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Abstract—Modern supercomputers consist of clusters of thou-
sands of independent nodes interconnected through fast net-
works. These nodes run independent operating system kernels,
thus synchronization among them is demanded for user mode
programs. This means that temporal synchronization of the nodes
is a daunting task.

On the other hand, HPC cluster applications often require a
rather strict temporal synchronization for activities like perfor-
mance analysis, application debugging, or data checkpointing.
Therefore, the performance of an HPC parallel application may
be severely impaired by the lack of temporal synchronization
among the activities of the nodes of the cluster; this poses a
severe limit on the scalability of such architectures. In this
paper we introduce CAOS, an extension of the Linux kernel
that aims to address the temporal synchronization problems of
modern HPC clusters. We describe the general ideas behind
CAOS, and we discuss some details of a possible implementation.
We also illustrate some experiments performed on a prototype
implementation of CAOS including a centralized network time
tick, which allows a master node to synchronize the activities
of all other nodes in the cluster, and a specific task scheduler
tailored for HPC applications. These experiments, performed on
a modern HPC cluster, witness that this new component has no
measurable impact on the efficiency of the nodes while reducing
the OS noise and providing better performance prediction. An
implementation of CAOS based on this component can achieve a
significant gain in terms of synchronization, global control, and
scalability of the cluster.

I. INTRODUCTION

The area of computer science aimed at designing, handling,
and programming cluster-based supercomputers is nowadays
referred to as High Performance Computing (in short, HPC).
Typically, a modern HPC supercomputer is composed of a
collection of thousands of nodes equipped with Commercial,
Off-The-Shelf (COTS) processors and interconnected by spe-
cialized, fast networks.

In this paper we introduce CAOS, Cluster Advanced Operating
System, a prototype for an HPC Operating System (OS) based
on Linux. The main idea behind CAOS is quite simple: to
synchronize the activities of all cluster nodes. Rather than
having several independent kernel programs controlling the
nodes of the cluster, CAOS synchronizes the activities of the
nodes by removing the local metronomes (local timers) and
replacing them with a unique global time source for all the
nodes generated by a master node. In this way, all the activities
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performed on each node can be synchronized with a global
metronome. As a result, many scale activities can be executed
simultaneously.

From the software architecture point of view, CAOS is
essentially a global operating system that consists of two
components: a global orchestra conductor running on a master
node and local instrumentalists running on the computing
nodes. The global conductor coordinates all computing nodes
and notifies each of them with the activities that should be
performed. The local instrumentalist actually executes the
operations when notified by the conductor.

Upon this global timing mechanism CAOS implements a
protocol aimed at scheduling global and local activities si-
multaneously. Thus, CAOS provides the low-level features
that allow the developer to create more powerful tools. As
an example, a debugging tool for parallel applications can
take advantage of the capability to stop the whole parallel
application at once; nowadays, this simple operation cannot
be done reliably.

We performed experiments on a single node to show how
CAOS reduces the OS noise caused by the timer interrupt
and the scheduling of other, low-priority processes. Moreover,
since the synchronization process may delay some tasks or
system activities thus potentially causing performance degra-
dation, we used classic NAS benchmarks, which are widely
adopted in the HPC community, to perform some prelimi-
nary tests on a prototype implementation of the conductor-
instrumentalist mechanism that replaces the local metronomes.
The results show that there is no measurable loss in perfor-
mance. On the other hand, CAOS may be a significant gain
in terms of synchronization, global control, and scalability.
The rest of the paper is organized as follows: Section II gives
some insight on modern HPC clusters, describes the charac-
teristics of HPC applications, and explains the main reasons
behind the design of CAOS. Section III describes the general
design of CAOS. Section IV briefly describes HPCSCHED,
which is a task scheduler aimed at HPC applications. Sec-
tion V provides information about the implementation of a
prototype heartbeat mechanism for CAOS (NETTICK). Sec-
tion VI shows our preliminary experiments. The related work
is described in Section VII. Finally Section VIII describes our
conclusions and suggests future works.



II. HPC SYSTEMS AND APPLICATIONS

Many scientific, commercial, and military activities require
very high computational power; i.e., consider theoretical
physics, weather forecasting, or cryptanalysis, to name just a
few applications. Historically, supercomputers were dedicated
machines aimed at solving specific kinds of computationally
challenging problems. These machines were really expensive
and only a few institutions were able to own one of them.
Progress in the computer industry and in computer science
has radically changed this scenario. Nowadays, it is possible
to build a supercomputer by means of high-end Commercial,
Off-The-Shelf (COTS) computers grouped in clusters. These
modern supercomputers can be assembled at a fraction of the
cost of the ancient supercomputers and have generally much
more computational power.! As a matter of fact, almost all
supercomputers built in the last ten years consist of HPC clus-
ters. The last (November 2008) TOP500 Supercomputer Sites
list [22] includes 410 HPC clusters out of 500 total entries.
Each node of an HPC cluster is generally a Symmetric Multi-
Processor (SMP) system with one or more processor chips.
Moreover, each processor chip often includes a multi-core
and/or multi-thread processor. Summing up, a supercomputer
may easily have tens of thousands of computational cores con-
tained in a large number of computing nodes interconnected
by a high-speed network.

Controlling such a number of computational units is a daunting
task. The OS commonly used in these supercomputers runs a
version of the Linux kernel (439 entries out of 500 in the
Top500 list). Typically, each node of the cluster executes a
Linux kernel that handles all cores in the node. However, the
kernels running on the nodes are very loosely coupled.

