
HAL Id: inria-00397328
https://inria.hal.science/inria-00397328

Submitted on 20 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding a Tradeoff between Host Interrupt Load and
MPI Latency over Ethernet

Brice Goglin, Nathalie Furmento

To cite this version:
Brice Goglin, Nathalie Furmento. Finding a Tradeoff between Host Interrupt Load and MPI Latency
over Ethernet. Cluster 2009, Sep 2009, New Orleans, United States. �10.1109/CLUSTR.2009.5289165�.
�inria-00397328�

https://inria.hal.science/inria-00397328
https://hal.archives-ouvertes.fr

Finding a Tradeoff between Host Interrupt Load

and MPI Latency over Ethernet

Brice Goglin✶, Nathalie Furmento✷

✶ INRIA, ✷ CNRS

LaBRI – 351 cours de la Libération, F-33405 TALENCE – FRANCE

✶
Brice.Goglin@inria.fr — ✷

Nathalie.Furmento@labri.fr

Abstract—Achieving high-performance message passing on top
of generic ETHERNET hardware suffers from the NIC interrupt-
driven model where coalescing is usually involved. We present an
in-depth study of the impact of interrupt coalescing on the OPEN-
MX performance. It shows that disabling coalescing may not be
relevant for most metrics except small-message latency. Two new
coalescing strategies are then presented so as to efficiently support
both latency-friendly and coalescing-friendly workloads thanks
to the NIC looking at OPEN-MX messages and streams before
deciding when to raise interrupts.

The implementation of these strategies in the firmware of
MYRI-10G NICs shows that OPEN-MX is now able to achieve a
low small-message latency, a high large-message throughput, and
a satisfying message rate without having to manually tune the
coalescing delay depending on the benchmark. Real application
performance evaluation further shows that our modifications
even improve the NAS Parallel Benchmark IS execution time
by 7-8 % thanks to our NIC firmware raising up to 20 % of
additional interrupts at the correct time.

I. INTRODUCTION

High-performance networking in clusters relies on advanced

hardware features that vendors implement in their NICs. For

instance, zero-copy, i.e. the ability to read events and data

from user-space on the sender side and deposit it directly

in the target application buffers on the receiver side, enables

high-throughput communication. It also enables application-

directed polling of incoming events without any intervention

of the operating system. These features require advanced

hardware support that is presently not available in generic

ETHERNET hardware.

OPEN-MX [1] is a message passing stack implemented on

top of the ETHERNET software layer of the LINUX kernel. It

provides high-performance communication over any generic

ETHERNET hardware using the wire specifications and the ap-

plication programming interface of Myrinet Express [2]. While

being compatible with any legacy ETHERNET NIC, OPEN-

MX performance suffers from the lack of the aforementioned

hardware features.

One key-point of the OPEN-MX receive stack is that the

existing NIC and driver model enforces a interrupt-driven

model. The host processors are indeed notified of newly re-

ceived packets only when interrupts are raised, which implies

an large software overhead. The usual way to work around

this problem is Interrupt Coalescing which coalesces several

notifications within a single interrupt.

While working well for the throughput of TCP-like commu-

nication flows, interrupt coalescing causes small-message la-

tency to increase significantly. OPEN-MX benchmarking may

thus require proper tuning of the coalescing delay depending

on the communication pattern. We propose in this article to

study the actual impact of coalescing strategies on OPEN-MX

performance, from the latency, throughput and message-rate

points of view.

The rest of this paper is organized as follows. Section II

provides background information about interrupts in receive

stacks and OPEN-MX, and it details our motivations. Sec-

tion III explains two approaches to improve interrupt notifi-

cation by adding some knowledge of OPEN-MX messages

and streams in the NIC coalescing heuristics. Experiments

shown in Section IV emphasize the performance impact of

the existing coalescing strategies and of our proposal on

various micro-benchmarks and on application performance.

We discuss related work and propose future research directions

in Sections V and VI, respectively.

II. BACKGROUND AND MOTIVATIONS

We introduce in this section the existing techniques for deal-

ing with interrupts in ETHERNET hardware, high-performance

computing and the reason why this needs to be studied in the

context of OPEN-MX.

A. Ethernet hardware and Interrupts

The design of ETHERNET hardware in the last decades

was mostly driven by TCP/IP communication. These network

interfaces usually serve many communication flows between

multiple hosts. The user expectations in this context focuses

on the throughput and the equity between flows. Several

optimizations such as Transmit Segmentation Offload or Large

Receive Offload have been proposed as ways to improve TCP

performance on generic hardware. The design of the receive

stack remains nonetheless very simple. The NIC just tries to

deposit a stream of packets in the host memory as quickly as

possible, and then notifies the host processor of their arrival.

This notification relies on a interrupt-based model, which leads

to the question of when to raise each interrupt.

Interrupts are logical signals that I/O devices may send

to processors to force them to process some event. This

interrupt suffers from a large hardware and software overhead

(several microseconds) due to the need to switch from the

1

current processor execution context into a dedicated interrupt

handling context. It is thus important to reduce the amount of

interrupts so as to prevent interrupt processing from consuming

all CPU time, and so as to improve the overall system

availability. This so-called Receive Livelock problem [3] led

to the design of new operating system receive stacks, such as

LINUX NAPI [4], which try to find a tradeoff between early

packet processing and interrupt load.

