaRAID Groups(RDG). A RAID (Redundant Array of Inexpensive Disks), is a fooin
storage system in data centers that provides high performance antbfatdhce at a relatively low cost.
Each RDG in our systems can be configured as RAID-0, RAID1, RAW-RAID-5. We will assume, from
now on, that each RDG is configured as a RAID-5 uniRAID Group uses a Solid State Drive (SSD) as a
large cache to stage data read from and written into an RDG. Using an $8&8ctoRDG is attractive since
itis fast, durable, noiseless and energy efficient and currently is @délalle in large capacities of the order
64,128 256 and 512 Ghytes [16]. An I/O sub-system, complete with I/O nodes, maradange number of
RDGs. Clients interact with the I/O subsystems by writing and reading files eisteeparallel file system or
as Storage Area Network (SAN), with the provision that each block of atfiist be entirely contained in an
RDG unit. A good conceptual view of our systems is that of nested RAID{B}(see Figure 6, except that
the RAID-0 controller maintains modules that provide equivalent functionafitAID (Massive array of
Idle Disks) and has a strip-width of 1. It allows for migratiR®G segments (as explained subsequently) of
disk blocks from one RDG to another.

Files in each RDG unit are striped according to the configured RAID levsleoRDGs. One primary
objective of the system is to concentrate active files in a small enough naihéetive RDG units without
compromising the aggregate I/O bandwidth that satisfies the required sestioe of data accesses. Two
approaches to achieving this is by dynamically migrating either entire filB®& segments from an RDG
with less 1/O requests to others with high 1/O activity but with just enough loathemctive RDGs that the
overall bandwidth is sufficient to meet the response time requirement. In thisenthe less active RDGs
can be idle long enough for the entire RDG unit to be spun down.

The SSD caches may prolong the idle times of RDG units and extend the shytddads of an RDG
unit. We call the set of disk blocks (also termed disk chunks) in an RDGdhatéstripe anRDG segment.
In this paper the unit of exchange is called an XB (exchange block) whigbh consists of one or more
RDG segments.

File I/10O
Requests

Interface Parallel 110

or iScCsi
Block—to—
Device BI.OCk 17O
Map Table Dispacher

! SSD Caches
RAID Groups

Figure 1: Overview of the energy smart disk storage

3.2 Arrival and Departure Rate

] hot disks cold disks
amrival —| Disk 1 —> departure Minimum # of disks
7y to sustain the total load
«chage | SESEEEEHS20ES
/ \/ N
N
arrival > Disk 2 —> deparlure Load balance Offload to the hot disk
to reduce resp. time to extend the idle time

Figure 2: Arrivals, Departures and Exchanges for Figure 3: Two ways of XB exchanges
Disks

Before introducing the exchange system, we first define the arrivhteparture rate for a disk. As
shown in Figure 2, the arrival rate for a disk means the arrival ratéocklyequests received by a disk but
excluding the requests introduced by the data exchange. We divide the @rmgtrepochs off seconds
and predict the mean arrival ralefor the next epoch as a weighted average of our predicted arrival ra
R4 and the measured arrival raR8€2 for the previous epoch. The raleis computed by the following
equation,

R=w-RI 4 (1—w). R™,

where the constamt represents the weight of the old predicted arrival rate. As shown VeltenR exceeds

a given threshold the arrival rate of the disk is too high and its workloadldtbe off-loaded to other disks.
In computingR, we intentionally ignore the portion of the arrival rate caused by blockaxges in order
to prevent off-loading a disk whose load is caused only by exchande®bby real data requests. We now
turn to describing the procedure for predicting departure rates fronliske The predicted departure rdde
includes serviced requests due to either original data requests as waugsts caused by exchanges. To
ensure proper update Bfunder heavy workload, we upddieafter everyK requests are serviced, instead
of the fixed time epochs used for computiRgWe use the following equation to compude

D =w-D% 4 (1—w) D™,

where similar to the computation & D9 is our previous prediction anf™®s is the average measured
departure rate over the latdstrequests, i.e.p™ = K /q whereq is the number of seconds it took to
service the lasK requests. By such a definition, the departure ratetatt aisk reflects whether the disk is
still suitable to share more workload from other disks immediately, particulargniine disk becomes busy.
Including the exchange workload in the computatio®afan stop a disk from a short term overloading due
to exchange. In this work, we setto 0.875,T to 10 sec, an& to 128 based on our experience with several
real workload traces.

3.3 Hot and Cool Disks

We maintain a sorted lidt of the n disks in decreasing order of théir (departure rate) values. Each time
the value oD changes for any disk, the disk will be moved to its appropriate positibreiccording to the
sorting order. As shown in Figure 3, the system dividésto two groups. The firath disks inL are named

hot disks while the othem— mdisks arecool disks. We now describe the general ideas behind our exchange
algorithm, more details are given in Section 3.5 .

