
UCRL- JC-I05426
PREPRINT

I

J,4/lij 61,',,.>,\' GAUSS ELIMINATION: A CASE STUDY ON PARALLEL MACHIN/ES

Karen H. Warren and Eugene D. Brooks III
Massively Parallel Computing Initiative

Lawrence Livermore National Laboratory
Livermore, CA 94550

This paper was prepared for submittal to
CompCon Spring '91, San Francisco, California

February 25-March 1, I991

November, 1990

This is. prepr/nt oi a paper inienc_ed [or publlcilion In. Iournil or proceedinp, Since
changes ,may be made before publication, this preprint is mide i.allible with the [

' undensMnding that |,t will not be cited or reproduced wlthourt the permission of thp,
, author.
i,
i,

!.i

i MASTER
, ;_

OISTRIBUTtON OF TI-'ttODOCUL, iI-NT I_ UNLIMITED _L

1'_ " '' " ' ' II ' "

I)_SCI.AIMER

"lhi_, document sas prepared as an account of v_ork sp_;nsored b) an agent) of the

L nited State_ (;o_ernment. Neilher the United States Government nor the L.ini_ersil)

(Jr California nor an)' of their employees, makes an)' sarranl), express cir implied, or

._, assumes an.,, legal liability or responsibilit) f{)r the accurae): completeness, or useful-
ness of an) informati,n, apparatus, producl, mr prowess disclosed, or represents Ihat

its use sould not infringe privately osned rights. Reference herein lo an) specific
commercial pr_uet_, pr(sress, or service by trade name, trademark, manufacturer, or

otherwise, dc;es not necessarily constitute or Impl) _its endorsement, recommendation.

(Dr I'a;c)rin;t b)the United States Government or the University {)f California. The

views and opinions of aulhors expressed herein do not neces._arily state or reflect

th(_se of the United Stales Government or the Ltnl_ersit) of California. and shall not

I_. used for adverlising or product endorsemenl purl_)Ses.

i

, Gauss Elimination: A Case Study on Parallel Machines*

Karen H. Warren and Eugene D. Brooks III
P

UCRL-JC--105426

Massively Parallel Computing Initiative

Lawrence Livermore National Laboratory DE9 1 00625 9

Livermore, CA 94550

Abstract: We report our experiences with the Gauss high performance local memory in the form of coher-
elimination algorithm on several parallel machines, ent shared memory caches, we must design an algo-
Several different software designs are demonstrated, rithm which explicitly makes use of that aspect of the
ranging from a simple shared memory implementation machine architecture, resulting in a doubling of the re-
to use of a message passing programming model. In quired coding effort. If the machine does not provide
this work we find that the efficient use of local memory coherent caches, but possesses large local memories,
is critical to obtaining good performance on scalable we find that we must simulate in software the behavior
machines. Machines with large coherent caches appear of caches thereby greatly increasing the required lines
to require the least software effort in order to obtain of code to obtain good performance. This penalty is

| effective performance, as high as a factor of five in line count over the original
serial version. Finally, if the machine does not provide

i Keywords: Gauss elimination, shared memory, rees- shared memory, we are forced to use explicit message
sage passing, coherent caches, local memory passing calls having a high software overhead in or-

der to communicate between processors. Performance

1 Introduction suffers as a result.
The sections of this paper are as follows. We present

Regardless of the portability of the parallel program- the Gauss elimination algorithm in Section 2, describ-
ing the data dependencies and the possibilities for dif-

ming language used, developing parallel software ap-
plications that are fast and efficient is a machine de- ferent designs depending on the types of memory and

pendent process. PCP [1], a portable Parallel C Pre- cacheing available. In Section 3, we present the simple,_

processor, was used for the examples discussed herein, straightforward implementation of tile algorithm de-
PCP is an implementation of the split-join parallel signed for a shared memory machine. We next explain
programming model, similar to Harry Jordan's Force our use of coherent cache shared memory in Section 4
[2] and the IBM SPMD model [3], in which the user showing the results of its implementation and that of

, explicitly controls the execution of a large number of the earlier simpler version on the Sequent Symmetry.
processors. PCP has been successfully ported to the We then describe our explicit use of local memory in
Sequent Balance, Sequent Symmetry, Alliant FX/8, Section 5, and our use of a message passing model
SGI, Stellar, Cray, BBN TC2000 and uniprocessor in Section 6, showing results for both using up to 48
hardware, processors on the BBN TC_000. We conclude with a

