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Abstract—Resources are often shared to improve resource a cache-hungry application can suffer badly if its allodate

utilization and reduce costs. However, not all resources it  cache space is not sufficient to hold its entire working set.
good performance when shared among multiple applicationsThe Furthermore, in general, any static partitioning has no wiy

work presented here focuses on effectively managing a shate dating to the d . dulati . h .
storage cache. To provide differentiated services to appmlations adapting to the dynamic modulalions in cache space require-

exercising a storage cache, we propose a novel scheme thafments. Consequently, dynamic cache partitioning seems to b
uses curve fitting to dynamically partition the storage cacle. a promising alternative to static partitioning.

Our scheme quickly adapts to application execution, showip
increasing accuracy over time. It satisfies application QoSf it

is possible to do so, maximizes the individual hit rates of th
applications utilizing the cache, and consequently increses the
overall storage cache hit rate. Through extensive trace-dven
simulation, we show that our storage cache partitioning stategy
not only effectively insulates multiple applications from one
another but also provides QoS guarantees to applications ev a
long period of execution time. Using our patrtitioning strategy, we
were able to increase the individual storage cache hit ratesf the
applications by 67% and 53% over the no-partitioning and equal-

partitioning schemes, respectively. Additionally, we impoved the
overall cache hit rates of the entire storage system by 11% ah
12.9% over the no-partitioning and equal-partitioning schemes,
respectively, while meeting the QoS goals all the time.

I. INTRODUCTION

However, optimal dynamic partitioning of storage cache is
not trivial in practice because (i) applications typicaligve
independent QoS demands that may not be possible to satisfy
at the same time; (ii) effects of cache space allocation ate n
visible immediately but accrue over time; (iii) cache space
allocation of one application significantly affects the lvadit
rates of other applications in the cache; (iv) the effectaafhe
space allocation depends on application data reuse anlityoca
as well as data access pattern, and more cache allocatign doe
not necessarily imply better hit rates [10]; and (v) the hier
of an application depends on the phase in which the appitati
is executing, making it difficult to implement a good dynamic
scheme. Hence, techniques that are used to enforce QoS in
resources such as CPU and network bandwidth cannot be
applied easily to cache space allocation. Motivated byethes

Resources are often shared to help reduce administrat@bservations, this paper makes the following contribigion

and maintenance costs, avoid underutilization of res@yrce e We propose a QoS-aware dynamic storage cache parti-
and help the bursty workloads utilize resources that woulibning scheme that employs curve fitting [11] to dynamigall
otherwise be left idle. However, not all resources exhibiddj partition the cache space among competing applications. Ou
performance when shared among multiple applicationsr Precheme could be used by a service provider to consolidate
research has shown that sharing the same storage cache amsengral applications onto a single system in order to deerea
multiple, simultaneously executing applications can ddgr costs, at the same time maintaining a performance equivalen
cache performance significantly and lead to unpredictalite a stand-alone system where every application has its own
performance at the user end [1]. dedicated cache. The proposed scheme uses history infor-
The work presented in this paper focuses on improvingation to predict future cache space requirements. Since it
storage caching. We refer to the kernel buffer cache thatees employs curve fitting, this scheme improves over time and
in main memory as the “storage cache.” Extensive reseatch [ able to capture the dynamic behavior of applications. The
[3], [4], [B], [6], [7], [8], [9] has been done on improvingéh results of our cache partitioning scheme are twofold. Fost
effectiveness of storage caching. However, little rededia@s algorithm adapts the cache partition sizes among competing
been done on providing quality of service (QoS) guaranteapplications in order to satisfy each application’s Qo$.08d,
to multiple applications that exercise storage caches. we distribute the remaining cache space among the competing
Storage cache partitioning has been proposed as a solutipplications in a manner that helps an application whose QoS
to providing QoS guarantees to applications sharing a gtoras satisfiable to achieve its maximal (cache) hit rate pdssib
cache. A storage cache can be partitioned statically orrdynamproving the storage cache hit rate of an application is
ically. The easiest strategy is to partition the storageheacimportant because the storage cache hit rate directlylatess
equally among competing applications. While this schem® execution time [1], [12], [13], [6], [14], [15], [7], [16pf
is easy to implement and enables application isolation, &n I/O-intensive application. Since we partition the remrag
however, leads to underutilization of resources. Moreoveache capacity carefully across applications, this aldpshe
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Fig. 1. Shared storage cache architecture considered in our work. . . . . o . .
Fig. 2. Individual hit rates of different applications for varyirgorage cache sizes.