Most of the HPC applications running on supercomputers are
Single Process-Multiple Data (SPMD) and are usually imple-
mented using an MPI library [1] or an OpenMP library [18] (or
a combination of both of them). Nowadays, MPI applications
are more common, since shared memory machines with a lot
of processors are still very expensive. This situation might
change in a near future, for chips with tens or hundreds of
cores will likely soon appear on the market. Nevertheless, as
most of today’s applications are based on MPI, we choose to
focus on the typical behavior of MPI parallel programs.

MPI applications can be characterized by a cyclic alternation
of two phases: a computing phase in which each process
performs some computation on its local portion of the data
set, and a synchronization phase where processes communicate
by exchanging data among themselves. These two phases
usually interleave, and this behavior repeats till the end of
the application. Crucial for performances is ensuring that all
nodes start and terminate each phase at the same moment,
so as to minimize the time wasted by the faster nodes while
waiting for the slower nodes to terminate the current phase.
Achieving this goal is not easy, though. An important source of

IThere are a few demanding computational problems that cannot be
efficiently solved by splitting the computation among the nodes of a cluster.
For this kind of application, dedicated supercomputers are still built.

degradation in big MPI applications is the so-called operating
system noise. Essentially, the activities of the operating system
kernels—mainly, the timer interrupts in number crunching
applications—induce some delays on the MPI processes dur-
ing the computing phases. The OS noise, as well as its
effects on parallel applications, has already been analyzed and
measured, see for example [8], [11], [17], [19], [23]. It is
important to observe, however, that while the noise in a single
node only marginally affects the performance (about 1-2%
on average), its effects in a large scale cluster may become
dramatic. In fact, when scaling up to thousands of nodes, the
probability that in each computing phase at least one node
is being slowed down by a long kernel activity approaches
the value 1—thus drastically reducing the parallel application
performance. This phenomenon is called noise resonance [11].
Figure 1(a) shows how the OS noise affects the performance.
As a practical example, consider that by default the Linux
kernel writes dirty pages on disk every five seconds: these
timeouts usually expire at different moments on each node,
mainly because of the small differences in the frequencies of
the internal clocks. Although these operations are necessary
for the correct functioning of the machine, a cluster-aware
OS might minimize the impact on the OS noise by forcing
the cluster nodes to perform all disk cache flush operations
at the same time. Therefore, the slowdown affects just one
computing phase every five seconds rather than, statistically,
all computing phases in five seconds. Figure 1(b) shows how
coordinating the OS activities increases the performances.
Global time synchronization has always been a daunting task
for supercomputers. COTS-based supercomputer still have to
face the problem that the cores of each node of the cluster
have their own timers, not synchronized with all the others. In
this scenario is clear that, since the “time” is not the same on
different nodes, OS activities and synchronization is difficult
to achieve. Some of the custom supercomputers try to solve
this problem by means of high precision timer metronomes.
BlueGene/L (and later its successor, BlueGene/P) is the first
example in this direction: the timers of each node of the
supercomputer are continuously synchronized and, as a result,
the “time” is the same in each node, i.e., each processor’s
time base register contains the same value. This mechanism
greatly simply the “cluster-based” activities: for example, it
is possible to profile all the processes running on each node
and then merge the traces because there is no skew between
the time registers. From this point of view, it is like if the
supercomputer were composed of one big node. Moreover,
the timer system, together with the Computer Node Kernel
(CNK) micro-kernel, reduces the OS noise virtually to zero.
The solution adopted for BlueGene supercomputers is custom
for these machines and it is not available for COTS clusters.
NETTICK described in Section V-B, aims at providing a less
expensive, similar mechanism, though not as precise, for a
general cluster.

Besides improved performance, users of HPC clusters may
expect to apply to the whole cluster some services provided
by the local operating systems, such as activities related to
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performance analysis or debugging. Thus, some local services
should be extended to scale up with the number of nodes in
the cluster. For example, as an operating system kernel for
a single node provides the mechanism to stop the application
and have a look at the executed code or the referenced data set,
an operating system for HPC should provide the capability to
stop the parallel application (at the same moment on all nodes)
and let the user take a coherent snapshot of what is going on.
Fault tolerance is another important service that requires a
strict synchronization to provide correct results. For example,
the Mean Time Between Failure (MTBF) measure of a single
node is large enough that data checkpointing is usually not
required. However, a fault tolerance mechanism is mandatory
in large clusters because their global MTBF is much smaller—
this is obvious when considering the number of components
that composes such a cluster.

To sum up, the scenario is the following: though neither
the hardware nor the software were originally intended for
High Performance Computing, HPC clusters are widely used
nowadays and show the fastest growth among the architectures
for supercomputers. These supercomputers consist of tens of
thousands of (virtual) CPUs, each one potentially running an
HPC process on top of a sophisticated hardware and of a
local operating system kernel. It should not be really surprising
that managing, coordinating, and synchronizing this enormous
number of processors and processes poses real-life problems
that are still largely unsolved.

