
UCRL'JC- 105792
PREPRINT

Towards a Testbed for

MaliciousCode Detection

R. Lo

P. KerdL=n
R. Crawford

W. Ho

J. Crossley
G. Fink

K. Levitt

R. Olsson

M. Archer

Division of Co_ter Science _%f_

Universityof California,Davis _ 4 _%_

San Francisco,CA

February 25 - March l, 1991
' _ ,,_I

. /

• This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the

understanding that ii will not be cited or r_.produced without the permission of the
author.

t

C,F THI6 DOI LIMITEDDISTRIBUTIOb' E

UCRL-JC--1057 92

DE91 007632

' Towards a Testbed for Malicious Code Detection *

, R. Lo, P. Kerchen, R. Crawford, W, Ho, J. Crossley, G. Fink, K. Levitt, R. Olsson, and M. Archer

Division of Computer Science

University of California, Davis
Davis, CA 95616

Abstract a testbed would allow one to examine a program to
ascertain if it is suspicious. In the following section.

This paper proposes an environment for detecting many we present a taxonomy of malicious code with exam-

types of malicious code, including computer viruses, pies. Following the taxonomy, we discuss many of tile
Trojan horses, and timet'logic bombs. This malicious known methodsofcopingwith maliciouscode. We Lhen
code testbed (MCT) is based upon both static and dy- summarize the progress which has been made at UC
,amic analysis tools developed at the University of Col- Davis. Finally, we propose the idea of the malicious
,fornia, Davis, which have been shown to be .effective code te.stbed, which combines this previous work into a
against certain types of malicious code. The testbed ex- more effective system.
te,ds the usefulness of these tools by using them in a
complementary fashion to detect more general cases of

malicious code. Perhaps more importantly, the MCT
allows administrators and security analysts to check a 2 Taxonomy of Malicious Code
program before installation, thereby avoiding any dam-
age a malicious program might inflict. Computer security should insure that no unauthorized

A'eywords: Detection of Malicious Code, Static Analy- actions are carried out on a computer system. Security
sis, Dynamic Analysis. is violated when someone succeeds in retrieving data

without authorization, destroying or altering data be-

1 Introduction longing to others, or locking up computer resources to
make them unavailable. Malicious programs are those

In the past five years, there has been an explosion in programs which cause such violations.

the number of TroJan horses, time bornbs, and viruses To categorize malicious activities, we may examine

that have been found on computers. Furthermore, the the following aspects of a malicious program [Table I].
case with which one may write a virus or trapdoor is W'hat are the malicious actions?
certainly cause for concern: in his Turing Award lec-

A malicious program may not only directly retrieveture, Ken Thompson demonstrated a simple trapdoor
or alter confidential information, but it may also mo,l-pr'ogram which was quite effective in subverting the se-

curity of a UNIX system. The situation is even less ify the security state of the computer system so that

encouraging in the personal computer arena: literally ata unauthorized person could access this information.
hundreds of computer viruses, time bombs, and Trojan Therefore, malicious activities refer to ali activities
horses exist for ali of the major personal computers in leading to such consequences.
use today. How do malicious programs obtain privilege?

lIowever, there are techniques for coping with these Before any damage can be done, the malicious pro-
problems. While one will never be able to distinguish a gram must obtain the required privilege from an autho-
cleverly disguised virus from legitimate code, one may rized user or from the operating system. A common

• detect a not-so-cleverly hidden one. The same holds way is to act as a Trojan horse, claiming to perform
true for ali malicious code: stopping a large percentage some useful functions, but performing others in addi-
of destructive programs is considerably better than not tion or instead. A malicious program can _. so obtailJ

stopping any. This idea forms the basis for a malicious privilege from the operating system by exploiting sys-
code testbed (MCT) capable of detecting a large ma- tem bugs, taking advantage of administratiw.' flaws, or
jority of current and future malicious programs. Sucil faking authentications.