As is demonstrated in this paper, the efficient soft- discussion in Section 7.

i ware design of the Gauss elimination algorithm for

the solution of dense linear systems is largely depen- 2 Gauss Elimination
dent upon exploiting features of the underlying target

0 machine architecture. If the machine presents shared For the purposes of this paper, we consider Gauss
memory only, a straightforward parallel implementa- elimination without pivoting. Including pivoting can

, tion obtains good performance. If the machine has be done and does not qualitatively change the results
but instead complicates the code examples given and

*Workperformed under the auspices of the U. S. Department reduces clarity of the discussion.of Energy by the Lawrence Livermore National Laboratory un-
der Contract W-7405.ENG-48. The Gauss elimination algorithm is composed of

two parts. The first is referred to as the reduction master {
wherein the matrix is reduced to an upper triangular b[i] /= ali]Iii;
form which exposes the last element of the unknown)
vector to direct solution. Redaction is done in n steps barrier_

where n is the number of equations. In the i'th step forall (int k = i-l; k >= 0; k - = 1) {
suitable multiples of the i'th row, known as the pivot b[k] - = a[k][i] • b[i];

' row, are subtracted from the rows below in order to }
zero out matrLx coefficients. All of the operations on }
the rows below can be done in parallel, but each op- barrier;
eration depends upon the pivot row. }

In the second part, the backsolve, which is started

as soon as the matrix is brought to upper triangular
form, elements, from n to I, of the unknown solution This version of the code does not constrain the pro-
are successively solved for and substituted into the cessors to perform repeated subtractions on a given
remaining equations. These substitutions can also be row and uses excessively strong barrier synchroniza-

done in parallel, as soon as a processor has provided tion on each step ofthe reduction and backsolve parts.
ttle next element of the solution vector. If there is sufficient, shared memory bandwidth to sup-

: port tile floating point operations, and tile problem is
i large enough to amortize the cost of the barriers, good

t 3 Simple Parallel Version parallel performance is obtained.

i Assuming a shared memory machine, the easiest and 4 Exploiting Coherent Caches, most obvious way to design the Gauss elimination al-

I gorithm is to use parallel do loops in the reduction To exploit the use of local caches for shared mem-

part, letting the processors work in parallel on tile ory and to avoid tile use of time consuming barriers,
rows in shared memory. Similarly, for the backsolve the code was altered to use a spin-wait flag in shared
part the processors work in parallel on the rows in memory to signal whert a given pivot row is ready. We
shared memory. A barrier is used at the end of each exploit the separate caches for each processor by hay-
reduction step and backsolve step to ensure that ali ing each processor work on only specific rows. This is
of the calculations for that step have been completed done by explicitly coding the PCP fora.ll loops using
before proceeding on to the next step. Implementing the team state variables, _tindex and _tsize. The
this version in PCP added only seven lines of code to code is shown below'
tile original serial version. The PCP modifications are

shown below in bold face. void dgauss(double **a, double *b, inr dim)
{

void dga.uss(double **a, double *b, int dim) /* Flags are initialized to zero: */
{ static int flags[1024];

/* reduction outer loop */ master {
for(int k = O; k < dim; k += 1) { flags[OI = 1;

forall (inti = k+l;i < dim;i +=1) { }

double ttmp = a[i][k]; /* reduction outer loop */
if(ttmp == 0.0) continue; for(int k = O; k < dim; k += 1) {
a[i][k] = 0.0; /* Wait for the pivot row to be stable: */
temp/= a[k][k]; while (flags[k] == 0);
for(int j = k + 1; j < dim; j +=1) { for (int i = k + 1 + (_tindex + _tsize -

ali][,ii- = a[k][,j], temp; (k%.tsize))%_tsize;
, } i< dim; i+= .tsize) {

b[i]- = btk], ttmp; double ttmp = a[i][k];
} if(ttmp == 0.0) continue;

, barrier; a[il[k] = 0.0;
} ttmp/= a[k][k];
/* backsolve outer loop */ for(int j= k + 1; j< dim; j+= 1) {
for(inr i - dim -. 1;i >= 0;i - = 1) { a[i][j] - - a[k][j] • ttmp;

ilp r, 'llr

} tem. The problem size for which the coherent cache
b[i] - = b[k] • temp; version of the code reaches a peak and starts to roll
if (i == k + 1) flags[i] = 1; off can be calculated from the size of the caches, 64