III. CAOS

CAOS (Cluster Advanced Operating System) is a global oper-
ating system for HPC clusters based on Linux. Through this
paper we will refer to version 2.6.24 of the Linux kernel. The
core layer of CAOS essentially consists of two main agents:

Global conductor: This agent, which runs on a selected
master node, is in charge of scheduling cluster activities. One
of its main jobs is to provide a time source (heartbeat) to the
cluster nodes. Furthermore, the conductor notifies the cluster
nodes about global and local system activities. Local system
activities are related to the proper functioning of the cluster
node. Thus, the conductor may command the nodes to check
for decayed software timers, reclaim pages from the disk
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caches, flush the disk caches, perform a forced process switch,
and so on. Global system activities are related to the extended
functionalities provided or supported by CAOS, such as tracing
and debugging the parallel applications, data checkpointing,
and performance analysis. The global conductor can be imple-
mented as a user mode program running on the master node.
In fact, any available job schedulers could be easily modified
in order to provide the required synchronization protocol.

Local instrumentalist: This agent runs on each cluster node.
Its main job is to perform the operations scheduled by the
global conductor and, in some cases, to notify the global
conductor when operations have been successfully completed.
The main design goal of the local instrumentalist is to not
interfere with the computing phases of the HPC applica-
tions, unless instructed by the conductor to do so. The main
component is the kernel’s task scheduler. CAOS makes use
of an improved version of the Linux task scheduler named
HPCScHED [5], which has been specifically designed for
improving the performance of HPC applications by addressing
some of the typical HPC problems (i.e., load imbalance).

The global conductor provides a heartbeat event every N
seconds, where N can be either determined by the HPC appli-
cation programmer or dynamically adjusted by CAOS itself.
The heartbeat consists of broadcast frames sent on a dedicated
network channel that connects all cluster nodes. The payload
of these frames may also contain the conductor’s commands
that force the nodes to schedule the system activities.

The master node may easily become a bottleneck for the
performance of the clusters. We thus designed this protocol to
be unidirectional: the global conductor schedules the activities
to be executed and notifies the cluster nodes; however, it
does not wait for their completions. This design choice im-
proves scalability, because the network underneath the nodes
is usually capable of sending a broadcast message within
a fixed amount of time regardless of the number of nodes
that will receive the message. This is true for many high-end
networks adopted in HPC clusters, e.g., Myrinet, Quadrics,
or Infiniband. Unfortunately, a pure unidirectional protocol is
sometimes not sufficient, because some large scale activities
are considered completed correctly only when all nodes in the



cluster have successfully terminated the operation. For exam-
ple, a data checkpoint is valid only if all cluster nodes have
successfully completed their checkpoint, otherwise it must be
discarded. In these cases, a more sophisticated bidirectional
protocol is required, which allows the master to be notified
about completions of cluster node tasks.

In the next two sections we will describe HPCSCHED—the
task scheduler—and NETTICK—our prototype implementa-
tion of the heartbeat mechanism.

IV. THE HPC SCHEDULER

HPCSCHED is a new scheduler designed for HPC clusters. It
is capable of balancing MPI applications using the hardware
resource allocation mechanism provided by an underneath
processor (like the IBM POWERG6), and of minimizing OS
noise caused by other user and kernel threads. HPCSCHED is
extensively described in [5]; here we briefly highlight some of
its features.

HPCSCHED is implemented inside the Linux kernel as a new
scheduler for HPC applications. Since we want to prioritize
HPC over normal processes, we placed the HPCSCHED
scheduling class between the two standard Linux classes Real-
Time and CFS

In order to balance the HPC application, the scheduler tracks
the application behavior and detects when to increase or
decrease the amount of processor’s internal resources assigned
to a specific process. The scheduler is also easily extensible
and can be integrated with other solutions useful for HPC
applications, such as a checkpoint/restart mechanism [12].
The HPC scheduler is based on three components, mainly
independent from each other:

Scheduling policy: The scheduler algorithm used by the
Scheduler Core to select the next task to run among the
runnable tasks in the HPC class.

Load Imbalance Detector and Heuristics: We use
a Load Imbalance Detector and heuristic functions to
select, according to the scheduler metrics, the amount of
hardware resources to assign to the task.

Mechanism: Architecture-dependent, utility functions
necessary to manage the amount of hardware resources
assigned to a task.

A. The Linux Scheduler Framework

The Linux kernel 2.6.23 introduced a process task scheduler
named Complete Fair Scheduler, CFS), and a scheduler frame-
work, which divides the scheduler in two main components:
three Scheduling Classes, which implement the policy details,
and a Scheduler Core. The Scheduling Classes are objects that
provide suitable methods for any low-level operation invoked
by the Scheduler Core (for example, selecting the next task
to run or accounting for the time elapsed). Each of the three
Scheduling Classes contains one or more scheduling policies.
In order to improve scalability, each CPU has a list of
Scheduling Classes. Each class, in turn, contains a list of
runnable processes belonging to one of the policies handled

by the class. The first class (the highest priority) contains real-
time processes (SCHED_FIFO and SCHED_RR); the second
class (the new CFS class) contains the normal processes
(SCHED_NORMAL and SCHED_BATCH); finally, the last class
contains the idle process (SCHED_IDLE). The ordering of the
Scheduling Classes introduces an implicit level of prioritiza-
tion: no processes from a low priority class will be selected
as long as there are available processes in one of the higher
priority classes. It follows that the idle process will never be
selected if there are runnable processes in other classes.

B. HPCSCHED design

Taking advantage of the new scheduler framework described
in the last section, HPCSCHED introduces a new Sched-
uler Class (sched_hpc) and a new scheduler policy for
HPC applications (SCHED_HPC). A wuser can move an
application to the HPC class by means of the standard
sched_setscheduler () system call.