On the hardware side, the well-known Interrupt Coalescing

optimization delays the interrupt up to when a certain amount

of packets has been received or when a timeout expires. The

host is thus able to process several packets at once instead

of being interrupted multiple times. While reducing the host

interrupt load, coalescing however increases communication

latency since the host may not process a packet before the

coalescing timeout expires. Reducing the coalescing delay is

an obvious solution for improving latency but significantly

increases the host load under high traffic. However, it has

been shown that large coalescing delays improve performance

regardless of the metrics [5]. Additionally, coalescing must be

carefully tuned to improve TCP performance [6]. It is thus

interesting to look at this problem in the context of high-

performance computing where both latency and host load are

important metrics.

B. The OPEN-MX Stack

The OPEN-MX stack aims at providing high-performance

message passing over any generic ETHERNET hardware. It ex-

poses the Myrinet Express API (MX [2]) to user-space appli-

cations. Many existing middleware projects such as MPICH2-

MX [7] and OPEN MPI [8] run successfully unmodified on

top of it. OPEN-MX is also interoperable with hosts running

the native MX stack over ETHERNET (MXOE).

MX Library

MX

Driver

Generic Ethernet Layer

Open−MX Library

Open−MX

Driver

Application

Ethernet Driver

MXoE Firmware Ethernet Board

Ethernet Wires

O
S

 B
y

p
a

s
s

Fig. 1. Design of the native MX and generic OPEN-MX software stacks.

OPEN-MX was initially designed as an emulated MX

firmware in a LINUX kernel module [1]. This way, legacy

applications built for MX benefit from the same abilities

without needing the MYRICOM hardware or the native MX

software stack (see Figure 1). However, the features that are

usually implemented in the hardware of high-speed networks

are obviously prone to performance issues when emulated

in software. Indeed, portability to any ETHERNET hardware

requires the use of a very simple common low-level program-

ming interface to access drivers and NICs.

Core#0 Core#3Core#2Core#1

IRQ

Handler
Receive

Application

Event+Data

Hardware

Kernel

User−space

Ethernet Board

Round−Robin

Packet

Fig. 2. Path from the NIC interrupt up to the application receiving the event
and data.

As any implementation on top of the LINUX kernel

ETHERNET software interface, the OPEN-MX receive stack

is Interrupt-driven. Incoming packets are processed by the

OPEN-MX-specific Receive handler when an interrupt is

raised by the NIC (see Figure 2). Indeed, this handler is

invoked when the Bottom Half of the ETHERNET driver

processes an interrupt. The corresponding event and data are

then passed to the user-space application through a shared

memory ring.

The whole receive stack is thus prone to latency issues due

to interrupt coalescing techniques since delaying an interrupt

in the NIC postpones the corresponding packet processing in

the host. It raises the question of finding a tradeoff between

low latency and limited host interrupt overhead. Moreover,

since interrupts are usually scattered across all processor

cores by the hardware chipset in a round-robin manner, each

interrupt may require OPEN-MX data structures to be evicted

from other processor caches and fetched back into the local

cache. Thus, the more interrupts, the more cache-line bounces

between cores.

C. Motivation and Objectives

Achieving high-performance with OPEN-MX requires an

efficient delivery of incoming packets up to user-space ap-

plications. Relevant metrics in high-performance computing

vary from raw latency and message rate (as measured by

usual benchmarks), up to the overall host interrupt load

(involved in the overall application performance). High-speed

networks such as INFINIBAND [9] or MYRI-10G [10] rely

on application-directed polling and the ability of the NIC

to deposit packets directly in the application buffers. These

features are not available in generic ETHERNET hardware and

drivers. OPEN-MX has to rely on the existing interrupt-driven

model. It is thus important to adjust the usual ETHERNET NIC

interrupt behavior in order to satisfy OPEN-MX latency and

host interrupt load requirements.

The benchmarking guidelines provided with OPEN-MX

recommend to disable interrupt coalescing when latency is

the critical metric. The first objective of this paper is to

2

study the actual impact of tuning interrupt coalescing on

other metrics such as message rate as well as real application

performance. The second objective is to design a new in-

terrupt coalescing strategy that suits OPEN-MX require-

ments. The idea is to automatically support both low latency

communication for small messages, and high throughput and

low host overhead for large communication patterns and large

messages.

The notion of Message makes MPI communication patterns

differ significantly from usual TCP flows. For instance, it

makes sense to preferably raise interrupts at the end of

messages instead of when a static timeout expires. We thus

propose to add Markers in OPEN-MX packets to help the

NIC decide when an interrupt should be raised. We then want

to integrate this idea within a Stream-aware coalescing model

that tries to avoid early interrupts if another OPEN-MX packet

is expected in the near future.

These ideas have to be implemented inside the OPEN-MX

wire protocol and in a ETHERNET NIC firmware since the

existing hardware does not offer such abilities. Indeed, Inter-

rupt Coalescing has been designed for TCP communication

patterns. The TCP/IP protocol does not provide the NIC with

any way to find out the internal structure of a communication

flow (the actual structure is only known by the application).

For this reason, existing ETHERNET hardware and operating

systems such as LINUX only provide very basic ways to tune

interrupt coalescing: setting the maximal coalescing delay, or

the maximal amount of packets that may be received before

raising an interrupt. This model suits TCP communication

since periodic and coalesced interrupts enable high-throughput

for continuous and regular flows. However, applying this

model to structured communication flows such as OPEN-MX

raises the question of how to adapt it to message passing.

Indeed, different parallel application phases may mix few or

lots of small or large messages, and thus mix cases where

interrupt coalescing requirements differ significantly.

III. DESIGN OF A OPEN-MX-AWARE INTERRUPT

COALESCING STRATEGIES

We describe in this section the design of new interrupt

coalescing strategies which try to automatically support low

latency for small messages as well as high throughput and low

host overhead for large messages and large communication

patterns.