• } K bytes, the performance of these two versions of
) the code on the BBN TC2000, however, was disap-
barrier; pointing. The BBN TC2000, a scalable microproces-

' /* Now we perform dim back substitutions, sot based machine, has processors which possess lo-
Note that the meaning of flag == 0 Chi cached memory and access via a scalable switch
now means that the data is ready to interleaved shared memory. The use of 10 proces-
whereas before it meant not ready, sots was required to reclaim the original serial program

First solve for the last x: */ performance of one computational node. This arises
master { from the lack of shared memory coherent cache sup-

b[dim-1] /= a[dim-1][din,-1]; port on the TC2000. On this machine we must exploit
/* Indicate x[dim-1] is solved. */ locr.1 memories explicitly to reduce the adverse impact
flags[dim-l] = 0; of slow memory accesses through the switch connect-

} ing the processors.
/* backsolve outer loop */
for(int i = dim - 1;i >= 1; i - = 1) {

if (.tindex == ((i-l) % _tsize)) { ¢_- O std

while (flags[i] == 1]); u"
0 0

b[i-1] - = a[i-1][i] * b[i]; Irl cust uuaa a ua°
b[i-l] / = a[i-1][i-1]; a
/* Indicate x[i-1] is solved */ ¢_ aao o0 0 0

flags[i-l] = 0; _ o

} { _" %CD- o ,eeiloo4bOleoe_

else/.Wait for x[i] */ r,.M u u ,*'"
while (flags[ii == 1); _ a •

D il llll°
D II

for (int k= .tindex; k< i--l; k+= .tsize) { _- u ,,
b[k] - = atk][i], b[i]; o **

)
}
barrier; oa i g g.89_10 z _ _ i g 6.g9'10 a

} Number of equations

This version of the code produced impressive results
on Lhc Sequent Symmetry, a bus based coherent cache Figure l: Performance of the two Gauss elimination
machine which provides twice bus limited performance algorithms as a function of the number of equations,
on problems which are small enough to be distributed on a 30 processor Sequent Symmetry system equipped
in the caches without spilling. In Figure 1, a plot of with Weitek floating point hardware.
the millions of floating point operations per second,
MFLOPS, versus the number of equations, we show

the speed of the two codes using 30 processors on a 5 Explicit Local Memory Use
Sequent Symmetry machine having copy-back caches.
The points labeled std are the results of the simple To exploit local memory on the BBN TC2000, the
version described in Section 2 and the points labeled rows of the matrix which resides in shared memory
oust denotes the version, discussed in this section, are divided up and pulled in to local memory by the

o which exploits the coherent shared memory caches, processors which will then perform the reduction and
The performance which both codes asymptotically hp- backsolve operations on those specific rows. Shared
proach for large problem sizes, a little greater than 6 memory is now used only to communicate intermedi-
MFLOPS, is limited by the bus bandwidth in the sys- ate results such as pivot rows and newly solved ele-

!
..... ,_,', " ,I......... 111'

ments of the solution vector between processors. On Table 2. Again, n denotes the number of equations
a scalable machine lacking coherent caches, read only in the linear system, MFLOPS is the overall speed irl
hot spots, .i.e., locations for which many processors millions of floating point operations per second, t0_c,

' are contending, become a serious problem, and such the total time in seconds, tr is the reduction time, tb
data needs also to reside in local memory. Implement- is the backsolve time and S is the speedup. Due to the

ing this version required 106 lines of code, approxi- high message overhead we achieved a speedup of only
P mately 5 times morv than the original serial version. 12.37 using 48 processors for a 1000 x 1000 system.

