Interfaces for Coordinated Access in the File System

Sam Lang, Rob Latham, Dries Kimpe, Rob Ross
Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439
{slang,robl,dkimpe,rross} @mcs.anl.gov

Abstract

Distributed applications routinely used the file sys-
tem for coordination of access, and often rely on
POSIX consistency semantics or file system lock sup-
port for coordination. In this paper we discuss the
types of coordination many distributed applications
perform, the coordination model they are restricted
to using with locks, and introduce an alternative co-
ordination model in the file system. We use extended
attribute support in the file system to provide atomic
operations on serialization variables, and demonstrate
the usefulness of this approach for a number of coor-
dination patterns common to distributed applications.

1. Introduction

The traditional model of a distributed application
consists of a set of processes that perform computation
on shared state. State is shared using message passing
or shared memory, and I/O is performed to the file
system for persistent storage of data. In the real world
though, this traditional model doesn’t always match
reality. Because of their autonomy, processes in a
distributed application inherently require coordination,
and while they may use message passing or shared
memory to coordinate, they often utilize features of
the file system to coordinate amongst processes. In
many cases, distributed applications desire some state
to persist across application runs, and often utilize
the persistent nature of the file system to manage
some shared state. Thus, the file system not only
manages persistent data, but also acts as a natural
place to perform coordination for many distributed
applications.

Forms of coordination in the file system include
exclusive access to shared data and atomic updates to
metadata. These two forms often overlap, as applica-
tions often manage their own file metadata within well
defined regions of the file (HDFS5 stores variable offsets
in a header) or utilize atomicity properties of file

system metadata interfaces to coordinate on a shared
value.

Those applications which do not perform commu-
nication directly between processes depend on the file
system as the rendezvous manager to enable coordina-
tion. For exclusive access to shared data, applications
may either assume that interfaces to the file system
provide coordination implicitly (sequential consistency
of I/0O accesses) or may use file system interfaces
explicitly to coordinate between processes (using ad-
visory locks or memory mapped files). In both cases,
filesystems have traditionally provided coordination
through locks, which give a process exclusive access
to a file or file regions. With a lock held, a process may
perform critical accesses to the file (it is expected that
accesses will overlap), excluding others until the lock
is released.

As we will show, locking for coordination is not
appropriate for all coordination tasks, such as collab-
orating on a shared value. Further, distributed lock
managers are usually separate from the rest of the
file system software, preventing efficient locking im-
plementations based on the coordination patterns of
the application. Instead of acquiring and releasing
locks, applications may prefer to perform an atomic
update of a shared, well defined value. Atomic updates
of structured data are not supported by file systems,
which traditionally only store unstructured data within
a logical namespace.

We propose that the file system provide applications
with efficient interfaces to small, structured data values
and atomic operation primitives that can be performed
on those values. To that end, this paper introduces
file system support for persistent atomic operators
and presents interfaces to those atomic primitives for
applications to build on to perform coordination. We
incorporated our atomic operators into the file sys-
tem using extended attributes on files, allowing us to
leverage existing operating system and client-side file
system support.

In the next section, we provide background on the
types of coordination used by distributed applications,
both within the file system and separately. We also
discuss some of the approaches file systems have taken
to providing locks for exclusive access. In Section 3,
we outline some of the desirable properties of atomic
operators provided by the filesystem, and define inter-
faces for a few basic atomic operators. In Section 4, we
describe some distributed applications that can utilize
atomic operators to implement efficient coordination
algorithms, and in Section 5 we show experimental
results of those implementations. Finally, Section 6
concludes and discusses possible future directions.

2. Background
2.1. Coordination in the File System

Distributed applications often rely on the file system
to provide coordination to shared resources, especially
if they do not perform interprocess communication.
Locking on files (either the entire file or specific re-
gions) has been the predominant form of coordination,
as the file data is most often the primary shared re-
source. In order to guarantee sequential consistency of
individual I/O operations between multiple processes,
file systems must implicitly lock a file (or region of
a file). To support this, distributed and parallel file
systems since the VAX/VMS system have included
distributed lock managers [1], [2], requiring sophisti-
cated locking algorithms and client state management.
This infrastructure is necessary to support applications
accessing overlapping file regions, however, not all
applications require exclusive access to overlapping
file regions. Many distributed applications perform 1/O
to non-overlapping regions for the majority of their
I/0 workloads, yet still incur the cost of locking on
many parallel file systems, because the file system must
provide appropriate consistency semantics independent
of the workload [3].