In the following we refer to the unit of data exchanged between disks bgigioeithm as XB (exchange
block), it may consist of one or several RAID stripes. We use two tyfddoak exchanges. The first
type of exchange is performed after a block is accessedoooladisk. The algorithm interchanges the XB
containing this block with an XB that was not accessed recently residindnaindisk starting the search for
the first such XB with the disk at positionin L followed by positionrm— 1 etc. The logic behind this type
of exchange is to "lower” the temperatureamfol disks to further reduce their request arrival rate and thus
extend their idle time periods. The second type of exchange is used to aeshtkating ohot disks that
may cause long queuing delays and excessive response times. Thasgxdh performed after accessing
a block on ahot disk at positionj in L where 1< j < mif it is determined that the disk is overloaded.
In this case, the XB containing the accessed block will be interchanged wiXBahat was not accessed
recently in "cooler” disks still in thdot disk group. The search for such an XB starts from disks at position
m,m—1,...,j+ 1 until a first such XB is found.

The numberm, of hot disks is dynamically determined based on the arrival rate of user reqlfebts
arrival rate is high, then more disks would be included in this group. Thetsdisks are never shut down
in order to serve the bulk of arriving requests efficiently. On the othied hnecool disks are supposed to
have long idle time periods allowing greater power saving. The calculatiomi®shown in the following
subsection.

3.4 Sustainable Rate of Disk

As explained above, the goal of the block exchange system is to dynantieddigce the load of thiaot
disks. By moving out the frequently-accessed XBs from an overloddgd the arrival rate of the disk
would be reduced and the response time of requests can be efficientlgrat However, the penalty
associated with this exchange is that it can potentially cause more disks to n@wvadtive state in order to
serve the user requests. Let us denotetye constraint on expected response time acceptable to users. We
now show how to calculate the maximum arrival rate that is sustainable bylalis&rwhile still satisfying
t. In the remainder of this paper, we will call this rate Huetainable rate of a disk and denote it b§R).

In [9] we analyzed the energy savings and response time trade-offgrasented an analytical model
to estimate the power cost and response time of a disk under differerdl aaies and service times of
requests. We now describe h&R) is computed. From [9], we know that the expected response Efdé,
in in thehaot disks is £

p

wherep is the load, i.e.p = R+ E[Y, whereR is the arrival rate, an&[g is the expected service time of
requests. In our case, based on the disk characteristics given ir BEigand the real life workload of [17],
we get E[S]=0.022 and Ef$=5.24E-4. Figure 4 plots the relationship between the expected resfimese
E[J] and the arrival rat§R] for a singlehot disk as calculated from the above expression. From the figure,
we can see that, to achieve a response time constraift05, the sustainable rate of a diSIR) should be
set to 30 requests per second assuming block exchange operatiersarted.

Then, after determinin§(R), we can calculate the numberof hot disks as follows,

3R
i=1
S(R)

m=

whereR; is the arrival rate of thé" disk.

40 T T T T . | | 09
s | B |
30 o |

25 7] ——m=2
20 R

0.5

—— m=3

o /// /

15 b 03 m=4
10} i 0n éf / /———— ——m-s
01 J —t=—m=16

0.7 —
0.6

sustainable rate

(requests per sec)

Power Saving Ratio (%)

S(R)

5 - -

0 / 1 1 1 1 1 1 1

0.02 003 004 005 006 007 008 009 01
E[J]=the expected response time(s)

1E-02 5E-03 1E-03 5E-04 1E-04 S5E-05 1E-05 5E-06 1E-06

P=percentage of requests for blocks in the cool disks

Figure 4: Relationship between expected responkeyure 5: The potential power saving ratio of EXG-
time and sustainable rate of a disk BLK under different request arrival rates
Also, based on our analysis model, we can estimate the potential power bgving block exchange
algorithm called BLKEXG. For example, in Figure 5 we plot the power savitig ras a function oP the
percentage of requests arrivals (including exchanges) to the céslfdisdifferent values ofn (hot disks).
Figure 5 shows the normalized power saving of BLKEXG, compared to th® (4B power saving)
case over differer® andm, respectively. In this figure we assume the system consists=a24 disks with
t = 0.08, from which we derivé&§R) to be 35 based on Figure 4.