The results of this effort using 48 processors oil the This veLAon of the code is clearly inferior to the pre-
BBN TC2000 are shown in Table 1. n denotes tile vious version which uses the high bandwidth and low
number of equations in the linear system, MFLOPS latency shared memory to move data between proces-
is the overall speed of the code measured in millions sots. In particular, note the disaster which occurs in

of fioatir;g point operations per second, tsec is the to- the backsolve.
tal execution time in seconds, tr the reduction time, Performance can be improved by using a tree broad-
tb the backsolve time and S the speedup. Speedups cast to communicate pivot rows, but this will still be
are relative to the original serial version of the code slower than using the interleaved shared memory la-
running in local memory, cility by a factor of log N where N is ttle number of

processors being used in the application.
n MFLOPS ts_c tr tb S

100 3.40 0.20 0.16 0.04 2.6
n MFLOPS tsec tr tb S

200 10.47 0,52 0,46 0,06 7.7 100 0.32 2,18 1.25 0.93 0,25
300 18.85 0.96 0,88 0,08 13.7 200 1.21 4,48 3,01 1.46 0.89
400 27.65 1.55 1.44 0.11 19.8 300 2.00 9,10 6,91 2.19 1.45
500 31.34 2.68 2,48 0,20 22.2 400 3.73 11.53 8,70 2,84 2.66

: 600 38.32 3.78 3.61 0.17 28.0 500 5.71 14.69 11.03 3.66 4.05
_-,| 700 42.25 5.43 5.25 0.18 33.0 600 6.46 22.39 18.04 4.36 4.72

800 44.75 7.66 7.46 0.19 35.0 700 8.32 27.61 22.47 5.13 6.50
900 46.96 10.38 10.16 0.23 36.7 800 11.01 31.12 25.26 5.87 8.60

1000 4.8.39 13.82 13.56 0.26 38.1 900 13.34 36.57 30.05 6.52 10.42

Table 1. Performance using local memory explicitly. 1000 15.71 42.57 35.36 7.21 12.37

Table 2. Performance using explicit message passing.

6 Message Passing

To obtain a fair comparison of the version of the code 7 Discussion

i which uses shared memory for communication with

one which uses the a message passing programming We have presented several different software designs
model we converted our example to the Livermore for the Gauss elimination algorithm demonstrating the
Message Passing System, LMPS, available on the BBN simple use of shared memory, the exploitation of co-
TC2000. The message overheads of this package are herent caches for shared memory, the explicit, use of

i similar to those found on any of the available message local memory, and the use of message passing. These

passing machines such as those offered by INTEL or implementations were a result of considering the ar-
NCUBE. chitecture of the target machine. As one attempts to

This version ofthe code required 160 lines, including exploit hardware that provides less service the soft-
those lines required to mov,_ the matrix from shared ware costs climb rapidly. It is evident that software
memory to local memory. In general, a similar over- costs are the key issue when considering the use of
head is incurred on a message passing machine as data multiprocessors.
is rearranged in configurations suitable for each step of As we scale up the number of processors in a shared
a complex application. In this version of LMPS, direct memory design, hot spots become a significant prob-
support for broadcast of the pivot row to waiting pro- lem which must be carefully sought out and avoided.
cessors does not exist and a given processor must send It is clear that effective ure of local memory, whether

the pivot row to other processors in a loop iteration, in the form of caches or explicit local memories will be
The results for this version of the code using up to a critical issue in exploiting scalable machines in the

48 processors on the BBN TC2000 are tabulated in future.

I

The actual floating point performances obtained us- References
ing 30 processors on the Sequent Symmetry (about
11 MFLOPS), and using 48 processors on the BBN [1] Eugene D. Brooks III, PCP: A Parallel Ezten-

' TC2000 (about 50 MFLOPS), are not too impressive sion of C that is 99_ Fat Free, UCRL-99673,
when compared to the approximately 300 MFLOP Lawrence Livermore National Laboratory, 1988.
performance which a single processor of the Cray YMP

' can achieve on a linear system solve. What we have [2] Harry F. Jordan, The Force: A Highly Portable
Parallel Programming Language, Proceeding of

demonstrated is how various multiprocessor designs the International Conference on Parallel Process-

can be exploited for the solution of a linear system and ing, August, 1989
what the software costs of efficiently utilizing different

hardware designs are. It is clear that good speedups [3] F. Darema, D. A. George, V. A. Norton and G.
can be obtained for a linear system solver given appro- F. Pfister, A single-program.multiple data corn.
priate multiprocessor architectures and due attention putationai model for EPEX//FORTRAN, Parallel
to coding strategies. Scalable machines utilizing the Computing, April, 1988.
200 MFLOP floating point, _mits soon to appear on the
market will completely eclipse current day supercom-
puters, providing that the communication capability
between nodes is appropriately increased along with
tile floating point speed.

!

!
/

,, ., .

illl