There are a few exceptions to the trend of using
lock managers in distributed and parallel file systems.
Preslan et al. [4] initially proposed lock extensions to
the SCSI interface (called DLOCK) allowing storage
devices to manage locks directly, and then generalized
their approach to allow storage devices to support
conditional load and store operations on internal shared
memory buffers (known as DMEP) [5]. A version was
associated with each memory buffer and incremented
with each store command, allowing for atomic primi-
tives and other concurrency control mechanisms (such
as locks) to be built with the DMEP primitives. The
DLOCK/DMEP specifications were implemented by
initial versions of the shared disk filesystem GFS [6],

[7], but later abandoned in favor of a distributed lock
manager [8]. More recently, Ermolinskiy et al. [9] pro-
posed Minuet, an optimistic approach to concurrency
control in shared disk environments. Minuet adds ver-
sioning capabilities to the storage area network (SAN)
and provides locking interfaces to the application that
allow for session isolation. This approach relaxes the
mutual exclusion property of traditional file system
locks and is a better match for many coordination tasks
that applications perform. As techniques for improving
an application’s ability to coordinate within the file
system, we note some drawbacks in both approaches.
The DMEP approach provides an atomic load and store
operation with the goal of implementing locks in a
distributed file system, leaving the application with
mutual exclusion locks as the only mechanism for co-
ordination. The Minuet approach provides the storage
components with the desired consistency semantics of
the application but coordination still requires the use of
locks. Both approaches require support from hardware
vendors, which have traditionally been reluctant to
provide anything more than a simple block interface.

Applications with clients competing to write data to
overlapping regions (or which need to exclude readers
while writing) often do so to small regions to perform
coordination, or collaborate on a particular value (such
as file header containing the layout information for
the rest of the file) [10]. These applications often
depend on advisory locks provided by the filesystem,
but advisory locks have not been supported by many
network and distributed file systems, because of the
complexity required to support distributed locking.
Applications which require advisory locks have been
limited to running on systems where advisory locks are
supported, or more commonly, have resorted to using
other file system interfaces to gain exclusive access to
a file.

For example, a common technique for acquiring ex-
clusive access to a file has been to use the open system
call with O_CREAT |O_EXCL flags, with successful
completion indicating that the lock was acquired. Even
this technique was not possible everywhere. On NFSv2
(or Linux kernels before 2.6) O_EXCIL was not atomic
and instead, applications were expected to use a com-
bination of the 1ink () and stat () system calls to
a unique “lockfile” [11]. Other applications use the
rename () system call to atomically update a shared
value, by first writing a new value into a temporary file,
and then renaming the temporary file to the shared file.
These are examples of some of the techniques that have
misused the file system interfaces to gain atomicity.

Many applications rely on the file system for col-
laboration in other ways, such as updating the file

offset on behalf of the application. Shared file pointer
interfaces are extremely convenient for appending to
files or reading from a work queue; I/O patterns that are
especially common among data-intensive applications.
To support the Map/Reduce programming model [12]
the Google File System [13] implements an atomic
append operation, a special case of shared file pointers.
Some general-purpose file systems have historically
offered native support for shared file pointers, includ-
ing Vesta [14], PFS [15], CFS [16], and SPIFFI [17],
but no general purpose distributed file system does
so today. Instead distributed applications that need a
shared file pointer must update the shared file pointer
themselves, and often rely on file system locks to
perform the update.

The shared file pointer interfaces defined by MPI-
10 have been implemented in ROMIO [18], [19], [20]
by means of a hidden file placed on the parallel file
system. The hidden file contains the present location
of the shared file pointer. When a process initiates a
shared file pointer routine, it reads this hidden file for
the present value, and writes the new value. In order to
ensure atomic access to the hidden file, the fcnt1 ()
system call is used when available. While support for
advisory locks in many file systems has improved,
they are by no means standardized. Several parallel
file systems, most notably PVFS [21], do not support
fcentl () locks at all. Lustre [22] supports fcntl ()
locks only if mounted with a special mount option.
NEFS treats fcntl locks as advisory, not mandatory, and
in common configurations will silently let multiple
MPI processes concurrently acquire locks, especially
if they are on distinct nodes.