Applications used above have been described in Table ItaiBeof setup used to collect
this data are given in Section V-A. Note that prior work [1&ports a similar behavior

maximize the overall storage cache hit rate. Our partitigni for tre-h-
scheme has a low overhead and focuses on soft-QoS rather
than hard-QoS class of applications.

e Using extensive trace-driven simulation, we first demo
strate the interference caused by the sharing of the stor .
cache among multiple applications. Our experiments shaiv t er C"’!Che’ the painters are rearranged _to reflect thesacce
the proposed dynamic storage cache partitioning scheme quendmg on th.e cache replacement policy). If not, a buffe
able to achieve the specified hit rate (QoS) if possible ar[{%?m the free list is aIIc_;cated for the data. If.no buffers are
generates better results than both the equal-partitiadhgme t € free list, the data in one of the puf_fers in use is replaced
and no-partitioning scheme. For instance, when we useawgh the new reques_ted data (the V'Ct'.m chosen depends on
mixed workload of tpc-h, tpc-c, mplayer, and Iu, we weréhe replacement policy). In our experiments, we study this

able to increase the hit rate of Iu by 67% in a 1 GB Cacr§é0rage cache behaviqr in detail. We use the ITinux default
over the no-partitioning scheme. Additionally, when wedJseCaChe replacement policy, LRU, for all our experiments.
a workload with multiple instances of lu, we were able to 1. OUR APPROACH

increase the overall hit rate of the storage cache by 11% in Ave start by presenting some experimental data that il-

e e rdJSUaes he need for Gyraicaly changng storage cacne
) ge cache partitioning at runtime. Fig 2 shows the cache hit rates of
target. The details of our storage cache partitioning seham

four different applications under varying storage caclzesi

given in Section Ill. Section IV discusses the two base sceh;emwhen each of them solely occupies the cache. One can observe

against which we compare our proposed partitioning approa e . L :
Section V describes our experimental setup, the workloa?%zm this figure that different applications behave diffetf

we use. and the results obtained using our storage ca S the storage cache capacity is increased. For example, we
o . . : g our g S&8 that the hit rates of Iu and tpc-c are increasing with
partitioning algorithm. Section VI discusses prior resbaon

. X increase in the storage cache size (up to a certain point
storage cache management, and Section VII summarizes Bgr d which th b ﬂ h he hi ‘
work. yond which the curves become flat), whereas the hit rates o

mplayer and tpc-h are more or less constant irrespectivieeof t
Il. TARGET ARCHITECTURE cache size. Hence, we may conclude that some applications

The work we present in this paper can be used to improggnefit considerably when they are given more storage cache

the performance of a consolidated cache in an SMP/CNP2ce, yvhile_ others_ do not ne(_:essarily benefit substqntial_l
system, a consolidated NAS/SAN server that serves multiglf1en given increasing cache size. Clearly, a good dynamic
clients. We tested our scheme on the target shared storBggitioning policy should be able to recognize the differe
cache architecture shown in Fig 1. All applications running€tween these two categories of applications and allocate
on a compute node have access to a common shared tachirage cache partitions accordingly. o
The specific storage cache architecture simulated in thik wo F19 3 plots the hit rate behavior of the same applications
is similar to the buffer cache in Linux. The kernel buffer bac OVer timegiven a constant cache si#es can be seen from

that resides in main memory acts as a storage doHenux. tHis figure, the hit rate of the application is subject to the
In addition to a global free list, Linux maintains a list ofPhase in which the application is executing and varies from

buffers for disks. In order to facilitate fast search, thaux

IJ§_ernel implements a hash table. When there is a request for
a, the disk buffer list is searched. If it is already in the

3Note that the sampling time (10 ms) is much smaller than wihabiild have been
1 ) ) ) in a real execution, since we are using a simulator that igreréf magnitude faster
The compute node may also act as a server serving multigetsliHowever, we than a real execution environment. The simulator does nintalig access the disk. It
do not study the interaction of multilevel caches in this grap calculates only the time incurred by a hit/miss. We alsotptbthe graphs using different
2\We distinguish the storage cache from the cache that is @djsipresent on the sampling intervals ranging from 10 ms to several seconds. sftape of the graphs do
disk, which we will refer to as the “disk cache.” not change.
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Fig. 3. Hit rates of different applications over time in a 256 MB stge cache. Hit rate sampling interval is 10 ms. Applicatioeed above are described in Table Ill. Details
of setup used to collect this data are given in Section V-A.