The typical way of running MPI applications on current su-
percomputers is to run one MPI process per-core or hardware
thread (corresponding to a logical CPU in Linux). Thus, we
expect to have one process in the HPC class of every CPU
(maybe two or three during workload balancing). Under this
assumption, it is not worthwhile to have a complex algorithm
for selecting the next task to run. In fact, given this small num-
ber of processes in the run-queue list, a simple round-robin
list is as good as a more complex red-black tree. However,
the code for a round-robin run-queue is much simpler and
with better performances (for example, the scheduler does not
have to balance any tree). The scheduling policy is, however,
independent of the other components and it can be changed
without affecting the other components.

In the new Linux kernel framework, workload balancing, i.e.,
evenly splitting the workload among all the available processor
domains [6] at core-, chip- and system-level, is also performed
inside the Scheduling Class level. Every Scheduling Class has
its workload balancing algorithm, which means that each CPU
has roughly the same number of real-time or normal tasks.
The workload balancer is invoked whenever the kernel detects
that there is a big imbalance or if one processor is idle. In the
latter case, the idle CPU tries to pull tasks from other, busier
run-queue lists to its run-queue.

The HPC workload balancing algorithm makes sure that each
processor domain runs the same number of processes. For
example, in a dual-core, 2-way SMT system there are three
domain levels: chip level, core level and hardware thread level
(a hardware thread is what is recognized by the OS as a CPU).
Our workload balancer tries to balance the number of task at
each domain level. Thus, a core domain running fewer tasks
than another core will try to pull tasks from the other core.
As already mentioned, MPI applications alternate computing
phases (when a process is runnable) with synchronization
phases (when a process is not runnable because of waiting
for an incoming message or for synchronization). HPCSCHED
considers the sum of a computing phase and of a synchroniza-
tion phase as one iteration of the MPI application.



The scheduler learns from the execution history of a process:
the general idea is that if a task does not have a high CpPU
utilization during iteration ¢, it will perform in the same way
in the ¢ 4 1 iteration. This is a common case, for example,
for those applications that compute an approximation of a
solution of a problem and then try to reduce the approximation
error. The Load Imbalance Detector assumes that iteration ¢ is
representative of iteration 7 + 1, hence, at the end of iteration
1, the HPC scheduler tries to balance the application changing
the amount of hardware resources assigned to a task and assign
a different amount of resources before iteration ¢ + 1 starts. In
the POWERS and POWERG6 implementation of our scheduler,
HPCSCHED uses the hardware thread priority mechanism to
assign more or less hardware resources to the processes. This
is the only part of the scheduler that depends on the processor
architecture. The main idea is that the higher the hardware
thread priority, the higher the amount of hardware resources
assigned to the process, the higher the performance of that
process. The particular mechanism works at fetch level: the
core fetches more often from the higher priority thread.

How good is our solution strongly depends on how this
guessing is close to the optimum solution. If the guessing is
not correct, in iteration 7 + 1 the application may become
even more imbalanced than in iteration ¢. Hopefully, the
scheduler will detect this anomaly during iteration 7 + 1
and apply the right resource balancing in iteration ¢ + 2.
Clearly, not all applications present a well defined iterative
structure with a barrier at the end of the iterations, in which
case HPCSCHEDmay fail to balance the application, and new
heuristics are likely to be required.

The scheduler may require some iterations to converge to a
balanced solution: the goal of the heuristic is to find a stable
state where the application is balanced and to remain there as
long as the application behavior is constant.
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Fig. 2. HPC application iterative behavior

While a task is running, the scheduler collects several metrics,
such as the task’s execution and waiting time. Figure 2 shows
a typical task trace: the process computes for ¢tz seconds and
then goes to sleep, waiting for messages coming from the other
processes in the MPI application (ty). If t; = tg + tw is the
total execution time in iteration ¢, then the task utilization in
the same iteration is U; = tr/t;. The global task utilization is
the ratio of the accumulated running and iteration times: U =
> tr/ > t;. These metrics are quite easy to compute, since
the kernel already provides some of the required values. We
only had to add the values necessary to introduce the concept
of iteration that is not present in the standard Linux kernel.

Once the information about the task’s progress has been
stored, the HPC scheduler has to heuristically decide whether
to increase, decrease or keep the same amount of hardware
resources assigned to the current process in the next iteration.

V. NETTICK
A. Linux timekeeping architecture

Version 2.6.24 of the Linux kernel defines two types of
time devices: clock source devices and clock event devices.
The clock source device represents a hardware mechanism
that keeps track of time. Typical examples are the Time
Stamp Counter (TSC) of the Intel and AMD architectures,
and the High Precision Event Timer (HPET) chip. The clock
event device represents a hardware mechanism that can be
programmed to raise an interrupt after a specified amount of
time. Typical examples are the APIC Local Timer of Intel and
AMD processors, or the Decrementer of PowerPC processors.
It should be noted that some hardware devices can be used
both as clock source and as clock event devices.

Modern computers include many different time-related de-
vices. Each of them has its peculiar characteristics, like resolu-
tion and accuracy, reprogramming costs, and so on. Moreover,
each device has a statically assigned rating that represents a
measure of its reliability and convenience. The Linux kernel
selects the top-rated clock source device and clock event
device, which will be used for all time-related activities. This
decision, however, is not set in stone: the rating of a clock
source device can be lowered if the kernel determines that the
circuit is not very reliable after all. For example, this happens
quite often with unstable Time Stamp Counters in chips with
voltage and/or frequency scaling. Thus, the kernel may decide
to elect another top-rated clock source device. (Top-rated clock
event devices are never replaced unless a new, better hardware
device is registered.) A reference to the top-rated clock event
device for a given CPU is contained in a so-called tick device,
which is a per-CPU object whose methods can be used to
program a timer event.