2.2. Coordination outside the File System

An alternate approach to implementing shared file
pointers based on MPI-2 one-sided RMA operations
was proposed in [18]. The MPI-2 one-sided routines
provide atomic access to an entire memory region,
allowing for a sufficiently clever algorithm built on
top of MPI-2 RMA methods.

The RMA approach has one significant drawback.
Because shared file pointer operations are independent,
the process owning the RMA memory window may
stall the locking algorithm’s progress, because passive-
target RMA operations typically “make progress” only
when the target makes other MPI calls!.

1. A “progress thread” could be added, but on systems with
limited thread support (such as the IBM BlueGene/P), a progress
thread dedicated to the MPI library has an adverse impact on
application performance.

2.3. Coordination using Active Storage

Active storage is a model of computation that moves
functions from compute nodes to the file system or
storage device. This allows data intensive applications
to avoid the cost of moving large amounts of data to
the compute nodes, where it may simply be reduced
or transformed and shipped back to storage.

In theory, active storage programming models sim-
plify coordination of file accesses, because data ac-
cesses become local operations at the storage device,
simplifying enforcement of coordination policies.

Thus far, active storage has targeted data intensive
computing applications, and has focused on shipping
functions that operate primarily on data [12], [23].
Devulapalli et al. [24] propose extensions to the OSD
standard that would allow for atomic primitives on
object-based storage devices, such as compare-and-
swap, but do not extend the atomic interfaces through
the file system to applications.

3. Atomic operations in filesystems

We see today that file systems provide tighter co-
ordination of I/O accesses than is often required by
the application. File systems that implement sequential
consistency (POSIX file semantics) must implicitly
lock regions of a file to gain atomicity. This causes
significant overhead even for applications that do not
perform overlapping accesses to file regions, because
file systems are forced to provide the same semantics
for all applications. Attempts to work around the
overhead of implicit locks on parallel file systems that
support POSIX file semantics have been shown to be
non-trivial [3]. Further, distributed applications require
atomic access to data in ways that implicit locks do not
support. Advisory locks or other obscure techniques to
gain atomicity often provide more enforcement than is
necessary for the given access pattern, and in many
cases hinder desired concurrency.

Instead of forcing the file system to provide the high-
est semantic guarantees through implicit or advisory
locks, we choose to provide the minimum functionality
in the file system necessary to enable coordination
without the file system enforcing mutual exclusion.
Our approach is to provide applications with a set of
basic atomic operators that allow the application to
construct their own coordination models efficiently.

3.1. Properties of Atomic Operators

To allow distributed applications the flexibility to
coordinate in different ways, we identify a set of
properties desirable for atomic operators:

o State Variables. The basic component of an
atomic operation is the state that the operation
is performed on. To provide atomic operators to
the application, we require typed state variables
exposed by the file system, and interfaces to
create, modify and remove state.

« Persistence. Applications may have coordination
models that require updating values across appli-
cation runs, or among many applications. Provid-
ing atomic operations on persistent state variables
extends the coordination capabilities of applica-
tions. Persistent state can be useful for HPC
applications that perform defensive I/O, where
checkpoint/restart modes allow an application to
discover the state of a run before restarting.

o Global Namespace. With persistent state in a
distributed environment, applications must be able
to uniquely reference state variables and perform
atomic operations on them. A global namespace
for persistent state provides uniqueness across
processes and applications.

¢ Per-File Granularity. In many cases an applica-
tion coordinates processes around a file. Persistent
state variables should exist on a file.

With these properties in hand, we identify a few
atomic operators that applications can use to provide
coordination for two different types of accesses, and
describe how we have implemented those operators in
the file system in a lightweight manner.

3.2. Fetch and Add

Implementing global shared file pointers naturally
leads to the use of an atomic fetch_and_add
operation, where each update of the shared file pointer
increments an offset. In this model, each process of an
application performs a fetch_and_add operation to
some application-specific location, on a per-file basis.
The single atomic operation takes as arguments the file,
the state variable to perform the operation on, and the
value to add to the state variable. The operation returns
the value of the variable before the increment.

fetched_value =
fetch_and_add(
file, variable, add_value)

This operation requires an atomic read-modify-write
of the variable at the server where the variable is
stored.