A. Overview of OPEN-MX communication patterns

Once OPEN-MX establishes a connection between two

peers, each MPI message is transfered using one of the

existing formats in the wire specification of MXOE (Myrinet

Express over Ethernet): Up to 128 bytes (Small messages), a

single packet is sent eagerly. Up to 32 kiB (Medium messages),

a stream of several fragments is sent eagerly. The size of these

fragments depends on the fabric Maximum Transmission Unit

(MTU). For these messages, an interrupt would obviously be

preferred when the last fragment arrives since the application

would then be able to process the entire message at once.

Rendez−
vous

Pull request

Pull reply

SENDER

RECEIVER

Notify

Fig. 3. Timeline of packet exchange during a large Pull OPEN-MX message.
Plain lines with black arrows are packets that OPEN-MX marks as needing
an immediate interrupt.

Large messages (more than 32 kiB) are much more com-

plex: The sender first sends an explicit Rendezvous packet.

When a matching receive request has been posted, the receiver

initiates a Pull to retrieve data from the sender. This strategy

is similar to a RDMA Get operation. It is performed by

requesting up to 32 fragments at once, and then requesting the

next 32 fragments while the previous ones are being received

(see Figure 3). Once the transfer is done, an explicit Notify

message is sent back to the sender to complete the operation.

This complex protocol is sensitive to latency since multiple

round-trips are involved, both for the Rendezvous/Notify and

for requesting data fragments. It is thus important to mark the

following packets as requiring special care from the NIC since

processing them early may improve the overall performance:

Rendezvous, Pull request, last fragment of a Pull reply, Notify.

This shows how message passing over OPEN-MX exhibits

structured communication flows where some packets have to

be privileged by the NIC so as to both reduce small-packet

latency and improve the throughput of large patterns. TCP

streams cannot be treated as cleverly since there is no way to

determine any structural information such as Latency-sensitive

packets.

B. Latency-Sensitive Packets

Having identified how the OPEN-MX message structure

appears within packets and may be used by the NIC to decide

when to raise interrupts, we can now present the implemen-

tation of our new coalescing techniques. The idea behind

OPEN-MX-aware interrupt coalescing is to detect Latency-

sensitive packets and preferably raise interrupts as soon as they

have been transfered into host memory. We implemented this

model in OPEN-MX by marking packets as latency-sensitive

in the sender driver (where the actual splitting of user-space

messages into fragments is performed). Packets are marked by

adding a special flag in the OPEN-MX header.

On the receive side, the NIC must be able to recognize this

marker before applying its interrupt coalescing heuristics. We

modified the myri10ge ETHERNET firmware of MYRI-10G

NICs to do so. When a new packet is processed, the firmware

checks the OPEN-MX-specific Latency-Sensitive marker flag.

The interrupt cannot however be raised immediately since the

packet must be deposited in the host memory (by DMA)

before the interrupted processor may actually process it. The

3

Algorithm 1 OPEN-MX Coalescing: Interrupt coalescing

based on marking Latency-Sensitive packets.

if a packet arrives then

Create packet Descriptor

if Packet is Marked then

Mark packet Descriptor

end if

Submit DMA to host memory

end if

. . .

if a DMA completes then

Find corresponding packet Descriptor

if Descriptor is Marked then

Raise Interrupt

end if

end if

. . .

if Interrupt coalescing timeout expires then

Raise Interrupt

Reset coalescing timeout

end if

firmware thus marks the packet descriptor and checks it when

its DMA completes (see Algorithm 1). If the descriptor was

marked as latency-sensitive, an interrupt is raised immediately

instead of waiting for the usual coalescing timeout to expire.

This implementation will be referred to as “OPEN-MX

Coalescing”. Thanks to it, the NIC now raises an interrupt

when receiving a small packet, the last fragment of a medium

message, the last fragment of a pull request during a large mes-

sage, or a performance-sensitive control packet (for instance

a Rendezvous). Any packet not matching one of the above

criteria is treated normally, with a interrupt coalescing timeout,

which means that IP connections and OPEN-MX management

packets are unaffected by our firmware modifications.

This model enables the coalescing of all fragments within

a single medium message, or all fragments replying to a

single Pull request. It brings interesting cache properties since

all these fragments will be processed at once by the same

processor which received the interrupt. Indeed, these fragments

refer to the same OPEN-MX descriptors in the driver (com-

munication channel, pull descriptor, ...). Processing all these

fragments consecutively on the same core is thus expected to

increase cache hits. On the contrary, usual interrupt coalescing

splits the packet flow randomly and thus scatters across

different cores the processing of related packets (interrupts are

usually raised to processors in a round-robin manner), causing

cache-line bounces between cores.

C. Stream-aware Model

We described in the previous section a OPEN-MX coalesc-

ing mechanism that raises interrupts when needed, especially

at the end of a stream of related fragments. We expect this

model to achieve better small-message latency and large-

message throughput. But it also limits the message rate since

there is basically one interrupt per small message. We now

look at how to improve message rate by reducing when

possible the need to raise an interrupt for each small packet.

Supporting small-message streams in a clever way requires

to carefully detect such streams before actually raising in-

terrupts. This idea looks like predicting the future of the

incoming traffic but it is actually not that hard. Indeed, as

explained in the previous section, the interrupt is not raised

immediately since the packet first has to be deposited in

host memory by DMA. We thus implemented a Stream-aware

variant of our OPEN-MX coalescing strategy by looking at

the future incoming traffic during the DMA processing time.