The Linux timekeeping architecture is based on tick events.
Basically, a tick coincides with the occurrence of a periodic
timer interrupt raised by a clock event device. The number of
ticks elapsed since the bootstrap is stored in jiffies_64
global variable. At each tick, the kernel executes some specific
operations. If the CPU has a Local APIC unit that can raise
local timer interrupts (this is true in almost all multiprocessor
systems), the timer interrupt handler executes some specific
per-CPU operations like, for example, checking for expired
software timers. There might also be a global clock event
device that raises global timer interrupts.

The timekeeping architecture provides two operating modes:
the periodic mode and the dynamic tick mode. Moreover,
the kernel may be compiled to support the high resolution
timers in both operating modes. In periodic mode, the kernel
programs the tick device once and for all in such a way to
raise a periodic interrupt with a frequency defined at kernel
compile time (macro HZ). In this case, jiffies_64 will
be incremented by one at every tick event. In dynamic tick
mode the kernel programs the tick device in “one shot mode”,
that is, in such a way to raise a single timer interrupt when
the first event of interest occurs. The next event may be an
infra-tick event (e.g., the activation of a high resolution timer,



if supported) or the next tick event, whichever comes first.
Furthermore, in dynamic tick mode a tick event is programmed
only if the CPU is busy. If the CPU is idle, the tick device is
programmed so as to raise an interrupt at the occurrence of
the first decaying software timer, if defined.” Therefore, the
time interval between two tick events may be more than the
canonical tick period (1/HZ), and the jiffies_64 variable
has to be adjusted by a factor depending on the time returned
by the top-rated clock source device and according to the
formula HZ x (now — last jiffies_64 update).

B. Implementation of NETTICK

NETTICK is our prototype implementation of the heartbeat
mechanism of CAOS. It is implemented as a patch for the
Linux kernel version 2.6.24.

NETTICK basically defines a new per-CPU virtual clock event
device, the so-called network event device. While real clock
event devices raise a timer interrupt when the hardware circuits
determine that the proper amount of time since the last
programmed event has elapsed, the network event device raises
a timer interrupt when a special frame arrives on a specific
network device.

The current implementation of NETTICK relies on heartbeat
signals embedded on a special type of IEEE 802.3z (Gigabit
Ethernet) frames. The choice of the Gigabit Ethernet was
motivated by several facts. Firstly, we ran our experiments
on an HPC cluster based on Gigabit Ethernet network devices
only (see Section VI). Secondly, according to the TOP500 list
[22], more than 56% of the top-ranking HPC clusters are based
on a Gigabit Ethernet. Thirdly, if NETTICK can be shown to
perform well on a Gigabit Ethernet, it can presumably work
with any other network architecture having similar or higher
performance.

Specifically the Linux kernel has been modified as follows:

e When NETTICK is initialized, new clock event devices
are registered, one for each available CPU. Initially the
network clock devices have a default rating equal to zero;
thus the kernel does not change the current top-rated
clock event device (that is, the tick device).

o Through the /sysfs filesystem, the administrator can set
a new value for the rating of the network event devices.
Any change forces the kernel to evaluate the hierarchy
of clock event devices and, if appropriate, to change the
current tick device.

e A new type of Ethernet frame (0x88CB, denoting the
heartbeat special frame) is registered, together with a
corresponding nettick_rcv () handler function. In
order to use a different family of network devices, it is
sufficient to register another type of frame; the frame han-
dler does not have to be changed. The Linux networking
stack ensures that the handler function will be invoked
once per each frame arriving from the network. Thus, at

2 Actually things are more complicated, because the registers of the clock
devices have limited capacity. Thus there is a maximum time interval delay
that can be effectively programmed.

each heartbeat nettick_rcv () isinvoked (in software
interrupt context).

e The nettick_rcv () function just sends an Inter-
processor Interrupt (IPI) to all available CPUs of the
node.? Notice that this step is required to perform kernel
activities on the CPUs that did not received the interrupt
from the network card.

o The interrupt handler associated with the NETTICK IPI
simply invokes the event handler of the tick device.

When a network event device becomes the new per-CPU tick
device, the old tick device (e.g., the Local APIC for Intel/AMD
and the Decrementer for PowerPC) is switched off.

The kernel then associates the function to handle a tick with
the network event device. For instance, if the kernel does
not support high resolution timers and it runs in dynamic
tick mode, then it associates the tick_nohz_handler ()
function with the current tick event handler. Receiving a
heartbeat frame triggers the activation of nettick_rcv (),
which in turn sends in broadcasting an IPI to all CPUs; finally,
the IPI handler executes the event device handler of the tick
device, thus triggering the execution of the usual tick-related
kernel activities.

It should be noted that the NETTICK module works properly
only if the kernel runs in dynamic tick mode. The reason is that
CAOS must be able to issue heartbeat frames at custom or vari-
able rate, while in periodic mode the timekeeping architecture
assumes that the ticks have frequency exactly HZ. Therefore,
at every timer interrupt jiffies_64 is incremented at most
by one (or by two, on very rare occasions). As we have seen,
in dynamic tick mode the kernel increments jiffies_64
according to the time effectively elapsed since the past update
of the variable.