3.3. Queue Interfaces

Distributed applications that require sequential con-
sistency of I/O accesses must rely on the file system

to implicitly lock the file. For those file systems that
provide distributed locks to the application, they take
on the responsibility of both coordinating between
processes, as well as communicating with processes to
grant lock requests. The notification mechanisms built
into file systems that provide sequential consistency
add significant complexity to the overall design of
the file system. Our approach is to leverage atomic
operators in the file system to perform coordination
and enforce fairness of lock requests, and allow the
distributed application to communicate between pro-
cesses to perform notification of locks being granted.
In order to enforce fairness, we chose to provide a
simple queue interface, where clients requesting a lock
place themselves on a queue with a unique identifier
(an enqueue operation). Clients releasing a lock must
remove themselves from the head of the queue (a
dequeue operation) and notify the client currently
at the head that they have been granted the lock. This
locking algorithm, which we describe in greater detail
in section 4.2, requires only two atomic operations:

head_buffer =
enqueue (file, variable, buffer)

head_buffer = dequeue(file, variable)

Both the enqueue and dequeue operations return
the head of the queue, which may be a special NULL
buffer if the queue is empty. Both operations are
performed on a queue variable, with variable-length
buffers being enqueued and dequeued. This gives
applications the flexibility to use the queue interfaces
to meet their needs.

3.4. Operators on Attributes

In order to meet the requirements that we set in
section 3.1, we chose to implement the atomic op-
erators using extended attributes. Extended attributes
are essentially persistent variables that can be placed
on a file. Each extended attribute is given a unique
name or key as a string scoped to that file, and
the value of the attribute is simply a variable length
buffer. This gives us persistent state variables at a
per-file granularity. The convention used for extended
attributes to define the string key also gives us a global
namespace to manage the atomic attributes we choose
to support. Leveraging extended attributes allows us
to implement support for atomic operators without
introducing new file system interfaces or requiring
any modifications to the client operating system or
file system software. This was an important advantage
for us, as modifications to the standard file system
interfaces require consensus from standards bodies and

the operating system community, which is often a
long and protracted process. Extended attributes do
not provide well-defined primitive types, which we
require to be able to perform atomic operations on
state variables. To obtain primitive types in extended
attributes, we embedded the type information in the
attribute key:

atomic.int.myvariable

In this convention, all extended attributes within the
atomic.int. namespace are known to be integer
types. To support atomic operators through extended
attributes, we require certain extended attributes to act
as functions instead of as variables, with support at
the file server to recognize an atomic function, and to
perform the associated atomic operator on the extended
attribute variable specified by the operator. In order
to accomplish this, we mapped atomic operations to
the atomic. namespace, and allow atomic operators
to be expressed as methods on extended attribute
variables within that namespace.

For example, an application may wish to create the
following extended attribute:

atomic.myapp-runl-shared-pointer

This attribute can be created using the standard
setxattr () system call, and given an initial value
of 0. The attribute would be created on a file for which
the application requires shared file pointer access.

uint64_t init = 0;

setxattr(
file,
"atomic.myapp-runl-shared-pointer"
&init,
8,
XATTR_CREATE) ;

Once created, this extended attribute is visible to all
processes using the file system, and each process
can perform a fetch_and_add operation on that
attribute, using the getxattr () system call:

uint64_t offset;
getxattr(
filename,

"atomic.myapp-runl-shared-pointer.fetch_and_add(4096)",

s&offset,

8) i
The file server receives the getxattr request, recognizes
the fetch_and_add operation being performed on the
extended attribute, fetches the attribute, adds 4096 to
its value, stores it and returns the fetched value as the
response. In this example, each process would be able
to perform a 4096 byte access at the offset returned by
the getxattr call.

The queue interfaces map to extended attributes in a

similar manner. The application might create an atomic
queue attribute, initialized to zero length:

setxattr(
file,
"atomic.myapp-runl-lockqueue",
NULL,
0,
XATTR_CREATE) ;
This creates and initializes the queue, at which point

processes can request a lock:

uint32_t ret;
uint64_t head_rank;
ret = getxattr(
file,
"atomic.myapp-runl-lockqueue.enqueue (1) ",
&head_rank,
8)i
Here the process specifies its own rank (a value of 1)
to be added to the tail of the queue. The return value
is used to determine if the queue is empty (used by the
locking algorithm further explained in section 4.2). A
return value of zero indicates the queue is empty.