3.5 Thresholds to Start Block Exchanges

There are three thresholds, LowTH, TargetTH, and HighTH, appliecdb disk to determine whether to
proceed with a block exchange. Since our goal is to keep the arrteabf@achhot disk close to the&S(R),
sustainable rate of a disk, we set TargetTHS{R). Then, as described RrocedureRecv(), to achieve a
load balance among th®t disks, whenever a request arrives for blocks imadisk, we check whether
the arrival rate of the disk is higher than the high threshold HighTH. If ithen the disk will be marked
as ahotspot disk. Next, for each of the requests arriving to the disk, after serviagafuest, the ExgBlk
function is called to locate the XB which contains the requested block. TheiXBhHs exchanged with an
un-accessed XB starting the search from disk currently rankedL (hot disk with the lowest departure
rate) and proceeding to— 1 up to 1. In the searclmotspot disks will be skipped due to their heavy loads.
Also, if the currently accessed disk is rankgdhen the search is stopped after the disk rankedL is
searched as continuing the search will only encounter disks with rankesthan thanj which must have
higherD (departure rates) and thus are more busy.

The procedure to locate the un-accessed block in a selected disk is catlddaBcessedXB() and is
described in Section 4 and uses a tree data structure. It returns -1ldekdklon the disk are accessed.

Such an exchange will proceed whenever a request arrives to thigohalisk until the arrival rate of
the disk is lower or equal to the TargetTH. Then, tioespot mark will be removed from the disk. The
following functions are used in the algorithm, for lack of space we simply @xplere what each of them
does.

(1) GetMappedDevID(): Get the current ID of the device to be astkby a request.
(2) GetMappedBlockID(): Get the address of a block on a device.

(3) ForwardToDev(): Forward a request to a device.

(4) GetCorrespondingXB(): Locate the XB (exchange block contaiaigiyen block).
(5) GetDevIDWithRank(): Get the ID of a device with a given rank.in

(6) Exchange(): Perform an exchange between two XBs.

Procedure Recv(Req,HotSpat

begin
Input: Req: Received Request
Output: HotSpot: a bit vector where each bit corresponds to a storage device
id_dev+« GetMappedDevID(req) ;
id_blk «— GetMappedBlockID(req) ;
ForwardToDev(iddev,id blk) ;
if (isHot(id_dev)then
if R(id_dev)> HighTH then
| HotSpot[iddev]— 1
else
L if R(id_dev) < TargetTHthen

| HotSpot[iddev]— 0

if HotSpot[id dev]=1then
| ExgBlk(id_dev,id blk)

else

if R(id_dev) < LowTH then
| ExgBlk(id_dev,id blk)

end

Function ExgBIl k(id_dev,id blk)

begin
Input: id_dev: device id, idblk: block id
id_XB « GetCorrespondingXB(idbIK) ;

for i — mdownto 1 do
nid_dev«+ GetDevIDWithRanki);

if HotSpot[niddev] = 1then continue ;
if nid_dev=id_devthen break ;

nid_XB <« GetUnaccessedXB(nidev) ;
if nid_XB < 0then continue ;
Exchange(iddev,id XB,nid_dev,nid XB) ;
break;

end

Let us now turn to the procedure for extending the idle time ofcdu disks which is similar to the above
procedure. Whenever a request arrives for blocksdooh disk, we examine whether the arrival rate of the
disk is lower than the low threshold LowTH. If it is, after serving the retjuse call ExgBIk to locate the
XB which covers the requested block and then exchange the XB with aceessed XB located at thet
disk starting the search with the disk with the lowest departure rate.

Note that we exchange blocks wiklot disk based on measurements of departure rate (the lowest de-
parture rate), instead of the lowest arrival rate. The reason is thiak avith low arrival rate may be busy
serving the queued requests. Also, since the exchange itself also addwlto the selectelot disk, by
picking thehot disk with the lowest departure rate, we can further avoid the selectedrdiskshort-term
overloading due to the exchange operations. Also note that due to thendysarting of the disks based
on their departure rates, the blocks are exchanged with diffecemtisks at different times thus leading to
load balancing among thet disks.

RAID—-0 + MAID

‘ ‘ Before XB Exchange

: RAID-5 | : RAID-5 RAID-5

Al A2 Ap F1 F2 Fp K1 K2 Kp
B1L Bp B2 G1 Gp G2 L1 Lp L2
cp cCc1 c2 Hp H1 H2 Mp M1 M2
D1 D2 Dp 112 Ip N1 N2 Np
El1 Ep E2 J1 Jp J2 o1 oOp o2

RAID—-0 + MAID

‘ ‘ ‘ After XB Exchange

: RAl{)—s | : RAID-5 RAID-5

A1l A2 Ap F1 F2 Fp K1 K2 Kp

B1L Bp B2 G1 Gp G2 H1 Hp H2

Cp cCc1 cC2 Lp L1 L2 Mp M1 M2
D1 D2 Dp 112 Ip N1 N2 Np
E1 Ep E2 Ji Jp J32 o1 oOp o2

Figure 6: lllustration of XB exchanges in a RAID-0 + MAID configurations
4 Data Structures and File Chunking