VI. EXPERIMENTS

In this section we present our experimental results based on
the current prototype version of CAOS. We ran three sets
of different experiments, two of them (Section VI-A and
Section VI-B) show how CAOS reduces the OS noise inside
a single node using both NETTICK (timer interrupt noise) and
HPCSCHED (scheduling noise). In Section VI-C we show that
deferring the OS activities related to the timer interrupt does
not impact on the performance of parallel applications.

A. NETTICK

In order to analyze the deterministic processing behavior of
the OS and, therefore, the noise affecting a node, we ran Fixed
Time Quanta [10] (FTQ). FTQ measures the amount of work
done in a fixed time quantum in terms of basic operations.
The time quantum is quite short (around one microsecond).
Periodically, at each time interval T, the benchmark samples
how many basic operations were performed in the last sample
and reports them. Clearly, the difference between the maxi-
mum number of basic operations, NV,,,, (about 31300 in our

3The association of an IPI number with the handler is the only architecture-
dependent part of NETTICK. We have successfully implemented it for the
1A32, AMDG64/EM64T, and PowerPC 64 architectures.



case), and the number of basic operations in a sample ¢, IV;,
is due to other activities external to the application performed
by the OS, i.e., noise.

The FTQ benchmark was executed on a single quad core
2.66GHz Intel(R) Xeon(R) 5150 node, with 4-GB of RAM
and two IEEE 802.3z (Gigabit Ethernet). In this first
experiment we analyzed the OS noise introduced by the timer
interrupt. As reported in [8], [11], [23], the timer interrupt is
the main source of OS noise (in [8] the authors claim that
the timer interrupt accounts for 63% of the OS noise). In this
experiment we ran our test in a similar condition as in [11]:
the machine was idle (no other process running during the
test session) and we reduced the number of kernel threads
and user daemons running. Even if the experiment is not
representative of a real environment (user and kernel daemons
may be running), it is useful to isolate the effect of the timer
interrupt. In the next sections we will show the results of the
experiments performed on a real cluster of HPC nodes.
Figures 3(a) and 3(b) report the number of missing basic oper-
ations, i.e., the difference between NV, ., and N,. Another way
to look at these results is to consider each bar as the duration
of the OS noise measured in terms of basic operations.

In Figure 3(a) we can observe different kinds of noise: the very
small and very frequent noise (20-50 basic operations) is the
timer interrupt. What happens here is that the local timer raises
an interrupt and the kernel executes the associated interrupt
handler only to discover that there are no pending operations
to be performed. This is a case we can safely eliminate using
NETTICK: Figure 3(b) shows how this noise has been consis-
tently reduced (we will see in Section VI-C that this approach
does not impact on the performance of a parallel application).
The second kind of noise in Figure 3(a) (650 basic operations),
as well as the third (more than 6500 basic operations) are
related to network tasklets. In [11] the authors also identify the
network tasklets as a second source of OS noise, less frequent
but larger than the timer interrupt noise. We repeated the same
experiments disconnecting the machine from the network and
observed as those spikes disappeared. For fairness with the
experiments performed in Section VI-C and for making the
experiments more representative (the node is part of a cluster
connected through a network), we omit these results.

As Figure 3(b) shows, the last kind of OS noise is not
eliminated by NETTICK: those kernel activities are, in fact,
necessary for the correct functioning of the machine, hence,
cannot be simply removed. In order to reduce the OS noise at
scale, those activities have to be co-ordinated by the Global
Orchestrater.

B. HPCSCHED

The results in this section are based on the same kind of exper-
iments of the previous test; however, here we also introduce
user daemons that perform cluster activities (statistics, parallel
file system, checkpoint/restart, etc.). User daemons are quite
common in HPC clusters and may introduce another kind of
noise, less frequent but orders of magnitude higher than the
timer interrupt. As reported in [4], in fact, the OS may decide

to schedule one of those user daemon instead of the HPC
application, thus delaying the computing phase of one or more
processes and creating load imbalance.

In this experiment we introduce a user daemon that collects
statistics and sends them to the job manager. In order to strictly
evaluate the impact of the noise introduced by the scheduler,
we assume 0-overhead for collecting statistics, i.e., the user
daemon does not collect any statistic but periodically wakes
up and send a message to the job manager. In this way the
noise of the statistic collector is limited to the OS scheduler;
this is an ideal case, because in a real HPC system there would
be many more user daemons and the noise introduced by each
of them would be higher.

However, even in this simplistic test case, the amount of noise
increased considerably, as Figure 4(a) shows. With respect to
Figure 3(a), in Figure 4(a) there is another kind of periodic
noise (around 3500 basic operations) due to the fact that the
OS was running the statistic collector instead of the FTQ appli-
cation. As we can see in Figure 4(b), HPCSCHED reduces this
noise preventing the statistic collector from interrupting the
parallel application during the computing phase. The scheduler
will run the statistic collector during the synchronization
phase, i.e., when the HPC application is communicating and
does not need to use the CPU.

C. Scaling on a Cluster

By removing the timer interrupt some operations might be
delayed. In this section we show that, even though we reduced
the OS noise caused by the timer interrupt, the performance
of HPC applications was not affected. We performed some
experiments to evaluate the performance of a cluster that
uses the NETTICK global heartbeat. For this test we used a
cluster of 24 Apple Xserve. Each node has 2 microprocessors
Intel(R) Xeon(R) 5150 with a frequency of 2.66 GHz. These
chips are dual core, so every node has 4 cores and the whole
cluster has 96 cores. Each node includes 4 GB of RAM and
is connected to the other nodes by means of a IEEE 802.3z
(Gigabit Ethernet) network. On each node is installed a 64-bit
Linux distribution and Open MPI 1.2.5.