If no other packet arrives before the DMA completes, the

requested interrupt is actually raised. If some packets arrived,

the interrupt is Deferred so as to wait for the corresponding

DMAs to also complete (see Algorithm 2).

Algorithm 2 Stream Coalescing: Interrupt coalescing, with

deferring of interrupt in case of a stream of packets.

if a packet arrives then

Create packet Descriptor

if Packet is Marked then

Mark packet Descriptor

end if

Submit DMA to host memory

end if

. . .

if a DMA completes then

Find corresponding packet Descriptor

if no other DMA is pending then

if Descriptor is Marked or DeferredInterrupt is set

then

Raise Interrupt

Clear DeferredInterrupt

end if

else if Descriptor is Marked then

Set DeferredInterrupt

end if

end if

. . .

if Interrupt coalescing timeout expires then

Raise Interrupt

Clear DeferredInterrupt

Reset coalescing timeout

end if

This implementation will be referred to as “Stream Coa-

lescing”. This way, in case of a stream of small packets, the

interrupt is deferred to after the last packet so that all packets

are processed at once by the host processor. However, if a

single small packet is received, the interrupt is still raised

early and the host processes the packet as soon as possible.

Moreover, the initial interrupt coalescing delay is still available

(for non-OPEN-MX packets or non-marked packets). In case

of very long streams, the interrupt may at most be deferred

until the coalescing timeout expires.

4

This model also has the advantage of helping support

for packet disorder. Indeed, since only the last fragment of

medium messages or pull replies is marked, a mis-ordered

fragment may cause the interrupt to be raised before all

fragments are actually received. If the missing fragments arrive

immediately after the marked one, our new Stream coalescing

model will detect them and defer the interrupt a bit. All

fragments will thus still be reported at once to the host. If the

missing fragments are significantly late, the interrupt may be

raised before they arrive. But the message transfer time would

have been disappointing anyway because of these mis-ordered

and delayed packets.

IV. PERFORMANCE EVALUATION

We now look at the impact of interrupt coalescing strate-

gies on OPEN-MX performance. We first study the existing

coalescing techniques (timeout based) and try to understand

how their possible configurations impact on the OPEN-MX

latency, throughput and message rate. Then, we look at the new

techniques that we designed specifically for OPEN-MX and

explain how they improve performance on microbenchmarks

and real applications.

A. Experimentation Platform

We implemented the OPEN-MX and Stream coalescing

techniques that were presented in Sections III-B and III-C

in the myri10ge firmware 1.4.41 of MYRICOM MYRI-10G

ETHERNET interfaces [10]. Modifying the firmware to support

our OPEN-MX coalescing model required the addition of less

than 20 lines of code (in the main incoming packet processing

routine and in the write DMA completion routine). The Stream

coalescing patch added about 20 other lines of code.

The experimentation platform is composed of two dual-

socket INTEL quad-core XEON processors (Clovertown E5345

2.33 GHz) running OPEN MPI 1.3.0 over OPEN-MX 1.0.901,

on top of LINUX kernel 2.6.26 and myri10ge driver 1.4.4.

The ETHERNET fabric and OPEN-MX have been configured

with a Maximum Transmission Unit (MTU) of 1500 bytes so

that interrupt-related effects appear more significantly. Indeed,

the smaller the packets, the higher the interrupt and processing

costs per byte. However, it has to be noted that a larger MTU

(9000-bytes jumboframes) would exhibit the same behavior

for small messages (where the MTU does not matter) and for

proportionally-larger messages.

B. Impact of Interrupt Coalescing

We now detail the actual impact of the existing interrupt

coalescing delay on the OPEN-MX performance.

1) Message Rate: Figure 4 presents the maximal rate of

a unidirectional stream of 128 bytes messages (i.e. Small

messages) between two OPEN-MX processes, depending on

interrupt coalescing, interrupt binding, and on the core sleep-

ing state. The default configuration of modern machines is to

scatter interrupts across all cores in a round-robin manner,

to use a high interrupt coalescing delay (75✖s on MYRI-

10G NICs) and to let cores go to sleep when idle1. This

configuration is able to receive up to 433k messages per

second, disabling interrupt coalescing (0✖s delay) reduces the

rate by more than a factor of two.

250K

300K

350K

400K

450K

500K

 0 10 20 30 40 50 60 70 80

N
um

be
r

of
 p

ac
ke

ts
 r

ec
ei

ve
d

/ s
ec

on
d

Interrupt coalescing (microseconds)

Interrupts on single core, Sleeping disabled
Interrupts on single core, Sleeping possible
Interrupts on all cores, Sleeping possible (Default)

Fig. 4. Message rate of a stream of 128 bytes OPEN-MX messages.

Then, letting cores go to sleep when idle appears to have a

huge overhead since disabling sleeping significantly improves

the message rate. It means that if the target core is sleeping

when an interrupt is raised (for instance because the MPI

process running on this core is waiting for an I/O to complete),

several microseconds may be needed before the interrupt is

actually processed.

Finally, processing interrupts on different cores causes

cache-line bounces between cores and thus increases the

overhead, as explained at the end of Section III-B. However,

for load balancing purpose, interrupt processing should remain

distributed across cores, hence increasing the overhead.

Both these arguments justify the idea of coalescing inter-

rupts. Indeed, the less interrupts, the less cores have to be

woken up, and the more packets are processed at once by each

core, reducing the number of cache-line bounces per packet.