* Sponsoredby Lawrence LivermoreNationalImboratorv

Malicious Actions Obtain Privilege l)istributi,m Chan- Triggers
llels

Cover{ channel Disclose Installed by pro- Useful iIlforrzlatioil

information 5rammers found

Worm ' ' Exhaust resources, Writer starts it, Network

Any self-replication

Trojan horse An".' User execution "' Exchange of soft- Use} execution
ware

V;rus .L Infect pr'0grams, {Jser e'xecution, self- Contact with an in- Execution
Any replication letted system

Time/Logic Bomb Any ' ' Instaliecl 'by " pro- Time/date, c'ondi-
grammers tions satisfied

Trap'door Gain privilege Holes i'mplanted't)y started by"attackers
programmers

Salami Attack Embezzlement " installed by pro2 Execution

gram mers I

Table 1. Types oi Malicious Code

3.1 Program Access Control Lists
How do malicious programs enter a system?

Sometimes a malicious program is advertised as public The first approach, program access control lists
domain software available in public bulletin boar&:;; se- (PACL's) [5], consists of associating with each file in
curity may be compromised if any user copies and exe- a system an access control list that specifies wl_at pro-
cutes such programs on his computer. Another similar grams can modify the file. This preventive approach
example is that of the Christmas Virus, which repli- has the effect of limiting damage that can be done by
cates by sending copies of itself to users and requesting many malicious programs, but it is ineffective against

tlmm to execute the message. In cases of planned at- attacks such as covert channels which only violate in-
tacks, trapdoors previously implanted in the system are formation security, not integrity.
used by the malicious programs.

_ How are the malicious actions triggered? 3.2 Static Analyzers
A malicious program may stay dormant for an indef-

From Table 2, one can see that stalzc analysis [1] caninite period. It works normally until a scheduled mo-

ment or certain conditions are satisfied. For example, a be applied to a broad class of problems. By closely ex-
malicious program which exploits covert channels may amining the binary or source code of a progran_, static

only be active when confidential information is being analysis attempts to detect the presence of suspicious
sections in that program. However, in the most generaldisplayed on a terminal; at other times, it may sleep or

perform some diversionary action, case such detection is incomputable, resulting in a need
for more selective analysis techniques. Since malicious

code in general can be more smoothly integrated with
the code of the program it is infecting, detection must

=_ 3 Coping with Malicious Code be focussed on the strategic vulnerabilities of the oper-
- ating system and underlying architecture in question.

Presently, the majority of malicious code defenses are In this way, more generalized detection is possible with-
- concerned with computer viruses. However, some are out the full cost of program verification because slicing

Inore broadly applicable to malicious code in general. [1] and other static and dynamic analysis tools will re-
Table 2 shows the applicability of some of these meth- duce the problem space to a tractable size.-

- ods, One can classify' these methods into two classes'

prcventzve and detective. While prevention is impor- 3.3 Simple Scanners & Monitors
rant, detection is preferable since it does not rely on

-_ a program being in a "clear," state. Thus, detective Simple scanners are by and large tl_e most common
approaches appear to be more generally applicable, means of malicious code detection in use today. Typ-

PAC,I, Static Ana- Simple l_un-time Encrypt.iol_ Watchdog l)ynanlic

• lyzer Scanner Monitor Processors Analyzer
.... ', 7" ,, "

Covert, none low none limited high none higl',
Channel

Worm high low none low none none low

Trojan high high low' high low none high'
Horse

Virus high high low high high higii high

Time high high low high low none high
Bomb

Trapdoor none high none none low none higli
........

Salami none low none none none none high

Table :2. Applicability of Defenses.

ically, a scanner will search a program for patterns serving a program at run-time in a controlled environ-
which match those of known malicious programs. As ment, one can determine exactly what it is trying to
a result, these programs boast a very good record in do. tlowever, like static analysis, this technique must
defending against known malicious programs but they be used "off-line" to allow the analyzer to keep track

cannot be applied in general to finding new or mutated of the program's actions. As a result, clever programs
malicious code. Another popular approach uses simple can elude the analyzer by only executing when they

monitors to observe program execution. Such monitors "know" that they are not being watched.
usually watch ali disk accesses to insure that no unau- Unlike most virus detection techniques, two types

thorized writes are made. Unfortunately, for these pro- of analysis attempt to peer inside a program to de-
grams to be effective, they must err on the conservative tect what it is doing and how. Static analysis methods
side, resulting in many false alarms which require user can determine certain properties for some types of pro-
interaction, grams. Dynamic analysis methods attempt to learn

more about a program's behavior by actually running

3.4 Encryption & Watchdog Processors it or by simulating its execution.
At UC Davis, three analysis tools have been devel-