4.1 Selection of Non frequently Accessed Exchange Blocks

As described in Section 3.3, we need to pick a non-frequently acces&od the cooleshot disk for the
exchange. Thus, we need a method to quickly find such an XB on a digimipdify the problem, let’s first
assume we want to distinguish between the XBs accessed at least andbdrones who have never been
accessed called un-accessed XBs. Thgenway to satisfy this goal is to allocate a bit vector (initialized
to all 0’s)which we call XB-Access-Vector where each bit in the vectrresponds to one XB on the disk.
Once an XB is accessed, we turn its corresponding bit to 1 if it is 0. Thdimd@n un-accessed XB, one
can sequentially search the XB-Access-Vector until encountering al8diever, this method needs N-bits
of space and O(N) search time, where N is the number of XBs in one distedlire the search time, we
propose a binary tree structure as shown in Figure 7 which we call dbitlitee (DBT).

Each internal node of the DBT consists of two bits called the left-bit and the-big. The leaves of
the DBT are formed from the entries of the XB-Access-Vector, i.e eachdoiesponds to an XB and it
is set to 0 or 1 according to whether the corresponding XB was accessed respectively. The left-bit
(right-bit) of an internal node in a DBT is set to O if at least one of the leavés left (right) sub-tree are
0 otherwise it is set to 1. To find an un-accessed XB, one starts segfobin the root of the DBT, if both
left and right bits at the root are 1 all XBs at the leaves have beensettasd the search stops. Otherwise
we search recursively in the left sub-tree of the root if the left-bit=0earch in the right sub-tree if left-
bit=1. For reference purposes we call this DBT search procedutdnaecessedXB. It is easy to see that
GetUnaccessedXB operatesdlogN) steps. Updating the DBT once an un-accessed XB gets accessed is
done by changing the bit at the leaf corresponding to that XB to 1 andingdae internal nodes on the
path from the leaf to the root as necessary. The update procedure sinaplges the left-bit (right-bit) of a
parent node to 1 if both the left and right bits of its left (right) child are lisTan also be done i@(IogN)
steps.

4.2 Block Exchange Information

We can now build a slightly more complex data structure that monitors the acegasiicy of XBs across a
time window ofs time units and decides whether an XB is frequently accessed during the timewyviid

do this we maintain a set of XB-Access-Vectors (XAB) calleiB(T;) for the laststime unitsTy, To, ..., Ts.

We then compute an additional vector called Total-XB-Access-Vectorendeeh of its entries is a function

g (based on some weighted average) of the corresponding entiesBi(i;) fori =1,2,...s. The DBT is

then built using the Total-XB-Access Vector entries as its leaves. An exasfifiies is given in Figure 8 for

s= 3. In the formula below we give more weightf(to more recent accesses than ones that occurred in the
past but at the same time our function also gives some fixed weight to thefregiof accesses independent

0 Old Total-XB—Access—-Vector

- [oJof1f1]1[of o of1][1[1] 1[0 o] g 1

fotal # of XBs = 16 0l0 0 2 2 6 8 10 12 14
! 2 1 fofoJafofa]1[o[ofa[1]o]x]1]o]0] 1]

0/0 1/0 wl=1—g 2 4 5 8 10 12 14
3 6 T [oJ1JoJaJaJof1]ofo]1]1Jo[1]oo[1]

0[1 [o]o] (1]1] [0]0] w2=2"0 2 4 5 8 10 12 14
2N N 2 1 N T [o]i[o[i[o[1] o[0[] o[o]i]0]o0]i]0]

(olol[2[2][2]o][olo][2]2][2]1][o]0][0]1] wes¢0 24 6 8 10 12 14
[o[1]ofsf1[1]ofofs]1]o[1]1[0]1]1]

XBno.o 1 23 45 67 89 1011 1213 1415 0 > Z 6 3 10 12 14

New Total-XB-Access—Vector

Figure 7: The Tree Structure to locate an urfigure 8: Information retained to track frequently

accessed-accessed Block accessed XBs
of when they occurred. In this case the functigii) which determines the value of th& bit in the New

Total-XB-Access-Vector is set as follows
3
exp(j) = ZXAB(E)[j](W +1)
i=

and .
i-{ b o0z

0 otherwise

5 Experimental Results

5.1 Simulation

Chunk
RChunli —_[[I[I[F> Dispatcher
cquests & Exchanger
| L | | I I I
EE8E 8 8 ©
hot disks cool disks

Figure 9: Configuration of disks used in the simulation

We developed a simulation model to examine the block exchange system guldpdSection 3. The
simulation environment was developed and tested using SimPy [5], as illusidtaglire 9. The environ-
ment consists of a workload generator, a block dispatcher, and a gfdwged disks. Figure 10 shows the
characteristics of the hard disk used in the simulation. With the specificatiogrs tiadm [13] and [20] we
built our own hard disk simulation modules. A hard disk is spun down and estandby mode (see Fig-
ure 11) after it has been idle for a fixed period which is called idlenessttble [10], [3]. We do not use the
recently revised DiskSim simulator [1], that is commonly used in the literatureudpsimulations because
the number of events needed to handle a file request is highly correlatefileviizes making DiskSim too
slow for a realistic data center simulation that involves disks, each of the of &0 GBytes and tens of
thousands of files requiring terabytes/petabytes of total data storage.