2) Interrupt Overhead: To further study the impact of

interrupt coalescing and binding, we measured the per-packet

overhead of interrupt processing. The stream is now composed

of a million of explicitly invalid 128 bytes packets. All of them

are dropped immediately by the OPEN-MX receive handler so

that only the low-level receive stack is involved.

The observed overhead is 965 ns per packet when always

raising an interrupt (coalescing disabled) while it drops by

roughly 20 % when coalescing is enabled, down to 774 ns.

It shows that coalescing indeed reduces the host interrupt

overhead.

Moreover, by binding interrupts on a single core, the

overhead drops slightly, by roughly 40 ns. We assume it is

related to a cache miss being removed in the low-level receive

1Modern INTEL XEON processors quickly enter the C1E sleep state when
idle.

5

stack thanks to all packets being processed on the same core.

We expect that a lot more cache misses would have been

observed if the OPEN-MX receive handler had processed these

packets instead of dropping them. It confirms that raising many

interrupts causes cache-related problems since interrupts are

usually scattered across multiple cores.

3) Ping-pong: Figure 5 presents the throughput of an

OPEN-MX ping-pong benchmark. As expected, it shows that

interrupt coalescing significantly disturbs small-message la-

tency since it increases from about 10✖s up to 75✖s. Indeed,

each ping-pong iteration uses a single packet and the host

has to wait for the whole coalescing delay to expire (75✖s

on MYRI-10G NIC by default). However, large-message

throughput increase when interrupt coalescing is enabled since

many packets are transmitted and thus causing the lower per-

packet interrupt overhead to become important.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1B 16B 256B 4kiB 64kiB 1MiB

N
or

m
al

iz
ed

 T
ra

ns
fe

r
T

im
e

Message size (bytes)

Interrupt Coalescing
Interrupt Coalescing Disabled

Fig. 5. Relative transfer time of a ping-pong depending on the interrupt
coalescing.

4) Summary: Results presented in this section confirm that

disabling interrupt coalescing should only be recommended

when small-message latency is critical. Other metrics such

as message rate and large-message throughput benefit sig-

nificantly from coalescing. Indeed, coalescing reduces the

host interrupt load and improves locality during interrupt

processing since more packets are processed at once on the

same core, thus avoiding cache-line bounces. Moreover, many

interrupts may cause sleeping cores to wakeup more often,

thus increasing the host overhead even more.

C. OPEN-MX and Stream Coalescing

In the previous section, we described the impact of the

interrupt coalescing delay on the OPEN-MX performance.

We now look at the new OPEN-MX and Stream coalescing

strategies that we proposed in Sections III-B and III-C.

1) Ping-pong: Figure 6 presents the normalized message

transfer time during a OPEN-MX ping-pong between our

experimentation hosts. It shows that our OPEN-MX coalescing

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1B 16B 256B 4kiB 64kiB 1MiB

N
or

m
al

iz
ed

 T
ra

ns
fe

r
T

im
e

Message size (bytes)

Interrupt Coalescing
Interrupt Coalescing Disabled
Open-MX Coalescing

Fig. 6. Relative transfer time of a ping-pong depending on the interrupt
coalescing.

modifications in the myri10ge firmware enable both a low

small-message latency (as if interrupt coalescing was enabled)

and a high large-message throughput (as if interrupt coalescing

was using a large delay). As explained in Section III-B, mark-

ing small-message packets as Latency-Sensitive enables low

latency without requiring interrupt coalescing to be disabled.

And marking only the last fragment of medium messages or

the last fragment of a stream of pull reply packets prevents the

host load from increasing (if there were too many interrupts),

while it also enforces one interrupt to be raised on time (at

the end of the message).

The performance of the Stream coalescing modification is

not presented here since this optimization is not involved

during a ping-pong. It basically brings the same performance

improvement as the first OPEN-MX coalescing modification.

2) Message Rate: Table I presents the message rate be-

tween 2 OPEN-MX hosts measured on the receiver side

(where interrupts matter). It first confirms again that disabling

interrupt coalescing dramatically reduces message rate, not

only for small messages (by a factor of 2) but also for large

messages (by 26 %).

TABLE I
MESSAGE RATE DEPENDING ON THE MESSAGE SIZE AND COALESCING

TECHNIQUE.

Interrupt Coalescing Strategy

Message Size Default Disabled OPEN-MX Stream

0 B 490k 252k 423k 435k
32 kiB 14507 6476 14533 14691
1 MiB 452 334 451 447

The OPEN-MX coalescing firmware brings significant im-

provements over disabling coalescing, even for small mes-

sages. The reason is that some other packets are actually

transfered (for instance some ACKs, up to 20 % of the traffic)

but these packets are not marked as Latency-Sensitive. So even

if many small packets need an immediate interrupt, the overall

6

number of interrupts is reduced and the message rate thus

increases.

As expected, the Stream coalescing firmware improves the

message rate for small messages. We observed that it actually

reduces the number of interrupts by about a factor of 2. It

does not however bring a significant benefit for medium and

large messages since these messages are already optimized

cleverly in our first firmware modification: only the last packet

of medium messages is marked, and only the last packets of

each 32-packet pull reply are marked. Moreover, the Stream

coalescing modification requires more work in the NIC and

may thus limit performance under high traffic.

In the end, OPEN-MX is now able to approach the message

rate of the usual coalescing timeout, especially for non-small

messages.