Using the extended attributes to perform atomic
operations on stored variables allows us to leverage
much of the file system infrastructure and interfaces
already provided. The approach is not without draw-
backs though, and is only meant to demonstrate the
usefulness of interfaces that provide flexible coordina-
tion mechanisms to the application.

One obvious drawback to using extended attributes
in this way is the limited expressiveness of the
getxattr system call. Describing the atomic oper-
ator and its parameters requires serializing the entire
operation into a string, which is then given as the ex-
tended attribute name. This is only useful for operator
parameters that can be encoded into an ASCII string.
More problematic is that getxattr is intended to be a
read-only operation, so using it to modify state breaks
access permission rules.

4. Using Atomic Operators

In this section we describe a few application 1/O
access patterns that require coordination, and demon-
strate the use of our atomic operators to perform
that coordination, discussing some of the benefits over
other coordination techniques.

4.1. Shared File Pointer Interfaces in MPI

We already know, based on ROMIO’s use of a
hidden file, that the file system can be a way to provide
exclusive access to a shared resource. If we were to
store the value of the shared file pointer in a traditional
extended attribute, we would be no better off than if
we stored the value in a hidden file. We still require
a way to perform an atomic fetch and increment.
Here atomic operators deliver exactly what ROMIO
requires, resulting in a rather simple implementation of

the shared file pointer interfaces for MPI-IO. Figure 1
shows essentially the entire routine, omitting error
checking for clarity.

snprintf (
keyval_name, keyval_name_len,
"atomic.shared-file-pointer.fetch_and_add (%d)
incr);

key.buffer = keyval_name;

key.buffer_sz = keyval_name_len;
result.buffer = &result_buf;
result.buffer_sz = sizeof (result_buf);

ret = PVFS_sys_geteattr (&object_ref,
&credentials, &key, &result, NULL);

«shared_fp = «((int x)result.buffer);

Figure 1: Shared file pointer update with atomic operators. In
a single call, the attribute atomic.shared-file-pointer is
incremented by incr and the old value returned through result.

The atomic operator approach to shared file pointers
addresses the shortcomings of both the hidden file
approach and the RMA approach. We no longer require
the file system to support locks. We also no longer
require a progress thread to service RMA requests: the
file system metadata server stands ever-ready to service
operations.

4.2. Distributed Locks

Due to the high cost of remote memory references,
traditional locking algorithms are often not suitable
for use in a distributed memory environment. Instead,
if a client finds a lock to be taken, it goes to sleep
and relies on an external entity (such as a centralized
lock manager) to wake it when the lock becomes
available. Instead of using a centralized lock manager,
it is possible to move the functionality of the lock
manager into each of the clients. In this case, the client
releasing the lock is responsible for waking the next
client in line to obtain the lock. This means that the
owner of the lock needs to be able to deduce who, if
anyone, should obtain the lock next.

One way of doing this is to use a globally accessible,
shared queue which records who has the lock and
who is waiting for the lock. To obtain the lock, a
client would add itself to the queue. If the queue
was previously empty, the lock was obtained. If not,
the client goes to sleep knowing that the queue now
indicates its desire to obtain the lock. When the lock
is released, the owner removes himself from the head
of the queue and notifies the client now at the head
that they have acquired the lock.

The diagram in Figure 2 shows the locking algo-
rithm. Rank3 currently holds the lock, and is preparing
to hand off the lock to Rankl, which moves to the
head of the queue. Rank3 sends a notification message
to Rank1, notifying it that it has been granted the lock.

Lock Queue

Enqueue(2)

[Ram] [Rankzj

2. Next()

(= (o

Figure 2: Diagram of the lock queue algorithm.

1. Dequeue()

A slightly modified version of this algorithm was
implemented in [18], using MPI point-to-point mes-
sages to wake sleeping clients and MPI one-sided
operations to implement the shared queue. However,
due to restrictions of the MPI one sided operations,
it is not feasible to implement a true shared queue.
Instead, a shared array was used, recording who has
the lock and who is waiting for the lock. In this array,
each client has its own dedicated slot. Upon releasing
the lock, the current owner of the lock examines the
array (using a one-sided get operation) to see if any
other client is sleeping for the lock. If so, it selects a
client and wakes it using a point-to-point message.

