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Abstract

Crossbars are key components of communication
switches used to construct multiprocessor interconnection
networks. Multi-queue input buffers have been shown to lead
to high performance in such networks by allowing packets at an
input port to be processed in non-FIFO order. Symmetric
crossbar arbiters efficiently resolve conflicting requests in
switches with multi-queue input buffers. While these arbiters
lead to excellent performance in terms of throughput and
average latency, they do not guarantee fairness. Hence, it is
possible for an ‘‘unlucky’’ packet to be left in a switch buffer
for a long time, potentially forever, while other packets are
forwarded quickly through the switch. This paper introduces
and evaluates a technique for preventing such starvation
situations. The viability of the technique is demonstrated by
implementing it in VLSI. Simulations show that the
starvation-free arbiters may outperform arbiters that lack a
starvation prevention mechanism for certain nonuniform traffic
patterns at a cost of minor performance degradation for uniform
traffic.

I. Introduction

Multiprocessors and multicomputers achieve high
performance using interconnection networks that provide high-
bandwidth low-latency interprocessor communication [1, 3, 4].
Small n ×n crossbars are key components of the
communication switches which are the building-blocks of such
interconnection networks. Multi-queue input buffers can
maximize the performance of the communication switches by
allowing packets at an input port to be forwarded by the switch
in non-FIFO order [7, 6, 2, 9]. Some of the packets arriving at a
communication switch may be delayed due to conflicting
demands for resources, such as buffer space or output ports.
Crossbar arbiters which efficiently resolve these conflicts are
critical to realizing the potential for high performance of non-
FIFO processing of packets [10].

Figure 1-a shows the organization of a crossbar switch
with conventional FIFO buffers. The strict FIFO order of
handling packets at each input port unnecessarily reduces the
throughput of the switch [9]. When the packet at the head of
the queue is blocked, all other packets in the same buffer are
also blocked, even if they are destined to idle output ports.
Multi-queue buffers avoid this shortcoming of FIFO buffers by
partitioning each input buffer into several FIFO queues, one for
each output port. Even if one of the queues of the buffer is
blocked, it may be possible to transmit a packet from the head
of another queue, which is destined to a different output port.

(b ) DAMQ Switch(a ) FIFO Switch

N N

Figure 1: Switches with FIFO buffers and DAMQ
buffers

A particularly efficient organization of a multi-queue buffer is
to dynamically partition the buffer space between the queues so
that the storage is available where needed. Such buffers are
called dynamically-allocated multi-queue (DAMQ) buffers [9].
Figure 1-b shows the organization of a crossbar switch with
DAMQ buffers.

A key goal of the crossbar arbiter is to maximize
throughput and minimize average latency. This can be
accomplished by maximizing the number of packets that are
transmitted simultaneously, taking into account the resources
required by the packets ready for transmission. We have
previously introduced symmetric crossbar arbiters, which meet
this goal for switches with multi-queue input buffers [10].
However, these symmetric crossbar arbiters do not guarantee
fairness. Specifically, it is possible for a packet to remain in a
switch input buffer indefinitely. This paper deals with the
design of symmetric crossbar arbiters which prevent this
starvation condition. Symmetric crossbar arbiters are described
in Section II. Section III discusses possible causes of the
starvation problem and presents a technique to overcome it.
Section IV presents an evaluation of the performance impact of
this technique under uniform traffic and a particular
nonuniform traffic pattern. The VLSI implementation of a
starvation-free arbiter is described in Section V.

II. Symmetric Crossbar Arbiters

Figure 2 shows an example of arbitration for an n ×n
switch with two alternative input buffer organizations: FIFO
and DAMQ. As discussed earlier, it is possible to transmit
more packets simultaneously (connect more crosspoints) with
multi-queue buffers than with FIFO buffers. With multi-queue
buffers, there are up to n 2 requests (one from each queue) but
only one request can be granted in each row and only one in
each column. Each input port contends for multiple output
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Figure 2: Example arbitrations for switches with
FIFO and DAMQ buffers. Double circles
indicate granted requests. Single circles
indicate denied requests. The numbers in the
buffers indicate the destinations of the packets.
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Figure 3: A wave-front symmetric crossbar
arbiter. Cell (1,1) has the top priority. The
numbered diagonals indicate the progression of
the arbitration wave front. Double squares
indicate that the corresponding crosspoint has
been requested. Shaded squares indicate that
the corresponding crosspoint has been granted.

ports but needs only one for full utilization. Similarly, each
output port contends for multiple input ports and needs one for
full utilization. The arbitration task is thus symmetrical with
respect to inputs and outputs.