QoS specifications

phase to phase. Therefore, we can appreciate the diffigultie S
of n applications

in implementing a good dynamic partitioning scheme that

must take into account this varying application behavidtre T Applications 9°S: 052395 Q9% Stsgtugocr;c:]e
scheme we propose and evaluate in the rest of this pape AP, g App;
addresses these dynamic variations of cache hit rates. 200, | — — App,
_App, | Initilal Dynamic Cache | Partition the shared o
A. QoS Specification and Optimization Goal :  |Profiler MPZrtiltionir?g Storagiﬁagngmd
The goal of our scheme is to ensure that the access latenc — cﬁrfeep?tfi?é’
of an applications must be less than or equal to its specified e

access latency (QoSY.s, over a time periodl,, where
T. may be on the order of minutes to a few hourstlf is

the execution time of applicatio) ¢.. is the time required to
access the cache, is the average disk access time, and Observed hit rates

is the application hit rate, then its average execution e Fig. 4. High-level operation of the storage cache partitioningescé.
be estimated a$., = t. x h; + tq X (1 — h;). In practice,

t. < tq. For instance, Wong and Wilkes [7] usg=0.2 ms . . .
andt, — 10 ms in their modeling. infrastructure to reduce costs and provide isolation while

Thus, to reduce application execution time, we try tH1aintaining performance equivalent to a stand-alone syste

increase the hit rate of the application. We define the “dl/eréljur scheme is SOft'_QOS' rgthe_r than hard—Qo_S-centnc. That
cache hit rate” as the ratio of the total number of storﬁ‘@ we do not restrict applications from entering a system

cache hits to the total number of storage cache accesses Mgrsubslgrlppon); ratherhwe try to_bslanzfy theﬁspec;?emBQ
by all concurrently running applications since the timefilst of an application as much as possible (best effort). If éekir

application was instantiated on the system (i.e., since tim however, our policies could be easily adapted to employ

0). The overall storage cache hit rate is different from thtgrottllng.
in_dividual hit rate of an appli_cgtion (whic;h gccounts f.oethB' QoS-Based Shared Cache Partitioning
hits and accesses of the individual application only sitise i
instantiation on the system) and captures all hits and aeses Fig 4 shows our high-level architecture. The pseudo-code
coming from all applications that exercise the storageesgst for our dynamic cache partitioning algorithm is given in Big
since the initiation of the first application on the system. It is divided into several steps that are explained below in

To decrease the overall execution time, we must increase fdail.
overall storage cache hit rate. To do so, we try to effegtivel Recall that our first goal is to satisfy the QoS specified for an
increase the individual application hit rates while maimtag  application. To do so, we need to determine its cache space
the application QoS. Our scheme satisfies the applicatiBocation. Specifically, we need to predict the perforneanc
QoS if it is possible to do so and decreases the overfit rate) of the application for a cache capacity range ifso t
execution time by controlling the application hit rates. Wi/€ can select the right one). This prediction is done by using
do so by Controning the cache space allocated on a wrve flttlngand is illustrated in Flg 6 for the tpc-c case.
application basis. Thus, for applicatian if Tq.s, is the Our curve fitting uses piecewise linear interpolation to
QoS latency specified anHg,s, is the application hit rate construct a curve from the available datdlowever, note that
corresponding to this latency, then our scheme works sugHinear model in this context does not necessarily imply a
thatt., < TQoSi = h; > HQoSi

Our proposed idea could be employed especially by Servi]%é"Selection of the model (linear, spline, etc.) used for cdittimg is orthogonal to the

i X . CUs of this paper. However, we select linear curve fittigtdas a low computational
providers who want to use consolidated (instead of dedi¢ateverhead and is fast compared to other methods of curvegfittin




Cot: total cache size numflag — 0 80
Cree: total free cache size
N: number of apps running /I Flagging the apps 701
concurrently for 57— 0..N — 1 do
QoS;: QoS of appj if Ciree > Cj 60y
Hit;: hits of appj Ctree «— Cfree — Cj ~ 50l
Accesses;: accesses of app F; <0 5
C: cache partition size of app else 240
Fj: flagged status of app C; —0 g
num flag: number of apps Fj —1 £ 300
whose QoS is not satisfied numflag «— numflag + 1 N e Old Curve
Partition() /I Non-flagged apps ——New Curve
/I Profiling if numflag =0 100/
for j — 0..N — 1 do for 5 «— 0..N — 1 do
HR; — L BT Cj — Cj + Cree X detbay % 05 1 15 2
Accesses;; sum Number of Cache Lines x10*
Il Repartitioning step /I Flagged apps
Ctree — Ciot if numflag #0 Fig. 6. Instance of curve fitting captured during the execution ofdpnder a storage
sum < 0 fl?f j+«< 0.N—1do cache of 64 MB. The dotted line represents the interpolaitedte-cache capacity curve.
for j «— 0..N — 1 do if Fj =1 In the next iteration when a new data point is collected, e data overwrites the old
Cj «— curve_fitting(QoS;) O — Ciree data so that when the interpolation is rerun, we obtain tlid Boe. The new data causes
deltaj — maz(HR;) — HR; ’ numflag a shift in the curve. Thus, tpc-c now has recorded a higheraltit for a smaller cache
sum «— sum + delta; Cpree < 0 size, implying a decrease in the partition size requiredattsfy its QoS.