Encryption is another method of coping with the threat oped which help in the determinatiotl of whether a pro-
of malicious code. Lapid, Ahituv, and Neumann [2] use gram has any potentially malicious code in it: VF1,
encryption to defend against Trojan horses, trapdoors, Snitch, and Dalek. VF1 uses data flow techniques to

and other problems. When correctly implemented, statically determine names of files which a program can
such a system would be quite effective against many access. Snitch statically examines a program for dupli-
types of malicious code, but the cost of such a sys- cation of operating system services. Dalek is a debugger

tem is high due to the required hardware. Similarly, which forms the basis for a dynamic analyzer.
watchdog processors [3] v,lso require additional hard-
ware. Such processors are capable of detecting invalid

reads/writes from/to memory but they would require 4 Static Analysis Tools

additional support to effectively combat viruses. Also, 4.1 Wb-'l
both of these methods are preventive in that they re-

quire a "clean" version of every program which is to VF1 is a prototype system that has been implemented
be examined. In many instances, such clean copies are to determine the viability of applying static analysis
not available, thereby limiting the usefulness of these to the detection of malicious code; it uses a technique

. approaches, called slicing. Slicing involves isolating the portions of
a program related to a particular property in which

3.5 Dynamic Analyzers one is interested. The sliced program can tllen be an-
alyzed to give information about that particular prop-

Finally, dynamic analysis offers a reasonable potential erty. VFI's target property is filename generation-in
for detection of a large class of malicious code. By ob- particular, which files can be opened and written tc. by

a given prograln. By knowing what filesal:)rograzllcaRi statements) that will be execut._.,dby Dalck as it, at,-
write to, one can determine if there is a possibility of tempts to recognize dilferellt occurretlces of tiler ev,_nt.
t.lle program being a virus. For example, if a progranl One typical form of primitiv,.- event might, be d,_/ia,:_l
t.hat does not need to write to flies (e.g., Is, the UNIX to capture certain details of a procedure's i_lvocations,

directory listing program), possesses code to open and e.g., the vai_les of its actual parameters. Another typi-
write any file, then one might be suspicious that the cal form of primitive event might be defined to capture
program contains a virus, the value of a particular variable every time it changes.

Vgl translates a program written in the C program-

mint language to a program expressed in a Lisp-like Itierarchical events can also be defined. High-level
intermediate form that is easier to analyze. This re- events are used to correlate and combine (e.g., through
sultant program can then be sliced with respect to any Dalek's IF or WHILE statements) the attributes from
given line of its body. That is, one can select a line instances of two or more primitive events that may have
of the resultant program that performs an acti,m one occurred widely separated in time. In this way, the user
is interested in (such as opening a file for writing) and can construct behavioral abstractions - models or pat-

VF1 will determine which statements of the resultant terns that characterize the activity of the application
program have bearing on that selected line. program.

4.2 Snitch One can imagine how such capabilities n_ight be ap-

plied to the detection and understanding of viruses or
Snitch is a prototype of a detector of duplication of op- other malicious code but it might seem that in real-
crating system calls. This detector makes use of the world situations, such event-based methods would be

fact that most UNIX programs contain at most one ineffective against hostile or secretive programs. In the
instance of any operating system service (e.g., open, first place., one would expect that the malicious code

write, close). Since a simple virus cannot rely ota ali would have been strippedofall(correct,)synlbolicinfor-
i_rograrns possessing the services it needs, it will carry marion. Thus the debugger would not know the names,
ali of those services with it, inserting them into every sizes, or locations of procedures or data structures.
program it infects. Tills will most likely result in a Itowever, most operating systems offer some assistance

duplication of some OS services. When Snitch is used in this regard, allowing a relatively complete behavioral
to analyze the infected program, it will report this du- trace of ali system-related activity initiated by a sus-
plication as being suspicious. The Snitch prototype is picious program to be obtained. Secondly, a malicious
specific to Sun-3's running SunOS, but many of the program may alter its own code, making ana!ysis dif-
concepts underlying the prototype can be applied to ficult. Under Dalek, however, one may define events

other architectures and operating systems, to recognize such self-modifying behavior. Therefore,
Snitch consists of two major modules. The first mod- self-modification does not present insurmountable dif-

ule, the disassembler, takes an executable program as ficulties for the debugger but it does increase its com.-
input and produces the equivalent, Motorola 68020 as- plexity.
sembly language representation as output. The second
ntodule, the analyzer, takes the output from the disas- Figure 1 illustrates how high-level events can be used
sembler and examines it for duplication of OS services, to correlate attributes captured by lower-level events to

reporting any such duplications as well as the number provide a characterization of a suspicious program's be-
of occurrences of ali system calls, havior represented in terms of whatever semantic mod-

els the user has determined are most relevant.