Using a Gigabit Ethernet yields perhaps the worst possi-
ble scenario for our test, essentially because large Ethernet
networks must use a hierarchy of bridge devices (switches)
that introduce significant delays.* Moreover, heartbeat frames
can be queued inside the kernel or the network card device,
because they compete with the other traffic on the network.
Thus, we think that in a real application scenario NETTICK
must be granted exclusive access to a dedicated network
channel. Typical HPC nodes include two network cards, so this
can be easily arranged. We stress again that NETTICK can be
adapted so as to use any kind of high-speed network, and many
network families like Infiniband, Quadrics, Myrinet or Blue-
Gene Torus do not have the drawbacks of Gigabit Ethernet.
We performed the tests by running 4 times some of the
benchmarks included in the widely used MPI-based NAS

4Gigabit Ethernet networks typically use full-duplex, point-to-point links,
so latencies due to the medium access control protocol are not really an issue.
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Parallel Benchmark (NPB) suite, version 2.4 [16]. We selected
two benchmarks: EP and BT.

EP Embarrassing Parallel benchmark. This benchmark is
supposed to scale linearly with the number of nodes in the
cluster. In fact, the application consists of processes that do not
require communication to complete their job, hence adding a
new node linearly reduces the amount of per-processor work,
thus reducing the total execution time. This benchmark has
been executed on 4, 8, 16, 32, and 64 cores of our test cluster
in order to analyze the scalability of the heartbeat mechanism.
BT The Block Tridiagonal Benchmark solves multiple inde-
pendent systems of non-diagonally dominant, block tridiagonal
equations with a 5x5 block size. This benchmark is representa-
tive of computations associated with the implicit operators of
CFD codes (such as ARC3D at NASA Ames). Because this
benchmark must run on a number of cores that is an exact
square, we executed it on 81 cores of our test cluster. Further
information about the test programs can be found in [2].
Clearly the performance of each application depends on the
frequency of the heartbeat provided by the master. We there-
fore tested the following four configurations:

sys:  Vanilla kernel with system tick at 100 Hz
netl0: NETTICK kernel with heartbeat tick at 10 Hz
net50: NETTICK kernel with heartbeat tick at 50 Hz
netl00: NETTICK kernel with heartbeat tick at 100 Hz

One node is used as master node, so it sends the heartbeat
frames (in broadcast) and starts the MPI benchmark.

18

Fig. 5. Curves of execution times of NAS EP varying the number of cores
Type of test | Cores sys net10 net50 | net100
EP 64 12.12 12.05 12.10 12.02
BT 81 | 194.78 | 194.39 | 194.52 | 194.76
TABLE I

TOTAL TIME IN SECONDS, MEASURED BY NAS PARALLEL BENCHMARK

We expected the netl/00 configuration to be a bit slower
than the standard sys configuration. In fact, in the former
case, the number of interrupts per second was essentially the
same as in the latter case. However, the overhead introduced
by the network interrupt handler is larger than the overhead
introduced by the local timer interrupt, hence the OS noise
could delay the application more than usual. When running
the test, we discovered that it was not possible to notice



this extra overhead: in fact, in some cases the heartbeat
overhead was paid by all the nodes at the same time because
of our global synchronization. This is not the case for the
standard configuration, where the overhead introduced by each
uncoordinated local timer interrupt has to be summed up (in
the worst case).

Cores sys netl0 net50 | net100

4 | 190.24 | 189.87 | 189.81 | 189.95

8 96.18 95.46 94.90 97.44

16 48.70 50.20 50.40 50.85

32 24.06 24.00 24.01 23.88

64 12.12 12.05 12.10 12.02
TABLE II

EXECUTION TIME OF NAS EP (CLASS C) VARYING THE NUMBER OF
CORES (TOTAL TIME IN SECONDS)

Table I lists the average of the four runs of the total time
in seconds measured by the NAS parallel benchmarks EP
and BT (class C). As we can see from Table I, there is no
loss in using our proposal. All the results can be considered
approximately constant, and the small differences are due to
the coarse-grained time measurement of the benchmark.
Figure 5 shows how the performance of EP varies with
the number of processes in the application. All curves in
Figure 5 overlap, thus we report also the execution time of
the experiments in Table II.

The test results confirm that the real speedup does not de-
pend on the number of nodes. This means that the heartbeat
mechanism has no negative effect on the performance or the
scalability of the parallel application.

VII. RELATED WORK

The problem of achieving a tight synchronization of the
activities of a number of components connected by some
communication links has been extensively studied in the past,
mostly for measurement and control systems.

According to [9] there are three possible strategies for achiev-
ing a tight time synchronization across separate components:

1) Message-based systems: timing is provided by special
messages sent over the communication link.

2) Cycle-based systems: timing is based on a periodic
scheduling natively provided either by the communica-
tion link or by a controlling device.

3) Time-based systems: timing is provided by real-time
clocks inside all components. In distributed environ-
ments the local clocks must be synchronized by means
of a suitable protocol such as the IEEE 1588 standard.