Fig. 5. Our QoS-based shared cache partitioning algorithm. Therithgn tries to
maximize the number of applications whose QoS will be satisfif it is able to satisfy

every e}pplicatiqrfs QosS, it Fries to maximize Fhe overalthnahit rate. lIf the available this can be any number |arger than two.
cache is insufficient to satisfy the QoS, it will always try give applications whose - . S . . .
QoS s not satisfied an equal share of the remaining cacheaihaif penalizing such  1he profiling step is off-line; that is, applications aretsta

applications completely. ically profiled before they are initiated on the system. i th
target storage cache can hdid blocks, we can profile the
application to be initiated on three representative caepac-

linear relationship between two quantities. In fact, froim E, ities — 1,Y/2, andY blocks — and obtain three corresponding
the curve of hit rate versus cache size is exponential, namgerformance points (hit rates). These points constitute ou
hr =~ a(1—e~"“), wherehr is the hit rate of the applicatiod; initial entries in the performance table maintained forttha
is the corresponding cache capacity, anblare some arbitrary application. Profiling to obtain initial points is the onliatic
constants that depend on the application characterigticis scomponent of our approach. The rest of our approach is
as data reuse, locality, access pattern, and prefetclypdlie dynamic and modulates the cache allocations of individual
interpolation used in the curve fitting converts a sparse aagplications such that their QoS requests are satisfied.
interspersed dataset into a regular dataset that can betwised Arguably, the initial points collected may not be very
predict the minimum storage cache size required to sati&y taccurate. This is not a major problem, however, as these are
QoS. only initial data points to start predictions. As an appiica

For instance, in Fig 6, the dotted line represents the interpexecutes more and goes through several rounds of cache
lated hit rate-cache capacity curve obtained from 5 points. allocations (of different sizes), we can expect more adeura
the next iteration when a new data point is collected, the néuture predictions. Additionally, whenever we obtain a new
data overwrites the old data so that when the interpolasondache hit rate for a cache size that is already present in the
rerun, we obtain the solid line. The new data causes a shible, we replace the old data in the table with the new point
in the curve. Thus tpc-c now has recorded a higher hit rafiee., different hit rates under the same allocated capatit
for a smaller cache size, implying a decrease in the partitidifferent points in execution) so that the algorithm caesur
size required to satisfy its QoS. If the QoS value specified Bghase changes” in addition to the “hit rate versus cache’siz
the user is 68%, the curve fitting will predict that it takesde behavior of an application.
than 5,000 cache blocks to achieve this target hit rateadste Another concern that may arise is that the application
of the earlier value of nearly 8,000 cache blocks required behavior is derived from a completely different phase of an
achieve the same target hit rate (the points used in Fig 6 aygplication. However, applications are sampled regulatly
initial profile points, and their accuracy is not very im@ont, every quanta (fixed). Even though applications have meltipl
as will be explained below). Another behavior that can hshases, these phases typically last over several quarda, an
observed from the figure is that the hit rate of the applicaticthence the partitioning strategy is good while the phase @f th
increases with decreasing cache size. This behavior candpplication lasts. Also, when a phase transition takeseplac
explained by observing Fig 3(c), where we see that tpc-¢t's bive curve fitting is always collecting new data and adapts its
rate drops for the same cache size depending on the phaspairtitioning accordingly, as explained above, to account f
which it is executing. the new phase.

Profiling Step: The first step of our approach is called the Repartitioning Step: The next phase uses curve fitting,
profiling step and its main purpose is to obtain initial datavhich initially works by using the three profiled points as
points to start predictions. While we target three initiairis, input and later utilizes all consequent points recordedndur



the iterative profiling. The QoS specifications are fed intthis application if we give it more cache. This can be obsgrve
this phase. The curve fitting constructs an approximate fiibom Fig 3(c), where we observe a peak in the hit rate of the
rate curve using interpolation from these points. The curapplication initially and then notice that the applicatlutrate
obtained is a rough estimate of the real hit rate curve tigpes down.

application exhibits, as shown in Fig 2. Using this integtetl ~ Handling Flagged Applications: During this step, if any
curve and the QoS specification, the algorithm then caleslafree cache is still available, we distribute the free caaeaély

the minimum storage cache capacity satisfy the specified among all the flagged applications onigince it is difficult to
Qos for that application. To maximize the number of applicgatisfy the QoS of these applications, we chose to give them

tions whose QoS will be satisfied, we sort these applicatioas equal share of the cache rather than trying to maximize the
based on their minimum required cache capacities. We thigif rate of these applications.