A 4×4 symmetric crossbar arbiter, called the wave-front
(WF) arbiter [10], is shown in Figure 3. The arbiter consists of
n 2 arbitration cells, and each cell corresponds to a crosspoint.
For each crosspoint, there is a request (R ) input and a grant
(G ) output. Each cell also has two inputs, north (N ) and west
(W ), and two outputs, south (S ) and east (E ). The N signal
indicates that there are no granted requests for the crosspoints
above in the same column. The W signal indicates that there
are no granted requests for the crosspoints to the left in the
same row. The G output is asserted if, and only if, the
crosspoint is requested and both the N and the W inputs are
asserted, All the N and W inputs for the highest priority row
and column, respectively, are set to 1.

The entire arbitration array is implemented as a
combinational circuit, and the arbitration is completed in one
clock cycle. Arbitration starts with one top priority cell. The

arbitration cells reach their final configuration in a ‘‘wave
front’’ that moves diagonally from the top left corner to the
bottom right corner of the arbiter. The top priority is given to a
different cell every cycle such that fairness is improved.
Assuming the propagation delay for a cell is T time units, the
whole arbitration completes after (2n − 1)T time units.

III. Starvation Prevention

Without a starvation prevention mechanism,
communication switches with multi-queue input buffers cannot
guarantee that a packet arriving at the switch will be forwarded
to the appropriate output within a finite period of time. This is
obvious if the top priority is fixed at a queue (arbitration cell)
which is not the one holding the packet in question. Even if the
top priority is rotated to a different cell every cycle, eventual
transmission of the packet is not guaranteed. Specifically,
although the queue containing the packet periodically gets the
top priority, it is possible that whenever that happens the output
port that corresponds to this queue is blocked (e.g., due to a full
buffer in the next switch). Hence, low priority queues may be
allowed to transmit their packets while the top priority queue
remains blocked and priority is then shifted to another queue.
Such starvation conditions may delay packets in an ‘‘unlucky’’
queue indefinitely.

Starvation prevention in synchronous networks is
relatively simple [10]. In a synchronous network, packets are
transmitted and received by the communication switches in
lock-step. The steps are called stage cycles [11]. Assuming no
contention, an entire packet is transmitted from one switch to
its neighbor in a single stage cycle. No packet is ‘‘in transit’’
across a stage cycle boundary so all the resources assigned by
the crossbar arbiter — input ports and output ports — are freed
at the end of each stage cycle. In such networks the WF arbiter
can guarantee prevention of starvation if a nonempty top
priority queue maintains its top priority until it succeeds in
sending one packet [10]. We will call a WF arbiter that uses
this scheme to rotate the top priority, a round-robin (RR)
arbiter.

Starvation prevention in asynchronous networks is more
difficult than in synchronous networks. In asynchronous
networks it takes multiple clock cycles to transmit an entire
packet from one switch to its neighbor. However, packets may
arrive at a switch during any clock cycle and may be of variable
length. Thus, different packets utilize input and output ports for
transmission for different durations. Once an entire packet is
transmitted to a neighbor switch, the crossbar row and column
it has been using become available to another packet. Hence,
the resources assigned by the crossbar arbiter are not all freed
simultaneously so that they can be assigned at will to the top
priority queue. It is possible for the top priority queue to be
starved indefinitely since the row and column that it needs are
never free at the same time.

Figure 4 demonstrates a possible scenario of starvation
in an asynchronous networks with multi-queue buffers. Queue
(3,2) is starved despite the fact that it maintains the top priority
since row 3 and column 2 are never available at the same cycle.
When row 3 is released by some other queue in the same row,
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B ,D : Row 3 released but column 2 unavailable.
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Figure 4: An example of starvation for symmetric
crossbar arbitration. The requesting queue (3,2)
keeps being rejected because row 3 and column
2 are occupied by other queues and are not both
available at the same cycle for queue (3,2).

column 2 is still being used by another queue in the same
column. Hence, the arbiter allocates row 3 to another
requesting queue in the same row before column 2 is released.
Similarly, when column 2 is released by some other queue in
the same column, row 3 is still being used by another queue in
the same row. Hence, column 2 is allocated to another
requesting queue in the same column before row 3 is released.