5 Debugger-based Dynamic
Analysis We envisage equipping Dalek with a library of pr,.:de-

fined events to capture suspicious and malicious behav-

One obvious approach to dynamic analysis is to base ior, similar in spirit to the events shown in Figure l. .
the analysis on a debugger. Over the last two years, a For example, attempting to open (or change/ir_sp,'ct.
debugger called Dalek has been developed at UC Davis the permissions on) ali files in the current directory

[.I]. Dalek offers support for the notion of user-definable might be considered suspicious. Writing the sallle block
events. Tlm user defines art event template by writing of "data" to sew._ral different executable files would ap-
i)alek language code (e.g., employing IF or WIlILE pear ewm more suspicious.

" virus-propaqated_

• ___ (" flle2", "file3"))

('filel', "strlngl') ('flle2". "Vlrusl') ('file3", "Virusll')

// 1
1 II I [i('fllel', W,S) I'flleZ', R, 6) (5, "slringl') (6,'Vlrusl'l "fllo3", W, 5) (5,'Vlrusll')

Figure 1. Interaction of Events in Dalek
intention of the user is to clean up his directory by

using such a program.

6 Towards a Testbed The other goal is to further examine a suspicious
program identified by the MCT. The purpose of this

The malicious code testbed (MCT) under development further examination is to determine the severity of the
consists of a set of tools that will assist a user in de- identified suspicious activity, locate other suspicious ac-

tecting viruses and Trojan horses and in identifying tivities, determine its triggering conditions, and pro-

programs which exploit security flaws within developed duce signatures that may be used to locate the exis-
software. It is based in part on the three tools men- tence of identical or similar malicious logic in other
tioned above: Dalek, VF1, and Snitch.

The primary goal is to provide an environment and programs.
tools to assist in the identification of malicious logic The MCT employs two kinds of analysis techniques:

in developed software. Since malicious code detection static analysis and run-lime, or dynamic, analysis.
is an incomputable problem, the tools will not be able Both techniques are necessary because they are applied

to give a yes-no answer. Instead, the software is ana- in different situations, thus complementing each other.
lyzed and its properties summarized to allow the ann- Compared with static analysis, dynamic analysis is less
lyst to understand the effect of its execution. The tools computation intensive and able to follow any execu-

' will identify suspicious code but it is up to the user to tion sequence even if the program modifies itself on the
make the final decision about whether or not the code fly. Itowever, since only some executed sequences are

is malicious. For example, our tool may indicate that tested, dynamic analysis can certify only the existence

a program would destroy ali information in the current of certain activities, i.e. violation of security policy, but
directory. Most people would consider this a malicious it; cam_ot indicate their non-existence. Therefore, both
activity. Itowever, the program is not malicious if the are needed.

Architecture to reach the sliced section. Similarly, ally otlmr itldica-

The static analysis tool works in 5 stages: processor- tions of self-modifying behavior would be groun(t._, for

dependent disassembly, intelligent decompilation, data more extensive dynarnic analysis.
flow analysis, slicing, and symbolic simplification. The Dynamic analysis can force the suspicious program to
processor-dependent disassembly stage translates an execute certain sections, suspendipg it periodically to

executable program into an intermediate form, and communicate its status to the static analyzer. During
then tile decompiler attempts to determine how vari- this phase, the user of the MCT might devise various
abies are allocated in the program. Knowing where the hypotheses explaining the goals of the suspicious pro-
variables are stored, the data flow analyzer determines gram and explaining its methods in pursuit of those
tile relationship between variables, i.e. which variables "objectives. For example, a program whictl encrypts
influence the value stored in designated variables. Slie- part of its code would be analyzed dynamically in order

, ing produces a bona..fide program that computes the to examine the decrypted code. This iterative process
value of the variables in question. Finally, the sym- could continue until the MCT user had gained a thor-

bolic simplifier tries to simplify the bona-fide program ough understanding of the goals and methods of tile
as much as possible, suspicious program.