assign the physical cache to each application startingthéh  \ye give two example scenarios to illustrate how our scheme
one that requires the least cache capacity until we are léft Woperates. Let us assume that three applications use tegstor
no free cache blocks or until the QoS requirements of all thgche and that currently these three applications occu340
applications are satisfied. We assume that all the apmitsiti and 30 blocks respectively of the 100 blocks of cache space.
have the same priorityeach time the repartitioning is per- Assume further that after the next round of curve fitting, we
formed, more hit rate points as well as more recent poinfgtermined that the specified QoS for these applications can
are accumulated, increasing the precision of the curvengtti pe satisfied by allocating 15, 30, and 30 blocks of the cache
as well as the quality of cache partitioninghe amount of space. This means that while the second and third applitatio
storage cache allocated to the application might vary durigan maintain their cache allocations, we can take away 25
every iteration. However, the partition size allocated bg t pjocks of cache space from the first application and rebistei
algorithm fluctuates around the cache size where QoS ig/likgl \we measure the gain of an application by calculating
to be satisfied, which is the region of interest. During thighe difference between its current hit rate and its maximum
repartitioning step, there are two cases where an apiitati recorded hit rate. For instance, if the current hit rateshefe
cache requirements may not be satisfied. The first case ocqyfae applications are 70%, 90%, and 90%, respectively, and
when the cache demanded by the application (as specifiedig¥ maximum hit rate recorded for these applications is 85%,
the QoS) cannot be satisfied by the physical storage cagfi®, and 95%, respectively, then we calculate the total of
in the system at all. That is, even if we allocate all cachge gifference between the maximum recorded hit rates and
capacity to the application, it is not possible to satisfy@0S e current hit rates (i.e., (85-70) + (92-90) + (95-90) = 22)

requirement. The other case occurs when the QoS requiremgilf then redistribute the remaining 25 blocks of free cache

of the application can be satisfied in theory, but when othghace in the rati®s x 85-70 = 17, 25 x 92-9 — 2 and
applications are considered, we may not be able to allocate 952;90 — 6 among tthchree application?, respectively.

enough space to that application to satisfy its Q0S. Ourg, 5556 now that the required minimum cache partitions
algorithm does not distinguish between these two cases. t%nsatisfy the specified QoS values are 80, 70, and 40 cache
application whose capacity requirement (based on its Qolﬁ?)cks for the three applications, respectively (assuntiag
cannot be satisfied in the current round of partitioning itf*ue current partitions are 40, 30, and 30 cache blocks in that
flagged and we do not as_s@gn it any storage ca_che_ space &ilrbler). In this case, clearly the QoS of all the applicaticens-
this step). Instead we revisit these flagged applicatiows.la |, e satisfied simultaneously because we are deficient by 90
Handling Nonflagged Applications: We execute this step cache blocks. Our scheme handles this case as follows. \We sor
' . these applications in ascending order of their minimum each
rY|]<$quirements. In other words, we will begin assigning cache
'} the third application, then the second, and then the first
(?pplication. This approach is taken in order to maximize the
i

free cache is available. Since we want to maximize the olve
storage cache hit rate, our implementation distributeSréne
cache amongll the applications in proportion to the projecte
gains that each application will exhibit in terms of the h
rates. That is, we give more cache space to the applicat
that can contribute greatest to the overall cache hit r&td/ |
is the number of concurrently executing applicatiohs; is
the storage cache hit rate of the applicatjdior the minimum
QoS predicted using curve fittinggaz (hr;) is the maximum
recorded hit rate of application andCy,.. is the free cache

space available for distribution, then each process@gts. x
max(hr;) — hr;

umber of applications whose QoS will be satisfied. However,
we notice that after assigning 40 cache blocks to applioatio
&%'Pee, we are unable to satisfy the QoS of applications ode an
two and are left with 60 free cache blocks. We distributeghes
remaining cache blocks to applications one and two equally;
that is, each gets 30 cache blocks. The first, second, arttl thir
applications are now allocated 30, 30, and 40 cache blocks,
respectively.

~ blocks of the free cache. We base
> j=1 (max(hrj) — hr;) IV. BASE CASES

this premise on the fact that if an application has shown a
higher hit rate in the past and even though its current hi rat We now explain the two base schemes against which we
may be lower, we are likely to see an increase in the hit rate @mpare ouQoS-aware storage cache partitioning policy



TABLE | TABLE Il

MAJOR SIMULATION PARAMETERS WORKLOADS(MIX TRACES) USED IN OUR EXPERIMENTS
Parameter Value Workloads Application
Processors 1 | tpc-c, tpc-h

Number of Disks 1 1] lu, tpc-h

Disk Capacity 9.1 GB 1! mplayer, tpc-c

Disk RPM 10,045 \Y lu, mplayer, tpc-h

Disk Seek Time 5 msec \% lu, mplayer, tpc-c, tpc-h

Partitioning Interval 2 sec simulation time VI tpc-c, tpc-c
Page replacement policy LRU Vil lu, lu
Cache block size 4KB

application’s performance table (cache capacities and the

A. No-Partitioning . . A )
co , ) corresponding hit rates). All major simulation parametessd
In the no-partitioning scheme, the entire cache is shargfl, shown in Table I.