3) Anatomy of Interrupts during Large Messages: We now

take a deeper look at the behavior of our OPEN-MX coalescing

by studying the impact of each marked packet during a large

message transfer. Table II presents the transfer time of a large

message and the corresponding amount of raised interrupts (on

both sides). The 234 kiB size is intermediate between small

messages (where only latency matters) and large messages

(where throughput and streams matter). As explained in Sec-

tion III-A, this message requires 5 pull requests, and each

request gets 32 pull reply packets in return. A total of 162

packets are thus exchanged.

TABLE II
IMPACT OF INTERRUPT COALESCING STRATEGIES ON THE TRANSFER

TIME OF A 234 KIB MESSAGE.

Coalescing Strategy Transfer Time Interrupts

Disabled 705✖s ✬ 92.4
Timeout 75✖s 762✖s ✬ 14.4

OPEN-MX 708✖s ✬ 13.7

Such a basic communication pattern does not suffer much

from interrupt overhead since no process is actually using any

single core. Thus, the best coalescing delay configuration for

this micro-benchmark is to disable it, even if generates more

than 6 times more interrupts per message (92 instead of 14).

Our modified firmware is able to achieve almost the same

performance (708✖s instead of 705✖s) while keeping a very

small amount of interrupts. We even need a bit less inter-

rupts than the usual coalescing strategy. We assume that our

modification raises interrupts exactly on time, while the usual

coalescing may sometime miss packets and thus need another

additional interrupt later.

Looking at which marked OPEN-MX packet actually helps

reducing the overall message transfer time, we observe that

marking the initial Rendezvous packet is critical since it

decreases the time by 20✖s. Marking the Notify packet does

not however appear critical. This surprising result may be

caused by some timing coincidence in this specific micro-

benchmark. Indeed, nothing in the wire protocol justifies why

this packet could arrive late without disturbing the overall

performance. Marking pull requests and the last pull replies

respectively decreases the transfer time by 5 and 2✖s. They

appear less critical than the Rendezvous message because the

driver tries to pipeline 4 requests at the same time. So even if

one of them completes later because of interrupt coalescing,

the wire may still be used by the already started next requests.

4) Packet Mis-ordering: We now study the impact of the

Stream coalescing firmware modification on mis-ordered pack-

ets by looking at the transfer time of a 32 kiB medium message

(23 packets). We simulated packet mis-ordering by moving the

packet mark from the last fragment to an earlier one. A mis-

ordering degree ❳ thus means that packet ◆�❳ was marked

instead of ◆ . Table III shows that the Stream coalescing

firmware indeeds help performance in the mis-ordered case

since the overall transfer time is reduced.

TABLE III
IMPACT OF PACKET MIS-ORDERING ON THE TRANSFER TIME OF 32 KIB

MEDIUM MESSAGES.

Transfer Time Correct Order Mis-Ordering Degree
1 3

OPEN-MX Coalescing 156✖s 177✖s 177✖s
Stream Coalescing 156✖s 171✖s 174✖s

However, the success rate of the optimization is limited to

30 % when a single packet is mis-ordered, and drops to 15 %

when 3 packets are mis-ordered. Indeed, the firmware appears

to be able to defer interrupts by 3 or 4 packets but it fails to do

so as soon a small delay between packets appears. One way

to improve this result would be to look deeper in the future

traffic before deciding whether the interrupt should be raised.

However, there is no easy way to do so in the myri10ge

firmware since only the processing time of a DMA is available

as such a timeout.

This results significantly limits the scope of our Stream

optimization since delays between packets often occur in

loaded fabrics.

5) Summary: Results presented in this section first show

that our OPEN-MX-specific coalescing strategy is able to

achieve a low small-message latency (as if coalescing was

disabled) and a high large-message throughput (as if coalesc-

ing was enabled). Moreover, our Stream-aware modification

reduces the impact on message rate. This modification however

cannot efficiently deal with a high packet disorder.

In the end, OPEN-MX is now able to achieve satisfying

performance for different metrics without having to tune

interrupt coalescing manually before running the benchmark.

D. NAS Parallel Benchmarks

We now look at real application performance by comparing

the execution of NAS Parallel Benchmarks [11] depending on

the interrupt coalescing strategy. 8 processes were used per

node (one per core).

Table IV first shows that disabling interrupt coalescing never

helps performance. It actually increases the execution time of

the benchmarks whose network traffic is the highest (IS, FT

and CG), up to 11.6 % for IS class C. This result confirms

7

TABLE IV
EXECUTION TIME (IN SECONDS) OF THE NAS PARALLEL BENCHMARKS

WITH 16 PROCESSES ON 2 NODES, DEPENDING ON THE INTERRUPT

COALESCING STRATEGY. ONLY NON-NEGLIGIBLE SPEEDUP PERCENTAGES

ARE SHOWN. THE MOST SIGNIFICANT ONES ARE BOLD.

NAS Coal. Disabled OPEN-MX Stream

bt.C.16 271.2 272.8 273.3 272.6
cg.C.16 90.04 91.50 (-1.6 %) 90.76 90.70
ep.C.16 31.30 31.45 31.49 31.36
ft.C.16 Not enough memory
ft.B.16 24.24 24.86 (-2.5 %) 24.21 24.20
is.C.16 32.75 37.03 (-11.6 %) 30.51 (+7.3 %) 31.96 (+2.5 %)
is.B.16 21.98 22.97 (-4.4 %) 20.32 (+8.2 %) 21.76 (+1.1 %)
lu.C.16 203.8 202.4 203.2 206.6 (-1.4 %)

mg.C.16 43.91 43.63 43.75 43.72
sp.C.16 549.1 551.1 546.8 546.1

that disabling coalescing only helps small-message latency and

should not be recommended for other workloads. Table V

emphasizes this result by showing that disabling interrupt

coalescing leads to 22 times more interrupts and thus much

more host overhead.