For an asynchronous network, a starvation-free arbiter
can be implemented by modifying the RR arbiter discussed
above so that it may reserve a resource required by the top
priority queue even if the other resource required by this queue
is not available. Specifically, in addition to stopping the
priority rotation, the top priority queue prevents the assignment
of the row and column it needs to other queues until its request
is granted. If one resource (either the row or the column)
becomes available, the arbiter does not allocate this resource to
any other requesting queues. Since the other resource is
eventually freed, the request from the top priority queue can be
granted then. This starvation-free arbitration scheme is called
the symmetric greedy reservation (SGR) arbiter. Note that
while a row is unavailable only if another queue is using it, a
column is unavailable if either another queue is using it or the
corresponding output port is currently blocked.

Since some resources are kept idle while reserved, the
reservation mechanism for an SGR arbiter may cause
performance degradation. To alleviate this problem, a
starvation counter can be incorporated in the arbiter. The
purpose of the starvation counter is to check if the requesting
top priority queue is ‘‘near starvation.’’ If the top priority
request has been rejected for a certain number of clock cycles
(starvation count threshold ), the arbiter starts to reserve the
two requested resources. Otherwise, the arbiter operates as an
RR arbiter. An SGR arbiter with a starvation count threshold
equal to k is denoted as an SGR-k arbiter.

Although both the row and the column are needed for
the top priority queue to be granted, reserving one resource is
sufficient for resolving the starvation problem. A row-greedy
reservation (RGR) arbiter is similar to an SGR arbiter except
that only the row can be reserved. A column is never reserved
and whenever it is freed it is assigned to a queue that can use it
immediately. However, a row can be reserved by a top priority
queue. After the row has been reserved, the top priority queue
obtains and keeps the row the moment it becomes available.
Eventually the column required by the top priority queue
becomes available, and then the requesting top priority queue
can obtain both the row and the column. Likewise, we can
reserve the column only. This arbiter is called a column-greedy
reservation (CGR) arbiter. Initial simulation studies indicate
that the SGR arbiter performs slightly better than the RGR
arbiter and the CGR arbiter. Hence, the rest of this paper
focuses on SGR arbiters.

IV. Performance Evaluation

We have evaluated the performance of the starvation-
free arbiters under uniform traffic and nonuniform traffic for
single switches using event-driven simulation [8]. Links and
buffers are assumed to be byte wide. Each buffer has
independent read and write ports and can store 128 bytes. A
byte can be read from the buffer, written into the buffer, or
transferred through a link in one cycle. Virtual cut-through
switching is used and the minimum delay for a packet going
through the communication switch is five cycles [5, 9]. The
simulations use packet sizes which are uniformly distributed
between 8 and 32 bytes. Senders generate packets and send
them to the switch. The interval between packet creation
follows a geometric distribution. However, a packet is sent into
the switch only if the corresponding input buffer has room for
the entire packet. Otherwise, the sender blocks.

The latency of a packet is the number of cycles that
elapse from when the first byte of a packet is generated in the
sender to when it leaves the switch, including the wait for the
blocked input port. The normalized throughput is the average
number of bytes received by each output per clock cycle.

The starvation-free arbiters are compared to two arbiters
that do not provide guaranteed packet delivery. One of these
two is the round-robin (RR) arbiter, discussed earlier. The
other is the oblivious round-robin (ORR) arbiter, which is a WF
arbiter that shifts the priority every cycle.

Under uniform traffic load, packet destinations are
uniformly distributed over all the switch outputs. Figure 5
shows how different arbiters impact the performance of a 4×4
switch under uniform traffic. The results indicate that the
reservation mechanism used by the SGR arbiters results in a
small performance degradation. A high starvation count
threshold minimizes this performance degradation.