among all competing applications as in Linux. There is no To simulate the different applications running simultane-

means O.f providi_ng isolation or QoS_guarant_eesin this S‘aher'ausly, we createdvorkloads (mixes of traces) from the in-
Applications having poor data locality and high /O ratesae dividual traces. Table Il shows the workloads used in this

to push out the working sets of applications with good Iagali study, and Table Il gives a summary of the applications used

a|r|1d ts),mall working setst; This sch?r_ne has befelj usled trad't,'Wé used the above applications for the diversity that they
ally by mosF systems because o |.ts ease of imp ementaU%thbit in their access patterns, which range from seqaknti
However, this scheme cannot provide any isolation or Servigy random accesses and low reuse to high reuse. Later, we

guarantees to applications. also present results for uniform workloads. As a conseqeienc
B. Equal-Partitioning of increasing the hit rate of an application, the applicatio
L might run faster, thus causing contention on the path from
In the equal-partitioning scheme, the storage cache ?:’U to main memory. In our experiments, we assume that the
divided equally among competing applications. Thus, thé . : -
quaty g PEUNg app handmdth from storage cache to the higher level caches/CPU

scheme is able to provide isolation. However, it cannot a:s infinite. Modeling the contention resulting from consted
just to the dynamic behavior of applications. Moreovers thh])zI . 9 9

scheme has the disadvantage that applications requirimg m andwidth from storage cache to CPU is beyond the scope of

cache might end up getting lesser cache, and their hit raEeg5 papef.
may suffer considerably. Likewise, an application that has
little or no reuse and that requires very little cache spage Results
might end up getting much more cache space than requiredRecall that our goal is to maximize the overall storage
without substantial boost in the hit rate. As a result, the htache hit rate while satisfying QoS of all the applications.
rates of other applications go down and the overall cache hit the first set of experiments, we use workloads I, 1l, and
rate suffers. This scheme may or may not always incredse Fig 7 summarizes the overall and individual hit rates
the overall cache hit rate, depending upon the combinationgf the applications that are running concurrently. The QoS
simultaneously executing applications and their cach@espaalues used in our experiments are noted in the caption of
requirements. the figure. We show the results obtained for each workload
for the smallest cache size that is able to satisfy the QoS. As
is evident from these plots, our proposed QoS-based cache
A. Setup partitioning scheme is able to adapt the partition size$ suc
To test the effectiveness of our algorithm, we used thbat with a negligible drop in hit rate of one application (in
AccuSim simulator [21] and augmented it with our QoS-awareigs. 7(a) and 7(c) the drop in hit rate is 0.7% and 0.4%,
partitioning algorithn®. AccuSim is a trace-driven simulatorrespectively), it is substantially able to improve the liter of
used to simulate the kernel buffer cache [21], [13]. Thedsacthe other applications. In fact, not only is our scheme able t
used to drive the simulator are collected from live appia provide isolation among the two competing applicationg, bu
running on Linux using the strace utility. Traces captureitiis also able to achieve hit rates for most of the competing
contain information such as the process id, inode, size®f lapplications almost as high as the case where the applicatio
block, and type of 1/0O access (seek, read). AccuSim simis-the sole consumer of the cache.
lates I/O of an application accurately by interfacing wiklet  We note that our implementation has a very low software
Disksim simulator [22]. It simulates computation by redagd overhead. The history information maintained is fixed ana is
the difference in time between successive I/O calls. ActuSitunable parameter whose size can be controlled. Additigpnal
also simulates the default Linux prefetching policy. Wened we invoke our curve fitting every 2 sec of simulation time,
on /O prefetching in the simulator for all our experimentswhich corresponds to several minutes of application ruetim
For our experiments, we maintained 1,024 entries for every

SWhen there are constraints however, the effects of cootenti main memory will
5Simulations have been used extensively in the past [1],[43],[5], [6], [7], [8], [9] be negligible compared to the improvement brought abouebycing the disk accesses.
to verify several caching policies. Also, a good caching policy used for L1-L2 caches should netfuce the contention.

V. EXPERIMENTAL EVALUATION



TABLE Il
SUMMARY OF THE APPLICATIONS USED

[ Application Description | Dataset Size | Disk Requests |

LU: lu decomposition is a method used in linear algebra to faatamatrix as a product of a lower triangular matrix and an upper 576 MB 1133571
triangular matrix. LU decomposition is used in numericalgais to solve a system of linear equations. We used thefectwre (OoC)
implementation from ScaLAPACK [18].

Mplayer: mplayer is software used on Linux for playing movies. Thisdenmark was used to represent streaming applications.(We 1 GB 358922
used mplayer v1.0rc2 for our experiments. This categoryppfieations typically exhibit sequential data accesseklance have low
temporal reuse and high spatial reuse.