The workload generator supports two different ways to produce bkgpkests. First, the generator can
follow a Poisson process to produce requests at aR&teaccess disks. Based on the statistics collected

10

Figure 10: The characteristics of the hard disk

Description Value

Disk model Seagate ST3500630AS

Standard interface SATA

Rotational speed 7200 rpm

Avg. seek time 8.5 msecs

Avg. rotation time 4.16 msecs %
Disk size 500GB 4,
Disk load (Transfer rate) 72 MBytes/sec

Idle power 9.3 Watts

Standby power 0.8 Watts seek 12.6W

Active power 13 Watts

Seek power 12.6 Watts

Spin up power 24 Watts Figure 11: Power usage modes of a disk drive
Spin down power 9.3 Watts

Spin up time 15 secs

Spin down time 10 secs

from the real workload [17], we set the number of disks to 24 and thesizgaequired by each request to
8, 16, 24, or 32KB with even probabilities. Then, the arrival requestissies are generated based on a Zipf
distribution whose cumulative density functibiix) is given by

F(x)=P(x<i)=(i/N)®v1<i<N.

whereN=24 and its skew paramet@iis set to log 0.8/log 0.2, which means 80% of all requests would go
to 20% of disks. Similarly, we divided the space of a disk into 500 segmen&x, The Zipf distribution is
used again to determine the frequency of requests for blocks in eatiesegvhereN is set to 500.

Besides producing workload based on probability model, the workloaergem can produce requests
based on a log of block access to a storage system. Two realistic workfsarmused in our experimental
results. The first log is recorded on a storage system operating a fihappigation [17]. There are
4099352 write requests and 1235632 read requests for the blockbudesdrin 24 hard disks. The mean
rate of arrival requests is 123.5/s. The second log is recorded oregsteystem that supports a web search
engine. There are 4579809 read requests invoked within 4.5 houB9&ndf requests are concentrated on
three disks. The mean arrival rate is 297.487/s. Finally, once a regugsherated by the generator, the
block dispatcher forwards it into its corresponding hard disk.

In the experiments, the sustainable rate of a disk was set to 35 requeséxprd. The high threshold
(HighTH in Section 3) is 1.3 times of 35, or 45 while the low threshold (LowTH)a¥ bf 35, i.e. 17.5.
Besides, to compare the effects of the block exchange algorithm on [sawigrg and response time, we
also examined the effects of cache and DPM with fixed idleness thresH@dseasure effect of caching,
each disk was allocated a LRU cache. Multiple cache sizes were tested ixp#ringent where the page
size in the cache is fixed to 16K. Dynamic power management (DPM) algoritavestdeen proposed [7] to
determine on-line when the disk should be transitioned to a lower power dissigtate while experiencing
an idle period. Analytical solutions to this on-line problem have been evairaterms of their competitive
ratio. This ratio is used to compare the energy cost of an on-line DPM algotdlihe energy cost of an
optimal offline solution which knows the arrival sequence of disk acoegsests in advance. It is well
known [6] that for a two state system where the disk can be in either stammdbydle mode there is a tight
bound of 2 for the competitive ratio of any deterministic algorithm. This ratio isezeld by setting the
idleness threshold,;Tto b/(R-Ps) where b is the energy penalty (in joules) for having to serve a request

11

while the disk is in standby mode, (i.e., spinning the disk down and then spinnipgritorder to serve a
request). Pand R are the rates of energy consumption of the disk (in watts) in the idle mode and in th
standby mode, respectively. We call this value the competitive idlenessdtdewhich value herein is 53s,
computed based on the characteristics of hard disks shown in Figure 10.

5.2 Power Saving Results for Financial Workload

Figure 12 shows the power saving ratios of DPM, CACHE+DPM, EXG, BA&G+CACHE under the
financial application workload, which ratios are normalized with the powst 0b24 disks which are
always spinning. As shown in the figure, for this workload, simply usinyllzan save 10% of power only.
Then, even using DPM and 256MB LRU cache can only save 20% ofpdvie reason is that the mean
arrival rate for each disk in the workload, 123.5/24 or 5.15/s, is too lngPM to save power. Although
by using 256MB LRU cache, a 68% of hit ratio is achieved and the amnavalof each disk can be effectively
reduced to 1.65/s, which however is not low enough to save power by. BBddrding to [9] DPM can only
save power if the arrival rate of a disk is smaller than 0.029/s. As showigurd-13, increasing the cache
size is useless since it cannot increase the hit ratio and thus cannet frdlice the arrival rate of disks or
extend the idle time of disks to save power.