Stripped Executable programs
An Example

Dependent a bug that allows a masquerader to login as any other

/._-"_ Disassembly user provided that he has successfully logged into thesystem once. The masquerader first logs in with a valid
Intermediate form userid and password, causing the logged_in variable to

be set to 1. Then with 'vie-
s/he performs a login a

..... f tim' userid and any password, exploiting the flaw that

Intelligent Decompiled .J_ Data Flow the logged_in variable is not reset. Since check_login

Decompilation program _1 Analysis only checks logged_in, the 'victim' userid is assumed tobe logged in the system. The essential stripped code,I
Data| written in pseudocode, is as follows:

Dependency/

Symbolic / Sliced

Si,nplification _ program Slicing rtp: USER username CK
{ set new user id

_/ Identified Properties ... no reset of the variable logged_in }
I PASS password CII

Figure 2. Architecture of the static analyzer. { if password is correct, set logged_in to 1
else print error message }

check_login:

6.1 Complementary Use of Static and { valid_login = logged_in; }
Dynamic Analysis

After some degree of intelligent decompilation, the

static analyzer attempts to slice the program to iden-

tify ali sections of the code involved in the generation This bug can be identified with static techniques in
of filenames, two ways. The first method is to check for a data tlow

Static analysis also needs to look for other discernible anomaly in _the data dependency graph. We can see ,
suspicious properties. Suppose, for example, that the that the variable logged_in is never initialized in the

- code resultant from slicing with respect to filename gen- program. The second method is to expand logged_in
eration is not reachable from the main entry point of symbolically to see how it is computed. The symbolic
tile original program. This indicates a very poorly writ- output will indicate that its value is set with a correct

ten program or a program that modified itself in order password, but not changed with an incorrect password.

7 Conclusions and Future Work References

[1] P. Kerchen, I_,. Lo, J. Crossley, (.7. Elkinbard,
\Ve have described a testbed under development which K. Levitt, and R. Olsson. "Static Analysis Virus
detects malicious code that other techniques cannot de- Detection Tools for UNIX Systems" Proc. of
tect. This testbed uses static and dynamic analysis NIST/NCSC 13rh Nat'l Computer Security Conf.,

techniques in a complementary fashion to identify sus- Washington, DC, Oct. 1-4, 1990, pp. 350-365.
picious programs before they are installed and allowed
to cause any damage. The static analysis uses slicing [2] Y. Lapid, N. Ahituv, and S. Neumann. "Ap-
to reduce a program to a size which allows verification proaches to Handling 'Trojan Horse' Threats",
techniques to discover any suspicious code. "The dy- Computers 8J Security, Vol. 5, 1986, pp. 251-256.
namic analysis uses an event-based debugger which is

capable of analyzing code which static analysis cannot. [3] A. Mahmood and E. J. McCluskey. "Concurrent Er-
We will be applying this testbed on known instances ror Detection Using Watchdog Processors-A Sur-
of malicious code, especially viruses, worms, and the vey" IEEE Transactions on Computers, Vol. 37,

No. 2, 1988, pp. 160-174.
like. Future work will include formalizing the concepts

of maliciousness and suspiciousness and improving the [4] R. Olsson, lt. Crawford, and W. Ho. "A Dataflow
static analysis techniques used to discover the meanings Approach to Event-based Debugging", to appear in
of loops in sliced programs. SOFTWARE-Practice and Ezperience.

t[5] D. Wichers, D. Cook, R. Olsson, J. Crossle), P.
Kerchen, K. Levitt, and IL Lo. "PACL's: An Ac-

Acknowledgements cess Control List Approach to Anti-Viral Security",
Proc. of NIST/NCSC 13lh Nat 'l Computer Securily

Conf., Washington, DC, Oct. 1-4, 1990, pp. 340-
We thank Doug Mansur and Bill Arbaugh for their 349.
valuable insights.

*This work was performedunder the auspicesof the U.S. Departmentof Energyby Lawrence

LivermoreNationalLaboratoryunder contractNo. W-7405-Eng-48.