Our OPEN-MX coalescing scheme shows comparable per-

formance to the regular interrupt coalescing for most tests, ex-

cept the large-message intensive IS where the execution time is

even reduced by 7-8 %. It confirms that our proposed strategy

has the advantages of the usual coalescing while improving

large-message throughput thanks to interrupts being raised

on time. However, our Stream coalescing optimization shows

disappointing results since the IS performance gain mostly

disappears. We feel that this is caused by the Stream detection

not being as efficient as expected as shown in Section IV-C4.

The overhead of this optimization in the firmware may thus

reduce the NIC throughput more than it actually helps the

overall performance.

TABLE V
TOTAL NUMBER OF INTERRUPTS GENERATED DURING THE EXECUTION OF

THE NAS PARALLEL BENCHMARKS WITH 16 PROCESSES ON 2 NODES,
DEPENDING ON THE INTERRUPT COALESCING STRATEGY.

NAS Coal. Disabled OPEN-MX Stream

is.C.16 86.4k 1.93M (✂ 22) 100.5k (+16 %) 101.6k (+17 %)
is.B.16 22.4k 496k (✂ 22) 26.7k (+19 %) 27.2k (+21 %)

Table V also shows that our firmware optimizations add

15-20 % interrupts on the IS benchmark while reducing the

execution time by 7-8 %. It confirms that raising a bit more

interrupts when really needed actually enhances performance

by waking up the processing host on time.

V. RELATED WORK AND DISCUSSION

Modifying network interfaces to help MPI performance

has been the subject of many research projects. High-speed

networks such as INFINIBAND [9], MYRI-10G [10], and

the upcoming QSNET III [12] are well-known examples of

hardware that were designed specifically for high-performance

computing by adding support for many dedicated features in

the NIC. ETHERNET hardware usually offers less features but

its programmability still often enables interesting HPC devel-

opment by adding message passing abilities in the firmware of

advanced NICs [13]. More recently, iWARP introduced some

standardized RDMA abilities in several advanced ETHERNET

NICs [14]. These ideas remain however expensive and require

intrusive software support in the operating system.

OPEN-MX tries however to render high-performance MPI

available to commodity hardware by exposing the popular

interface of Myrinet Express and by not enforcing specific

hardware support in the NICs. In this work, we proposed

the addition of very simple features in NICs to significantly

improve MPI performance over ETHERNET. In contrary to

advanced features such as RDMA which requires important

resources and abilities in the NIC, our few dozens lines of

code should be easy to add to most ETHERNET firmwares. We

feel that proposing such Stateless features is an easy way to get

better support for high-performance computing in commodity

hardware.

Interrupt coalescing has been widely studied in the last

decade since the Receive Livelock problem appeared with the

increasing network traffic. New ideas for designing operating

system ETHERNET receive stacks have been proposed [3]. In

the LINUX kernel, the New Driver API (NAPI [4]) now takes

care of the tradeoff between efficient packet processing and

host interrupt load by allocating a polling budget to each driver

instance. On the hardware side, most modern NICs support

interrupt coalescing, now offering efficient TCP/IP receive

stacks. However, these ideas do not apply to message passing

where the communication flow has much more structure than

a basic TCP stream. And specialized high-speed networks did

not solve the problem since their NICs directly deposit packets

in the target application and thus do not need interrupts to

notify the host of packet arrival. Our work tries to enhance

the existing coalescing techniques by adding some knowledge

of message passing protocols inside the NIC firmware.

VI. CONCLUSIONS AND FUTURE WORK

The long-awaited convergence between specialized high-

speed networks for clusters and usual ETHERNET technologies

raises the question of how to translate software innovations

from the former onto the latter. Existing ETHERNET hardware

offer limited features and thus make message passing perfor-

mance hard to achieve. Fast notification of packet arrival is

one of the areas where high-speed networks brought software

innovations such as depositing packets in the application mem-

ory. However their adoption in the existing ETHERNET model

is dramatically constrained by the interrupt-driven model.

Indeed, raising interrupt is useful for improving latency while

coalescing interrupts is critical to reduce the host load.

We proposed in this article an in-depth study of the ex-

isting interrupt coalescing strategies in the context of high-

performance message passing with OPEN-MX. Coalescing

has been designed to help TCP/IP throughput but it is also

known to disturb small-message latency. We showed that

disabling coalescing indeed improves the OPEN-MX latency

and may thus be relevant for benchmarking purpose. However

8

other metrics such as throughput or message rate and real

application obtain higher performance thanks to coalescing.

Indeed, coalescing reduces the host interrupt load and also

reduces the risk of having to wakeup a sleeping idle core.

We then designed an OPEN-MX-specific coalescing strate-

gies that relies on having the sender mark Latency-Sensitive

packets such as small messages or the last fragment of a

stream. We also proposed a Stream coalescing strategy that

tackles message rate performance by coalescing interrupts in

case of consecutive latency-sensitive packets. These ideas have

been implemented in the myri10ge firmware of MYRI-10G

NICs. Performance evaluation first shows that a ping-pong

benchmark may now achieve a low small-message latency (as

if coalescing was disabled) and high large-message throughput

(as if coalescing was enabled). Meanwhile, message rate

remains satisfying, and the NAS Parallel Benchmark perfor-

mance does not decrease and even increases by up to 8 % for

the communication intensive IS benchmark.