60% 100%
$ 50% 90% |—A—y
-~ 80%
@ 40% 70% i
‘'S P A
5 30% 60?’ —-power saving
o 20% 0% used space
2 ’ 40%) —=—hit ratio
& 10% - 30% ,
) J 200% | g g—a————p—a—=n
0% - 10%
Cache+ BLKEXG BLKEXG+ 0% 1
DPM Cache 1 2 4 8 16 64 128 256 5121024
Cache Size (MB)

Figure 12: Power saving ratio of DPM,Figure 13: The hit ratio, power saving ratio and %
DPM+Cache, BLKEXG and BLKEXG+Cache of used space for different cache sizes

Finally, compared to the of power saving of using cache and DPM whichn®at 20%, the BLKEXG
system can save 50% power cost. Fig 14 further displays the powefocestch disk. Obviously, by con-
centrating frequently accessed blocks intolibedisks from thecool disks, only three disks are necessary
to be active(always spinning) to serve requests. The other 21 disksas@ longer idle periods to save
power and thus their mean power cost is only 4W. On the other hand, by asamge cache to reduce the
arrival rate of requests, although 10 disks may have long idle periotthwahe sufficient to produce ben-
eficial power savings from DPM, the other 14 disks are still too busy te aay power. Figure 15 shows
the mean idle period of disks affected under these power saving mechahisimg this figure, we can find
that BLKEXG can increase the length of the idle period by a factor of alm@Gtiines of that under DPM
and 10 times of Cache + DPM, by concentrating blocks intdttedisks. The BLKEXG curve shows that
the "hottest” three disks are chosen to always spin as they have shditdiedue to the concentration of
frequently accessed blocks on them, this however makes the other 2haigkkong idle periods sufficient
to produce power savings. Figure 16 displays the frequency of egelfaroduced by BLKEXG. The mean
number of exchanged blocks is 0.5 per second, which obviously is niotamid thus does not cost much
power.

12

12 +—DOPM #-CACHE+DPM ——BLKEXG ——DPM —m—DPM+Cache —a—BLKEXG
. ’L 1000 -
% 10 B =
© \ = 100 +
o 8 =]
=)
[}) F3
3 Ny Rt 10
« 6 A S
o ey -
= N 2
8 4 s g &
5 3 @
Z =
g8 2 e § o1l
- £
0 N e B e e S 1 R N S S N 0.01
1 3 5 7 9 11 13 15 17 19 21 23 i 3 S 7 9 11 13 15 17 19 21 23
no. of disk ordered by power cost rank of disks on their mean idle time

Figure 14: The power cost of each disk under DPMgigure 15: The mean idle period of each disk under
DPM+Cache and BLKEXG DPM, DPM+Cache and BLKEXG
5.3 Response Time Results for Financial Workload

Saving power often implies an increase in response time. Therefore, it istanpto measure the response
time penalty due to the power saving policy. Figure 17 shows the responsedimezgiests using DPM,
cache + DPM, BLKEXG, and BLKEXG + cache. Again, while DPM and aacmly save 1820% of
power, they seriously impact the performance, i.e. increase the respomnesby a factor of more than 20
of that of disks without power saving (NPS), i.e. from 0.013s to 0.40 a28, ®espectively. On the other
hand, using BLKEXG + cache only increases the response time to 0.036sakileg 50% of power cost.
Obviously, deploying the block exchange system with cache is a prégesption.

0.45
0.40 -
0.35 ~
0.30 -
0.25 -
0.20 -
0.15 -
0.10 -
0.05 ~ .
0.00 - T

T

resp. time (s)

.

DPM Cache+ BLKEXG BLKEXG+ NPS
DPM Cache

moving blocks per sec

1] 500 1008 1568 2000 2560 3000
Time (s)

Figure 16: The frequency of block exchanges ifrigure 17: Comparison of response times for differ-
BLKEXG ent power saving schemes

5.4 Power Savings and Response Time Results For the Search BHregWorkload

We now examine the power saving and response time provided by BLKEXEr tine search engine server
workload log. This workload is more skewed than the first one. In theldigstequests arrived for blocks
unevenly distributed on all 24 disks, whereas arrival requests in tteddog are highly concentrated for
the blocks in three disks only. Thus, as shown in Figure 18, by simply egabiM on disks, 70% of
power can be saved for this workload. However, the response timesjoésts under NPS and DPM are
very high (19), because the three disks are actually overloaded vihemma large 640MB cache is deployed
for each disk, these disks are still overloaded. Besides, due to therhidl eate and short idle periods, no

13

additional power can be saved by using the cache, as compared to DPdditvtthe.