There are a number of drawbacks associated with
this approach. For one, MPI does not guarantuee
that one-sided operations will complete without active
support from the remote party (i.e. the node containing
the accessed memory location). This means that, even
though the lock is free, it cannot be obtained without
cooperation from unrelated clients. If those clients
do not make MPI calls, for example because they
are computing, the lock cannot be obtained. Second,
approximating the queue with a shared array, while
starvation free, does not guarantee fairness. Also, since
each client that needs to obtain the lock requires a
dedicated entry in the array, all clients must be known
before creating the lock and need to agree on a unique
integer based ordering.

Using atomic operators to implement a shared

55

Independent write. —+—
Shared write

5 / 1
’ac’)\ 45 7
2
o
< 4 _— -
S
2
2
g 35 q

3l]

25 .
1 10 100

Number of processes

Figure 3: Independent vs. Shared file pointer writes.

queue, we are able to avoid these drawbacks. Clients
only need to agree on the file and attribute name to
gain access to the queue, making it relatively easy to
implement file locking between unrelated programs.
Since the file server already queues requests and pro-
cesses attribute operations atomically, true fairness is
guaranteed. And because the file server is always ready
to service file operations, progress is ensured without
requiring other clients to call the library.

5. Experimental Results

We implemented the atomic operators as extended
attributes in the PVES file server. This allowed us
to use unmodified client software to perform atomic
operations on files. Using these atomic operators,
we implemented the shared file pointer interfaces in
ROMIO, and implemented the distributed locks using
getxattr system calls and MPI for communication
between processes. Tests were run on the breadboard
cluster, a 40 node x86_64 commodity cluster at Ar-
gonne National Laboratory.

5.1. Shared File Pointers

We ran a micro-benchmark comparing performance
when writing a very small amount of data (4k per pro-
cess) to a file on PVES using both shared file pointer
methods and explicit access routines. For the explicit
case (using the MPI write_at and read_at routines), we
precomputed offsets to ensure no overlapping writes.
The shared case relies on correct updating of the shared
file pointer.

As can be seen in Figures 3 and 4, the shared file
pointer routines have somewhat more overhead than
the explicit access approach. We attribute this differ-
ence to the need for the shared file pointer routines
to perform an extra metadata access. Because each
process does such a small amount of I/O, additional
metadata calls appear to have an outsized effect.

11

Independent read —+—
Shared read

Bandwidth (MB/sec)

4 .
1 10 100
Number of processes

Figure 4: Independent vs. Shared file pointer reads.
5.2. Distributed Locks

Using atomic operators and the distributed locking
algorithm explained in 4.2, advisory file locking can be
implemented even on filesystems such as PVFS which
do not natively support fcntl (). Once advisory
file locks are available, they subsequently be used to
implement MPI-IO atomic mode.

To evaluate the performance of our lock imple-
mentation, we compared its performance against the
pure MPI implementation (described in [18]) and the
more traditional approach of using lockfiles. Tests were
executed on breadboard, a linux cluster at Argonne
National Laboratory. The MPI library was mpich
version 1.1 using TCP over gigabit ethernet as the
communication network.

Method Acquiring Releasing
Active Attributes 3.5ms 3.5ms
MPI 0.22ms 0.22ms

Table 1: Lock performance in the absence of contention.

As a first test, we measured the time to obtain and
release a lock. When using atomic operators releasing
a lock only depends on the process releasing the lock
and the file server, so the time needed to release the
lock is independent of the other clients. For MPI one-
sided implementation, this is not true. To obtain results
independent of the specific calling sequence of other
clients, we dedicated a client to managing the lock.
This means the times listed in table 1 represent a lower
bound for the performance of the MPI method. The
timings given are valid when there is no contention
for the lock.

In a second test, we simulated a workload consisting
of a number of independent, atomic updates to a shared
file. Each available client is responsible for a subset of
the updates, meaning the aggregated number of updates
among all the clients is always the same. In total, 200

100

lockfile(create) —— ‘ ‘ J;
lockfile(In) e
atomic operator -

10 ¢ E

Time (seconds)
\

0.1

Number of processes

Figure 5: Time needed to perform a set of atomic updates.

updates are made to the file, where each update writes
4Kb of data.