The IEEE 1588 standard, usually known as Precision
Time Protocol, was originally published in 2002 [13] and
is nowadays widely adopted. If implemented on top of
suitable hardware communication devices, it can achieve
a sub-microsecond precision. The protocol can be easily
implemented by the nodes of an HPC cluster. For instance,
Linux-based systems may use the open-source PTPd user
daemon [7], [20]. This daemon receives time-stamped UDP
or IP messages from a master node and computes a precise

estimate of the offset between the master’s clock and the
local clock. The user daemon can then adjust the local clock
of the node by means of the adjtimex () system call.
Another open-source project aimed at synchronizing the local
clocks of the nodes in an HPC cluster is BTime [14], [15],
distributed by the Los Alamos National Laboratory. The
design of BTime is very similar to the design of PTPd: the
daemon exchanges UDP packets with a master reference
node, computes the time offset with the master clock, and
adjusts the local clock via the adjtimex () system call.

It should be noted that NETTICK is quite different from
both PTPd and BTime. The main differences are: 1) In the
above classification, NETTICK can be considered a message-
based system, while PTPd and BTime are time-based
systems. This essentially means that NETTICK achieves time
synchronization by means of the messages themselves rather
than by the value of local clocks adjusted by a user daemon.
2) NETTICK makes use of level 2 broadcast frames (Gigabit
Ethernet in our prototype implementation) rather than UDP
packets. We argue that in NETTICK there is no real advantage
in using tick messages of level 3 (e.g., IP) or 4 (e.g., UDP)
because PTPd and BTime use broadcast IP addresses that are
embedded in broadcast level 2 frames. Furthermore, while
IP packets can be routed across several level 2 networks,
in practice the level 3 routers would introduce excessive
delays. 3) Neither PTPd nor BTime offer any mechanism to
synchronize the activities of the OS running on the nodes
of the cluster. Besides the format of the packets, the actual
constraint is that both protocols are implemented by user-level
daemons. NETTICK is instead implemented at kernel level,
so it is easy to extend it and embed in the heartbeat frames
coming from the global conductor the commands that will be
directly executed by the kernels of the nodes.

Operating system noise has been extensively studied in the
past. In the HPC community this problem was first shown by
Petrini et al. [19]: they explained how the OS noise and other
system activities (not necessarily at OS level) dramatically
impact on the performance of a large cluster. In [19] the
authors observed that the impact of the system noise when
scaling on 8,192 processors was so large (because of the
so-called “noise resonance”) that leaving one processor idle
to take care of the system activities lead to a performance
improvement of 1.87x. The impact of the operating system
on classical MPI operations, such as collective, was examined
in [3]. Though in [19] the authors did not identify every single
source of OS noise, a following paper [11] identified timer
interrupts (and the activities started by the paired interrupt
handler) as the main source of OS noise. Other papers [8],
[23] found the same result using different methodologies:
timer interrupts represent 63% of the OS noise. CAOS uses
NETTICK to co-ordinate the system activities required for the
proper functioning of the HPC system and, at the same time, to
reduce the number of timer interrupts, thus, the OS noise. As a
side note, the authors in [23] acknowledged that synchronizing
the time ticks of the HPC nodes avoids the amplification effect
due to the large number of independent nodes. However, they



argued that “synchronizing ticks is analogous to treating the
symptom rather than the disease” and proposed to remove
the local ticks altogether. As a matter of fact, this cannot be
done locally on each node. In fact, the hardware time keeping
devices included in the current HPC nodes lack the necessary
precision and resolution that would allow us to effectively
build a tickless OS kernel. In practice, even if we can slow
down the rate of the local timer ticks, we must still raise
periodic ticks so as to keep track of time elapsing. On the
other hand, a real tickless system can be effectively built on
top of a global infrastructure like NETTICK.

The other major cause of OS noise is the scheduler: the local
kernel can schedule HPC processes out of the CPUs in order to
run other (lower priority) processes, including kernel daemons.
This problem has also been extensively studied in [8],
[11], [19], [23], and several solutions are available [5], [21].
The HPCSCHED scheduler, integrated into CAOS, reduces
the OS noise and improves performances [5]; moreover, it
includes other useful features for HPC applications such as
dynamic hardware resource assignment for automatically and
transparently reducing load imbalance. Finally, HPCSCHED is
more generic than the one proposed in [21], as it runs on IBM
POWER and Intel/AMD architectures.

In [21] the authors described a solution that in some ways
resembles CAOS. That work was realized on a Cray cluster
that used special communications processor to obtain a “com-
mon sense of time” among all the nodes. Then, modifying the
scheduler, they synchronized all the system activities executed
by kernel threads. The main difference with our work is that
the synchronization system provided by NETTICK is more
general: it can work on any kind of cluster and does not depend
on custom hardware.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed an extension to the Linux kernel aimed
at HPC applications in large cluster-based supercomputers.
CAOS modifies the standard operating system kernel, in that
the kernels running on the cluster nodes activate the most time-
consuming system activities only after receiving a command
issued by a master node. CAOS has been designed considering
HPC applications and their needs.

Though CAOS is still in a prototype phase, it already includes
two of its major components: A local task scheduler tailored
for HPC applications (HPCSCHED) and a global synchroniza-
tion mechanism (NETTICK). Thanks to NETTICK, the kernels
running on the cluster nodes can rely on a global source of
time events. Both components contribute to reduce the OS
noise on a single node and thus improve scalability.

Our preliminary results show that, while reducing the OS
noise, CAOS imposes no performance impact on HPC appli-
cations. On the other hand, CAOS provides significant advan-
tages due to its ability to co-ordinate cluster level operations
such as data checkpoint or debugging.
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