80% 120
0% - 100 -
£ 60% - — = 80
@ 50% , - ° |
% 40% £ 60 -
v 30% - i
5 o8 g 40
3 20% @
5 10% 2 20 1
0% T T T 0 i
24MB 640MB BLKEXG BLKEXG DPM 24MB 640MBBLKEXGBLKEXG
Cache Cache +Cache Cache Cache +Cache
+DPM +DPM +DPM +DPM

Figure 18: Comparison of power savings ofigure 19: Comparison of response times of
search engine workload for different power savingearch engine workload for different power saving
schemes schemes

On the other hand, since the BLKEXG system estimates the actual numbetr difks necessary to
serve the arrival workload and keeps on balancing the load among disése the response time under
BLKEXG can be dramatically reduced to 0.12 sec while still saving about 6Dpower, after an off-
loading procedure works consequently on the three hotspot disk&@osetonds. In fact, according to the
workload in the second log, about 10 active disks are necessarythese requests, but under DPM only
6 disks are active, which leads DPM to save additional 10% of powerduses an unacceptable expected
response time.

5.5 Results for Synthetic Workload

To further verify BLKEXG under different heavy levels of workloadge used the synthetic workloads
with different arrival rate of requests and measured the effect arepsaving and response time of the
BLKEXG system. We also, measured power savings and response tilé8$oDPM, CACHE+DPM and
BLKEXG+CACHE for comparison.In all cases the cache size for eadhwiés set to 128MB. Figure 20
shows the power saving ratios of these policies under this workload ttbe ase normalized with the power
cost of 24 disks which are always spinning. The results show that BAKEan save 75% of power while
DPM or CACHE only provide about 15% of power saving on averageo Alse effect of cache on power
saving is insignificant under these synthetic workloads.

Figure 21 shows the response time of requests provided by these iy sliechanisms. Similarly
to the results under the real workloads, DPM and CACHE cause verydéspgnse times particularly when
the arrival rate is low, because each request has a high probabilityival aluring the periods where the
disk is in standby mode and then has to wait a long time for the spinning up of theHi@vever, since
BLKEXG would concentrate frequently-accessed blocks hutodisks, most requests would be redirected
to these disks and only a few requests which are directed tootiiedisks may suffer such long response
time delays. Therefore, the response time under BLKEXG is much shortebthi and CACHE.

6 Conclusion

In this paper we developed a response time sensitive adaptive algorithedéing energy consumption of
disk storage systems. It operates by measuring arrival rates at thaendisken dynamically re-distributing

14

0.9 2:5

0.8 — —— =——DPM
T 07 _//A-—‘/ 2 A —=—CACHE+DPM ~ —
2 06 = = BLKEXG
i 05 —o—DPM g 15 —<—BLKEXG+CACHE —
& ——CACHE+DPM @ st NPS
> 04 2
g O BLKEXG 5 4.
g 03 - \ —=<—BLKEXG+CACHE 2
2 L
a 0.2 0.5

0.1

0 — e 0 -

1 2 4 8 16 32 64 1 2 4 8 16 32 64
total request arrival rate per second total request arrival rate per second

Figure 20: Power saving ratios of different schemdsigure 21: Response times of requests for different
under varying request arrival rates schemes under varying arrival rates

the workload by exchanging data between disks when necessary. @Vdeaisloped the data structures
needed to support the fast location of blocks which are candidatesdbrexchanges. We have shown that
under real life workloads the algorithm leads to the concentration of thedfuhe disk access traffic on
a small fraction of the available disks. This allows the remaining disks to experienger idle periods
which in turn makes the DPM (dynamic power management) procedures mueteffemntive.

Extensive simulations with our block exchange algorithm showed that it is maek efficient than
simply using known DPM procedures or just power-aware cachesanltsave up to 50% of the energy
consumption while still satisfying response time constraints. The algorithmraiesed any specialized
hardware such as multispeed disks and can be readily applied to existirgjaiegfe configurations such as
nested RAID or MAID systems found in many commercial and scientific datzisen

In the future, we plan to investigate our techniques on more real life waikltgat include various
mixes of read and write requests obtained from our scientific data ceM&RSBC. To further validate our
results, we plan to test the algorithm on several disk storage configuratianill allow us to compare
energy consumption measurements with the simulation results.

Acknowledgment

This work is supported by the Director, Office of Laboratory Policy amfdaistructure Management of the
U. S. Department of Energy under Contract No. DE-AC02-05CH11Zis research used resources of
the National Energy Research Scientific Computing (NERSC), which isostgapby the Office of Science
of the U.S. Department of Energy.