Since, when using the one-sided implementation,
the lock cannot be obtained while the client is busy
performing I/O, we compared our atomic operator
implementation to the more common practice of using
file locks. On most filesystems, as filenames have
to be unique, creating a file is an atomic operation.
Therefore, the ability to create a certain file with a
specific, previously agreed on name, can serve as an
atomic operation similar to obtaining a lock. When the
owner of the lock is finished, the file is removed, giving
other clients a chance to create the file and obtain the
lock. If a client is unable to create the lockfile (because
it already exists), it has to try again until it succeeds,
increasing the load on the file server for each waiting
client.

Unfortunately, especially on network filesystems,
creating a file is not always atomic. There are a number
of workarounds, but it is clear that using a lockfile is
not an ideal solution. We implemented two lockfile
methods, a straightforward implementation using only
lockfiles which might fail on certain network filesys-
tems, and a more complicated implementation relying
on hard links to achieve better portability. The results
are shown in Figure 5. The effect of the load generated
by blocked clients in the lockfile methods is clearly
visible as the number of clients increases. The queue
implementation, which relies on the queue to record
who is next in line to receive the lock, does not have
this problem and subsequently scales much better even
if the number of clients increases.

6. Conclusions and Future Directions

Parallel applications and I/O libraries routinely need
to coordinate access. While current parallel file systems
provide some basic facilities for coordination (e.g., fc-
ntl() locks, POSIX atomicity), these facilities are heavy

weight; they do not serve as good building blocks for
more complex coordination activities such as shared
file pointers. Further, facilities such as file system
locking used to enforce POSIX atomicity introduce
shared state into the system, placing the burden of
failure recovery on the file system.

In this paper we introduce the use of atomic oper-
ations on extended attributes as an alternative method
for coordination using the parallel file system. We
integrate these atomic operations into the parallel file
system PVFS, by providing support for atomic op-
erations on files through extended attributes. Finally,
We discuss two common distributed application pat-
terns that can leverage the coordination primitives we
provide, and show experimental results using those
primitives.

Using extended attributes allows us to leverage
existing file system interfaces and operating system
support, but has drawbacks that must be addressed.
More research is needed to identify a complete set
of atomic primitives that allow a wide variety of
applications to perform coordination within the file
system. Better understanding of what primitives are
needed will naturally lead to more appropriate file
system interfaces.

Acknowledgments

The authors would like to thank the PVFS com-
munity for their efforts in making PVFS a successful
part of HPC storage systems. This work was supported
by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Ad-
vanced Scientific Computing Research, Office of Sci-
ence, U.S. Dept. of Energy, under Contract DE-AC02-
06CH11357.

References

[1] W. Snaman Jr and D. Thiel, “The VAX/VMS dis-
tributed lock manager,” Digital Technical Journal,
vol. 5, pp. 29-44, 1987.

[2] F. Schmuck and R. Haskin, “GPFS: A shared-disk file
system for large computing clusters,” in In Proceedings
of the 2002 Conference on File and Storage Technolo-
gies (FAST), 2002.

[3] W. Liao and A. Choudhary, “Dynamically adapting file
domain partitioning methods for collective I/O based
on underlying parallel file system locking protocols,”
in Proceedings of the 2008 ACM/IEEE conference on
ggggrcomputing. IEEE Press Piscataway, NJ, USA,

[4] K. Preslan, S. Soltis, C. Sabol, M. O’Keefe, G. Houlder,
and J. Coomes, “Device locks: Mutual exclusion for
storage area networks,” in Proceedings of the Seventh
NASA Goddard Conference on Mass Storage Systems
and Technologies, 1999.