As shown in Figure 6, under uniform traffic, the
performance degradation caused by the starvation prevention
mechanism is larger for the 2×2 switch than for the 4×4 switch.
The reason for this is that when a row or a column is reserved
for the top priority queue, the number of resources the arbiter
can allocate to the other queues is reduced. As the switch size
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Figure 5: Average latency vs. normalized
throughput of a 4×4 switch for the different
arbiters under uniform traffic.

A
v
e
r
a
g
e

L
a
t
e
n
c
y

Throughput

0

30

60

90

120

150

0 0.2 0.4 0.6 0.8 1

A

. . . . . . .. . . . . . .. . . . . .. . . . . .. . . . .. . .
. ..

..
..
..
.
.
.
..
.
.
.
. B

C

D

. . . . . . .. . . . . . .. . . . . .. . . . . ...
..

..
..
.
.
.
.
.
..
.
.
.
..
.
.
.
.
.
.E

F
A

. . . . .B
C

D
. . . . .E

F

ORR
RR

SGR-32
SGR-16
SGR-8
SGR-0

Figure 6: Average latency vs. normalized
throughput of a 2×2 switch for the different
arbiters under uniform traffic.

increases, the percentage of the reserved resources over the
total resources decreases.

One of the goals of our simulation studies was to
evaluate the performance of the starvation prevention
mechanism under nonuniform traffic patterns that could cause
some packets to be ‘‘stuck’’ in the switch for an inordinately
long time. To this end we have used the nonuniform traffic
pattern shown in Figure 7. With this traffic pattern, queue (1,2)
is ‘‘unfavored’’ because it is the only queue that receives
packets and has to compete for two resources in order to send
these packets. The queues associated with the other three
inputs only compete for output port (column) 2. The other
three queues of input 1 only compete for row 1.

To evaluate the performance of different arbiters under
nonuniform traffic, we use overall throughput, queue
throughput and queue latency as performance measures.
Overall throughput is the average normalized throughput over
all the outputs (different outputs can have different normalized
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Figure 7: A nonuniform traffic pattern for a 4×4
switch. The numbers at each crosspoint are the
probability distribution of the destinations for
packets arriving at the input port.
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Figure 8: The impact of starvation prevention on
the performance of different queue groups — an
SGR-8 arbiter is compared to an ORR arbiter
under the traffic pattern in Figure 7. Queue
throughput vs. overall throughput. X includes
queue (1,2) only; Y queues (2,2), (3,2), and
(4,2); Z queues (1,1), (1,3), and (1,4).

throughputs in the nonuniform traffic case). Queue throughput
is the average number of bytes transmitted from a defined
group of queues. Queue latency is the average latency of the
packets which are transmitted from a defined group of queues.

Using the traffic pattern from Figure 7, Figure 8 shows
the performance comparison between the ORR arbiter and the
SGR-8 arbiter in terms of queue throughput vs. overall
throughput for three groups of queues. Figure 9 shows the
performance comparison in terms of queue latency vs. overall
throughput. Group X includes queue (1,2) only. Group Y
includes queues (2,2), (3,2), and (4,2). Group Z includes
queues (1,1), (1,3), and (1,4). The results indicate that the
reservation mechanism for a starvation-free arbiter has little
impact on groups Y and Z. However, under high throughput, it
significantly reduces the queue latency of queue (1,2).
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Figure 9: The impact of starvation prevention on
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Figure 10: The performance impact of different
arbiters on queue (1,2) under the traffic pattern
in Figure 7. Queue latency vs. queue
throughput.

Figures 10, 11, and 12 show queue latency vs. queue
throughput — the latency and throughput shown are only for
the specific queue group in question. However, in all three
figures the applied load from all the senders is varied uniformly
to obtain these results.

Figure 10 shows the performance impact of different
arbiters on queue (1,2) under the traffic pattern in Figure 7. A
significant reduction in latency is achieved by changing the
priority shifting scheme from ORR to RR. However, the
reservation mechanism of the SGR arbiters leads to additional
reductions in latency. As the starvation count threshold is
decreased, the queue latency decreases since the reservation
mechanism is triggered earlier.
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Figure 11: The performance impact of different
arbiters on queues (1,1), (1,3), and (1,4) under
the traffic pattern in Figure 7. Queue latency vs.
queue throughput.
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Figure 12: The performance impact of different
arbiters on queues (2,2), (3,2), and (4,2) under
the traffic pattern in Figure 7. Queue latency vs.
queue throughput.