References

[1] J. Bucy, J. Schindler, S. Schlosser, and G. Ganger. Tsiesith simulation environment.

[2] Dennis Colarelli and Dirk Grunwald. Massive arrays deidisks for storage archives. Bupercomputing’02:
Proc.ACM/IEEE Conferencen Supercomputing, pages 1 — 11, Los Alamitos, CA, USA, 200BHEomputer
Society Press.

[3] Carlos Cunha, Azer Bestavros, and Mark Crovella. Charatics of www client-based traces. Technical report,
Boston University, Boston, MA, USA, 1995.

[4] A. Guha. Data archiving using enhanced maid (massiveyaf idle disks), May 15 — 18 2006.
[5] SimPy: SimPy Simulation Package in Python. http://sirmpurceforge.net/archive.htm.

15

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

[22]

(23]

S. Irani, R. Gupta, and S. Shukla. Competitive analy§idymamic power management strategies for systems
with multiple power savings states. DATE '02: Proceedingsf the conferencen Design,automatiorandtest
in Europe, page 117, Washington, DC, USA, 2002. IEEE Compuieie§/.

Sandy Irani, Gaurav Singh, Sandeep K. Shukla, and R#e&upta. An overview of the competitive and adver-
sarial approaches to designing dynamic power managenrategies. I[EEE Trans.VLSI Syst., 13(12):1349—
1361, 2005.

Nested RAID Levels. http://www.absoluteastronomyrnétopics/nestedaid levels.

Ekow J. Otoo, Doron Rotem, and Shih-Chiang Tsao. Enenggrsmanagement of scientific data. 2hstint'l.
Conf.on Sc.andStat.DatabaséMgmnt., New Orleans, Louisiana, USA, Jun. 2009. To Appear.

E. Pinheiro and R. Bianchini. Energy conservation teghes for disk array-based servers.Pioc.Int’l. Conf.
on SupercomputinglCS’04), Saint-Malo, France, June 26 2004.

Meikel Poess and Raghunath Othayoth Nambiar. Energly tiee key challenge of today’s data centers: a power
consumption analysis of tpc-c resul®roc.VLDB Endow., 1(2):1229-1240, 2008.

S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakisilesort: a balanced energy-efficiency benchmark.
In SIGMOD '07: Proceeding®f the 2007 ACM SIGMOD internationalconferenceon Managemenbf data,
pages 365—-376, New York, NY, USA, 2007. ACM.

Seagate Seagatdarracuda’200.10Serial ATA ProductManual. Seagate Technology, Scotts Valley, CA, Dec
2007.

S. W. Son, G. Chen, O. Ozturk, M. Kandemir, and Alok Choary. Compiler-directed energy optimization for
parallel disk based system&EE Transaction®n ParallelandDistributedSystems, 18(9):1241-1257, 2007.

M. W. Storer, K. M. Greenan, and E. L. Miller. Pergamuneffacing tape with energy efficient, reliable, disk-
based archival storage. Rroc.6th USENIX Conf. on File and StorageTechnologiegFAST'2008), pages 1 —
16, San Jose, California, Feb. 2008.

Solid State Drives From Toshiba. http://www.toshdman/taec/catalog/family.do - ?fami-
lyid=7&subfamilyid=900314.

UMassTraceRepository. http://traces.cs.umaséretlk.php/storage/storage.

A. A. Wang, G. Kuenning, P. Reiher, and G. Popek. The cestfile system: Better performance through a‘
disk/persistent-ram hybrid desigACM Trans.on StoraggTOS), 2(3):309 — 348, Oct. 2006.

C. Weddle, M. Oldham, J. Qian, and A. Wang. PARAID: A gshifting power-aware RAIDACM Trans.on
StoraggTOS), 3(3):28 — 26, Oct. 2007.

J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnathyrand R. Wang. Modeling hard-disk power consump-
tion. In FAST'03: Proc.2nd USENIX Conf. on File and StorageTech., pages 217-230, Berkeley, CA, USA,
2003. USENIX Association.

Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. WilkéBbernator: Helping disk arrays sleep through the
winter. In SOSP’05:Proc.20th ACM Symp.on OperatingSyst. Principles, pages 177-190, NY, USA, 2005.
ACM Press.

Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou, and P.dCaReducing energy consumption of disk storage
using power-aware cache managementHRCAO4: Proc.of the 10th Int’l. Symp.on High Perform.Comp.
Arch., page 118, Washington, DC, USA, 2004. IEEE Computeicin

Qingbo Zhu and Yuanyuan Zhou. Power-aware storageecadmnagementiEEE Trans.Comput., 54(5):587—
602, 2005.

16