TPC-C: The Transaction Processing Performance Council (TPC) fE®ichmark C is an on-line transaction processing (OLTP) 137 MB 861320
application. It involves a mix of five different concurremansactions of different types and complexity. TPC-C sated a large
environment in which users are executing transactions oatabdse. We used an open source implementation of tpc-crkas
TPCC-UVa [20] that works with PostgreSQL v8.1.4 (anotheerogource database).

TPC-H: tpc-h is a decision support benchmark from the OLTP suite esfchmarks. We used the tpc-h implementation provided 1 GB 15150904
by TPC with the open source database PostgreSQL v8.1.4.H B&ercises different ad hoc queries and concurrently nesdifie
database. The queries involve a huge volume of read and redigests. For our experiments, we exercised query 17.
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Fig. 7. Individual and overall hit rates of the applications in wiodds I, Il and Ill. (&) Workload |, 64 MB cacheoS:pc—n = 94%, QoStpc—. = 85%. (b) Workload I,
256 MB cacheQoS;, = 70%, QoStpc—n = 94%. (c) Workload Ill, 64 MB cacheQoS.piayer = 98%, QoStpe.— = 85%. Note that in the absence of partitioning, it
would require caches of size 128 MB, 512 MB and 256 MB to satilsé same individual QoS values specified by the user.

100[ yo0eee 100 poscee 100} o
90| 90| 90
80 80
o o 70 o 70
5] 5] T
04 04 24
£ er £ 60 £ 60 —o— mplayer
—o—tpce
| 50 50 Overa]l
—e— mplaygr
40 ——tpcc 40
Overall
40 300 10 20 30 40 50 60 70 3GO 5 10 15 20 25
Time Time Time
(a) No Partitioning (b) Equal Partitioning (c) QoS Based Partitioning

Fig. 8. Modulation of cache hit rate over time for workload Il for & 6B cache,QoSmpiayer = 98%, QoSipe—c = 85%.

Also, since we use piecewise linear curve fitting, our scherirég 9 shows the cache usage (number of cache blocks in use)
has a low computational overhead. of the individual applications for workload Il over time rfo

Fig 8 shows the hit rate variations over time for workload llthe different partitioning schemes. From the figure, we see
for the no-partitioning, equal-partitioning, and our Qb&sed that even though tpc-c dominates the cache usage, mplayer
cache partitioning cases. As can be seen from the figure, thecausing interference in the cache, and tpc-c is unable to
overall and individual hit rates of the applications undee t achieve its full potential hit rate in the presence of mptaye
QoS-aware scheme not only satisfy the user-specified QoS Bqual-partitioning is unable to provide any respite to ¢pc-
also are much better than the corresponding hit rates aathielinstead of assisting tpc-c in achieving a better hit rate, th
by the no-partitioning and equal-partitioning schemessébe cache usage of tpc-c goes down, and the overall hit rate of the
that the final cache hit rate of the applications achieves thtorage cache suffers. We observe that our QoS-basedaapti
target QoS values rather than the hit rate sampled every tiseheme is able to detect and give more cache to applications
guanta. We aim for a long-term satisfaction of QoS rath#iat demand more cache to achieve higher hit rates rather tha
than trying to satisfy the QoS at every sampling instance applications that are able to sustain a high hit rate gaven
Thus, our scheme is more cumulative rather than reactignall cache allocation. We note from Fig 9(c) that our QoS-
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for a cache size of 256 MBQoS i piayer = 98%, QoStpc—c = 94%. Refer to

() Workioad IV (b) Workload V Fig 12(c) for results obtained using the old QoS values.

Fig. 10. Individual and overall hit rates of applications for worith|V and workload
V (a) Cache Size 256 MBQRoOS . piayer = 98%, Q0Siy = 7T0%, QoSipe—n = . . . . .
94%, (b) Cache Size 1024 K/ILB%IQOSWC,C lgs%,Qosmpl:j'”' in the overall hit rates. Fig 11 shows the hit rate modulation

98%, QoStu = 82%, QoStpc—n = 94%. over time for workload V. Our proposed scheme boosts the
hit rate of tpc-c and lu by taking away cache space from the
applications mplayer and tpc-h, which tend to pollute thehea

based scheme adapts quickly while deciding the applicatiwith their large number of accesses.

partitions. This is because our objective is to achieve thewe present a study of the effect of variation in parameters on

QoS values over a long period of time as opposed to somer cache partitioning scheme. In these sensitivity expents

approaches that try to maintain QoS values per time quamia explored (i) varying the storage cache size and keeping

which we term as instantaneous QoS-based partitioningo Kaie QoS constant, (ii) varying the QoS while keeping the
in mind that even though our QoS-based partitioning captuneumber of applications constant, and (iii) varying the QoS
the twofold behavior of an application over time and over among multiple instances of the same application.