Figure 11 shows the performance impact of the different
arbiters on queues (1,1), (1,3), and (1,4) under the traffic
pattern in Figure 7. The ORR arbiter achieves the lowest
maximum queue throughput. The reason for this is that with
ORR queue (1,2) is more likely to be starved, causing the row 1
input buffer to fill up with packets destined for output 2. In this
case, no sender 1 packets destined to the other outputs can enter
the switch. The SGR arbiters can achieve a slightly higher
queue throughput than the RR arbiter since they are more likely
to prevent input buffer 1 from filling up with queue (1,2)
packets. This effect increases with decreasing starvation count
threshold since the reservation mechanism is triggered earlier.
On the other hand, for a given queue throughput, decreasing the
starvation count threshold increases the latency since the
reservation mechanism is more likely to be triggered, allowing
transmission from queue (1,2) and delaying packets in the other
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queues of input 1.

Figure 12 shows the performance impact of the different
arbiters on queues (2,2), (3,2), and (4,2) under the traffic
pattern in Figure 7. It might be expected that queues (2,2),
(3,2), and (4,2) would exhibit poorer performance for
starvation-free arbiters due to the reservation of column 2 for
queue (1,2). Figure 12 shows that the maximum achievable
queue throughput is the same for all the arbiters. However, as
shown in Figure 8, the maximum queue throughput for this
group (group Y) is not achieved when the overall switch
throughput is maximized. Instead, the maximum queue
throughput for group Y is achieved at a point where the
reservation mechanism has no impact on the queue throughput
for queue (1,2). As the applied load is increased beyond this
point, the group Y throughput actually decreases. This
decrease is most pronounced with the SGR-0 arbiter precisely
because this arbiter reserves column 2 for queue (1,2) most
often.

V. Implementation

In order to demonstrate the viability of the design of the
starvation-free arbiters, we have laid out a 4×4 SGR-32 arbiter
in custom VLSI. In the SGR arbiters, the capability of
starvation prevention is efficiently implemented owing to the
regular structure of the symmetric crossbar arbiters. To reserve
the row and the column, the top priority arbitration cell simply
‘‘disables’’ the wave front output signals in horizontal and
vertical directions.

Starvation Counter

XP Token Ring

Crossbar

Arbitration Cells
Array of

YP Token Ring

Figure 13: The floorplan of a 4×4 crossbar of
eight-bit wide buses with the SGR-32 arbiter.
The modules are drawn to scale.

Figure 13 shows the floorplan of the SGR-32 arbiter.
The XP and YP token rings are used to point to the top priority
cell in the cell array. The layout of the crossbar is 990 λ wide
by 380 λ tall, while the layout of the arbiter is 1050 λ wide by
930 λ tall. SPICE circuit simulations using 2 µ CMOS
technology indicate that the worst case delay for the arbiter is
23 ns.

A 4×4 RR arbiter has also been laid out in order to
measure the cost of adding the starvation prevention
mechanism. The chip area of this RR arbiter is 1010 λ wide by
870 λ tall. The worst case delay for the RR arbiter is 20 ns.
Hence, if the arbitration delay is part of the critical path of the

switch, adding the starvation prevention mechanism does have
a small performance penalty which was not taken into account
in the previous section.

VI. Summary and Conclusions

While high bandwidth and low latency are critical
requirements from interconnection networks, fairness and a
guarantee of timely delivery of every packet must also be
provided. In an asynchronous network where the
communication switches use multi-queue input buffers,
eventual packet delivery cannot be guaranteed unless special
starvation prevention mechanisms are employed. We have
presented a simple starvation prevention mechanism for the
wave-front arbiter used in such communication switches. We
have laid out in custom VLSI wave-front arbiters with and
without the starvation prevention mechanism. The overhead of
the mechanism was found to be 11% in terms of layout area
and, in the worst case, 15% in terms of arbiter circuit
performance. The mechanism presented does guarantee
eventual packet delivery. Furthermore, simulation studies have
shown that, under certain nonuniform traffic patterns, the
mechanism can improve performance for packets in what
would otherwise be a particularly slow queue at a cost of a
relatively small decrease in performance for packets in some
other queues.
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