[5] SCSI Device Memmg Export protocol. Version 0.9.8.
[Online]. Available: http://www.t10.org

(6]

(71

(8]

(91

(10]

(11]

(12]

(13]

[14]

[15]

[16]

[17] C

(18]

(19]

[20]

[21]

K. W. Preslan, A. Bar J. Brassow, R. Cattelan,
A. Manthei, E. Ny aar?] S. V. Oort, D. Teigland,
M. Tilstra, M. OKeefe, G. Erickson, and M. Agarwal,
“Implementing journaling in a linux shared disk file
system,” in Proceedings of the Eighth NASA Goddard
g(())(%erence on Mass Storage Systems and Technologies,

K. W. Preslan, A. Barry, J. Brassow, M. Declerck,
A. J. Lewis, A. Manthei, B. Marzmskl E. Nygaard,
S. Van Oort D. Telgland M. Tilstra, S. Whitehouse,
and M. O’ Keefe “Scalability and failure recovery in a
linux cluster file system,” in ALS’00: Proceedings of the
4th annual Linux Showcase & Conference. Berkeley,
CA, USA: USENIX Association, 2000, pp. 10-10.

Dam sharing with a GFS stor-
cluster. ailable:

[Online]. Av
http //www.redhat. com/magaz1ne/006apr05/features/ afs/

A. Ermolinskiy, D. Moon, B.-G. Chun, and S. Shenker,
“Minuet: rethinking concurrency control in storage area
networks,” in FAST ’09: Proccedings of the 7th confer-
ence on File and storage technologies. Berkeley, CA,
USA: USENIX Association, 2009, pp. 311-324.

R. Ross, D. Nurmi, A. Cheng, and M. Zingale, “A
case study in ap; lication 1/0 on Linux clusters,” in
Proceedings of the 2001 ACM/IEEE conference on
Supercomputing. ACM New York, NY, USA, 2001,

pp- 11-

The Linux open(2) manpage, section O_EXCL.
[Online]. Available: http://www.kernel.org/doc/man-
pages/online/pages/man2/open.2.html

J. Dean and S. Ghemawat, “MapReduce: Simplified
data processing on large clusters.” in OSDI *04: Pro-
ceedings of the 5th symposium on Operating Systems
Design and Implementation, 2004.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
google file system,” SIGOPS Operating Systems Re-
view, vol. 37, no. 5, pp. 29-43, 2003.

P. F. Corbett and D. G. Feitelson, “Design and imple-
mentation of the Vesta parallel file system,” in Pro-
ceedings of the Scalable High-Performance Computing
Conference, 1994, pp. 63-70.

Paragon System User’s Guide, Intel Supercomputing
Division, 1993.

P. Pierce, “A concurrent file system for a highly parallel
mass storage system,” in Proceedings of the Fourth
Conference on Hypercube Concurrent Computers and
Applications. Monterey, CA: Golden Gate Enterprises,
Los Altos, CA, March 1989, pp. 155-160.

. S. Freedman, J. Burger, and D. J. Dewitt,
“SPIFFI — a scalable parallel file system for
the Intel Paragon,” IEEE Transactions on Pamllel
and Distributed Systems, vol. 7, mno. 11,
1185-1200, November 1996. [Online]. Avallable
http://Www.Computer.org/tpds/td1996/11 185abs.htm

R. Latham, R. Ross, and R. Thakur, “Implementing
mpi-io atomic mode and shared file pointers using
mpi one-sided communication,” Int. J. High Perform.
Comput. Appl., vol. 21, no. 2, pp. 132-143, 2007.

R. Thakur, W. Gropp, and E. Lusk, “Data sieving and
collective I/O in R(gMIO” in Frontiers of Massively
Parallel Computation, 1999. Frontiers’ 99. The Seventh
Symposium on the, 1999, pp. 182-189.

R. Thakur, E. Lusk, and W. Gropp, “Users guide for
ROMIO: A high- erformance, portable MPI-1IO imple-
mentation,” vol. 234, 2000.

A. Ching, R. Ross, W. keng Liao, L. Ward, and
A. Choudhary, “Noncontlguous lockmg technlques for
parallel file systems,” in Proceedings of Supercomput-
ing, November 2007.

[22]

[23]

[24]

“Lustre file

system,”
http://www.sun.com/software/products/lustre/.

J. Piernas, J. Nieplocha, and E. Felix, “Evaluation of ac-
tive storage strategies for the lustre parallel file system,”
in Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing. ACM New York, NY, USA, 2007.

A. Devulapalli, D. Dalessandro, and P. Wyckoff, “Data
structure consistency using atomic operations in storage
devices,” in SNAPI ’08: Proceedings of the 2008 Fj h
IEEE International Workshop on Storage Network Ar-
chitecture and Parallel I/Os. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 65-73.