range of cache sizes, we run the curve fitting on data cotlecte To understand the effect of varying the storage cache size

for different cache sizes. Hence, our scheme always peedigiile keeping the QoS constant, observe Fig 12. In this figure

the final size of the cache that will be required to achieve thg see a cache size that is too small to accommodate the QoS,

QoS values, and therefore we see quick stabilizat@isserve as well as a cache that is too large. From the figure, we see that

that the x-axis of (a), (b), and (c) in Figs. 8 and 9 is diffdrereven if the cache is too small to accommodate the QoS values,

because it represents the overall execution time. WhenewéF scheme still achieves the best hit rates possible. Hemvev
there is an increase in the hit rate, the x-axis reflects theig 12(c) shows that if the QoS value is much below the
application speedup (decrease in runtim&his applies to all maximum hit rate that is achievable by an application for the

the results presented in this paper. physical cache size, our algorithm will try to maintain the h

In the next set of experiments, we studied the effect on otate close to the QoS region and distribute the remainirg fre
algorithm of varying the number of simultaneously exeagtincache space proportionally among the applications, iaguift
applications. We captured traces with three and four sanulta hit rate comparable to the equal-partitioning case. Tives,
neously executing applications. Figs. 10(a) and (b) shaav thonclude that if the QoS is badly specified, the performance
individual hit rate and the overall hit rate of all applicats of our scheme is comparable to the equal-partitioning sehem
in workloads IV and V, respectively. From the figure, one can In the next set of experiments, we kept the number of

see that our partitioning scheme supersedes the no-paitigji simultaneously running applications constant and varied t

and equal-partitioning cases. From Figs. 10(a) and (b), \@S. The old QoS values are specified in the caption of

observe that our scheme maximizes the individual hit ratégg 12 while Fig 12(c) shows the results obtained using the

over the other partitioning schemes, resulting in improgem old QoS values. Fig 13 shows the results obtained for a 256
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Fig. 12. Individual and overall hit rates of the applications for kacsizes of 32 MB, 128 MB and 256 MB for workload 1Q0Smpiayer = 98%, QoStpc—c = 85%.
Refer to Fig 7(c) to see the hit rate of workload Il for a cadliee of 64 MB for the same QoS values.

MB cache using the new QoS values. The results indicate

\D!pc-c»mstance | W tpc-c-instance II O overall \Dlu-mstance | Wlu-instance Il Ooverall

that specifying a higher QoS value actually improves the i, 80

individual hit rates. These results are consistent wittréiselts s °

obtained earlier where we vary the cache size instead of tt{jeég %so

QoS values. Next, we executed multiple instances of the sa@ezg fgf;'g

application and varied the QoS among the different instance = -

of the application. We chose tpc-c and lu for these experismaen  ° ropatioms” Ema Qo5 Bacs SR p—
Fig 14(a) sums up the overall hit rate and individual hit sate Pariiioning  Partifoning Paritioning  Partfoning
of tpc-c when run concurrently and using different QoSs &vhil (a) 32MB cache (b) 256MB cache

Fig l4(b) shows the results of our partitioning scheme Wh%% 14. Multiple instances of the same application running on thstesy having
using multiple instances of lu having different QoSs. Asban different QoSs. (a) 64 MB cach@0S¢pe_c— 1 = 85%, QoStpe_ o 11 = 50%, (b)
seen from the figure, the no-partitioning and equal-partitig 256 MB cacheQoSi, 1 = 5%, QoSiu—11 = 68%.

cases behave alike, and the two applications get similar hit

rates. However, our scheme is able to distribute the cache

among the two different instances so that each instancdes
to satisfy its user-specified QoS. Additionally, we inceedise
overall hit rate of the storage cache while doing so.

a&obally and locally by using application-supplied hintsoat

the access pattern and frequency of access. Redline [25]
partitions the memory pages among interactive tasks suth th

it assigns each task a budget consisting of 256 pages. $tatter

et al. [2] divide the cache into three partitions to accomated

Many researchers have explored shared storage cache paréfetched data, hinted reuse data and unhinted reuse data

tioning designs that attempt to avoid conflicts among migtipbased on hints specified by an application to maximize the hit
applications [23], [1], [2], [24], [5], [8], [25]. Cao et &. rates observed in the cache. However, they do not provide QoS
LRU-SP algorithm [23], [1] partitions the buffer cache argonguarantees to concurrently running applications in théesys
multiple processes by using application disclosed hinssm& In our work, we propose a cache partitioning scheme that
[5] partitions a multilevel cache accessed by a single tliedetermines the best partition sizes for multiple applaadi
using application hints in order to maintain exclusive éagh based on QoS using curve fitting. Our approach does not rely
MC? [8] extends Karma and partitions a multilevel cachen application hints while guaranteeing QoS.
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