We showed that the improvement is related to the NIC rais-

ing, at the right time depending on incoming packets, only up

to 20 % additional interrupts. This solution is a good tradeoff

between basic timeout-based coalescing techniques (where few

interrupts are raised at almost random times), and disabling

coalescing (where up to 22 times more interrupts overload the

host processors). Moreover, non-OPEN-MX traffic (such as

TCP/IP) is not disturbed by our modification since the new

coalescing techniques only look at marked packets.

The Stream coalescing modification unfortunately shows its

limitations as soon as the traffic becomes irregular. It cannot

always handle a high-degree of packet mis-ordering due to the

difficulty of looking at the upcoming traffic long in advance.

Moreover, it slightly decreases NAS performance due to more

work in the NIC. Since message rate is usually not a critical

metric for small clusters targeted by OPEN-MX, we expect

that our first OPEN-MX coalescing mechanism will be more

relevant.

We have also discussed the problem of interrupt affinities

for some caches. Indeed, processing incoming packets involves

many accesses to some shared communication channel de-

scriptors in host memory. It may cause cache-line bounces

when many interrupts are raised to multiple cores. We are thus

looking at adding OPEN-MX-aware Multiqueue support [15]

to solve this issue by attaching each communication channel

processing to a single core. This is another example of

Stateless hardware support that requires very few resources

and could be added in most existing NIC firmwares. We feel it

is a good way to show hardware vendors that helping message

passing performance is easy and does not require complex

support such as RDMA or TOE in the NIC.

We are also looking at Adaptive Coalescing which changes

the interrupt coalescing delay dynamically depending on the

traffic. Indeed, a small traffic may be treated with one interrupt

per packet (thus improving latency), while a large throughput

really requires a large coalescing delay. This feature is however

available in very few ETHERNET drivers so far. Our early tests

with an experimental myri10ge adaptive coalescing support

show that it helps microbenchmarks but cannot help real appli-

cations as well as our firmware modifications do. We assume

this is related to the fact that tuning coalescing depending on

the past traffic only works for regular communication patterns.

Therefore, we are studying the idea of combining adaptive

coalescing with our firmware modifications that exploit the

knowledge of the message structure in the communication

flow.

ACKNOWLEGMENTS

We would like to thank Hyong-Youb Kim, Andrew J.

Gallatin, and Loı̈c Prylli from Myricom, Inc. for helping

us when modifying the myri10ge firmware of MYRI-10G

boards.

REFERENCES

[1] B. Goglin, “Design and Implementation of Open-MX: High-
Performance Message Passing over generic Ethernet hardware,” in CAC

2008: Workshop on Communication Architecture for Clusters, held in

conjunction with IPDPS 2008. Miami, FL: IEEE Computer Society
Press, Apr. 2008. [Online]. Available: http://hal.inria.fr/inria-00210704

[2] Myrinet Express (MX): A High Performance, Low-Level, Message-

Passing Interface for Myrinet, Myricom, Inc, 2006, http://www.myri.
com/scs/MX/doc/mx.pdf.

[3] J. C. Mogul and K. K. Ramakrishnan, “Eliminating receive livelock in
an interrupt-driven kernel,” ACM Transactions on Computer Systems,
vol. 15, pp. 217–252, 1997.

[4] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet,” in Pro-

ceedings of the 5th annual Linux Showcase & Conference, Oakland,
CA, Nov. 2001.

[5] K. Salah, “To Coalesce or Not To Coalesce,” International Journal of

Electronics and Communications, vol. 61, pp. 215–225, 2007.
[6] M. Zec, M. Mikuc, and M. agar, “Estimating the impact of interrupt

coalescing delays on steady state tcp throughput,” in Proceedings of the

10th SoftCOM Conference, Split, Croatia, Oct. 2002.
[7] “MPICH-MX and MPICH2-MX Software,” http://myri.com/scs/

download-mpichmx.html.
[8] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.

Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H.
Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall, “Open MPI:
Goals, concept, and design of a next generation MPI implementation,”
in Proceedings, 11th European PVM/MPI Users’ Group Meeting, Bu-
dapest, Hungary, Sep. 2004, pp. 97–104.

[9] “Infiniband architecture specifications,” InfiniBand Trade Association,
2001, http://www.infinibandta.org.

[10] “Myricom Myri-10G,” http://myri.com/Myri-10G/.
[11] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga, “The
NAS Parallel Benchmarks,” The International Journal of Supercomputer

Applications, vol. 5, no. 3, pp. 63–73, Fall 1991.
[12] J. Beecroft, D. Hewson, F. Homewood, and D. R. an d Ed Turner, “The

Elan5 Network Processor,” International Supercomputing Conference
(ISC’07), Dresden, Ger many, Jun. 2007.

[13] P. Shivam, P. Wyckoff, and D. K. Panda, “EMP: Zero-copy OS-
bypass NIC-driven Gigabit Ethernet Message Passing,” in Proceedings of

Supercomputing ACM/IEEE 2001 Conference, Denver, CO, Nov. 2001,
p. 57.

[14] M. J. Rashti and A. Afsahi, “10-Gigabit iWARP Ethernet: Comparative
Performance Analysis with Infiniband and Myrinet-10G,” in Proceed-

ings of the International Workshop on Communication Architecture for

Clusters (CAC), held in conjunction with IPDPS’07, Long Beach, CA,
Mar. 2007, p. 234.

[15] Z. Yi and P. P. Waskiewicz, “Enabling Linux Network Support of
Hardware Multiqueue Devices,” in Proceedings of the Linux Symposium

(OLS2007), Ottawa, Canada, Jun. 2007, pp. 305–310.

9

