THE SOFTWARE DEVELOPMENT SYSTEM:

STATUS AND EVOLUTION

Carl G. Davis and Charles R. Vick

Ballistic Missile Defense Advanced Technology Center

Huntsville,
Summary

The Software Development System (SDS), a research
program designed for the development of software
for Ballistic Missile Defense software, is evolving
toward increased capability in the areas of testing,
quality assurance, and system-level definition.

This paper discusses the evolution of SDS and

plans for future development.

Introduction

The problems involved in detecting and intercep-
ting a threatening Ballistic Missile, or more
specifically numerous, simultaneous reentry vehi-
cles, rank among the most challenging technolog-
ical endeavors of modern times. System complexity
is derived from the synergistic effects of ultra-
rapid response, problem/solution size and complex-
ity, and a nondeterministic problem space. An
integrated response from the most sophisticated of
modern technology in sensors, kill mechanisms, and
computer science/engineering is basic to the
realization of such systems. Many such technolog-
ical responses in data processing have been
developed over the past decade by the Ballistic
Missile Defense Advanced Technology Center
(BMDATC). Among these has been an extensive and
advanced effort in software engineering. The
software problem is typically ?1) extensive,
requiring development of up to 1 million lines of
real-time code and several times this number in
support software instructions; (2) ultraresponsive
with timelines in the milliseconds; (3) complex
mathematical and logical algorithms which detect
and determine the nature of objects in a hostile
problem space and direct kill mechanisms toward
the destruction of threatening objects in either
the atmosphere or outer space; (4) evasive of
conventional testing since the software can never
be executed in the actual problem space (nuclear
effects and massive attacks) until it is actually
called upon in an engagement, These, among other
issues, are the motivating force behind the col-
lection of software engineering technology derived
by BMDATC over the past several years known as the
Software Development System (SDS). An overview of
SDS, along with problem characteristics and the
developmental environment, has been
described.1,2,3,4 Much interest has been demon-
strated throughout the entire software community
since the initial release of SDS in 1977, and
components are being used in a variety of non-BMD
applications.5,6 Recent endeavors in evolving SDS
capabilities include new technologies in software

326
U.S. Government work not protected by U.S. copyright.

Alabama

testing and quality assurance, extensions to deal
with the system requirements interface, and inter-
pretation of the system in terms of distributed
data processing. This paper will concentrate upon
a discussion of testing and quality assurance
extensions to SDS. Extensions needed for systems
requirements interfacing and distributed data
processing are described in detail in Reference 7.

SDS Description

SDS consists of a sequence of activities desicned
to promote an efficient unfolding of a system with
an emphasis upon early definition of the computa-
tional requirements. The research framework which
provided the focus of SDS research activities is
shown in Figure 1. The previously described]
characteristics and goals of SDS are summarized in
the following.

. SDS was designed for maximum utilization
of the computer as a development tool.
This is obtained through machine analysis
of system descriptions both at the
requirements and design Tevel, and
through computer-aided approaches to
testing, verification and validation.

° SDS strives for early definition of data
processing as an integral part of an
overall system definition through an
emphasis upon decomposition and formal-
ism.

. SDS allows early definition of structure
but seeks to avoid premature design
decisions through expressive techniques
which allow expression and evaluation of
solution alternatives and through provid-
ing traceability to design decisions
when they are made.

The remainder of this paper will discuss the
specifics of new technologies applied to the
testing, verification, and validation areas of
SDS. In complying with the goals of SDS to have
demonstrated quality at each level of definition,
the following techniques are computer-aided
approaches for assisting in testing, verifying,
and validating software.

Adaptive Testin

Increased computer assistance in the testing
process has been a goal of the SDS and comes about

I MANAGEMENT OVERLAY l

l VERIFICATION AND VALIDATION

D

DATA ents g
REQUIREM PROCESS DESIGN
= gsg;::;sme < ENGINEERING K~ ENGINEERING =>
smp|ENGINEERING l

SYSTEM LDATA PROCESSING] ||
REQUIREMENTS, g asvsTEM l PROCESS

PERFORMANCE :EE?.\':::MANGE i
REQUIREMENTS pra=re EMENTS
(DPSPR)

HARDWARE

HARDWARE - SELECTION OR
REQUIREMENTS DEVELOPMENT

Figure 1. SDS Research Framework

as a natural consequence of the desire to reduce
testing costs. Due to the size and complexity of
the systems under development, most of the existing
techniques that rely on forcing a program to test
previously untried paths or segments8,9 fail in
the sense that all paths cannot be exercised.
Testing theory is in its infancy,l0 and hence we
must look for a practical approach which will
derive the maximum information about program
operation given a sequence of tests. This adap-
tive testing approach seeks to generate test case
criteria based upon performance and automated
techniques for test case generation, data collec-
tion and reduction, employs test case perturbation.

In the performance-critical world of weapons
systems, the use of performance parameters to
evaluate system effectiveness arises from the
desire to partition the input space into regions
of acceptable and unacceptable performance. If
this can be achieved with a reasonable degree of
accuracy, then much information could be inferred
from such a definition. Questions about perfor-
mance against expanded or new threats could much
more readily be answered. Information about the
robustness of a system and the achievement of
design goals could also be obtained more readily.
This approach could also produce the information
which in effect allows an analysis for sensitivity
to stress, which has been almost impossible to
obtain with large systems.

Computer-aided test case generaion can in itself
significantly reduce testing costs. Back-of-the-
envelope studies indicate at least 50% savings in
testing costs through automation, which translates
into a 25% reduction in system development costs.
This comes about through efficiencies in test case
generation and data reduction and analyses tasks.
To be effective, however, this must be an approach
that will cause testing to proceed toward a pre-
defined 1imit (boundary) in an efficient manner.
This necessitates information about the system
being embedded in an algorithm designed to search
a complex performance surface. The combination of
an intelligent perturber of test cases and their
automated generation also has potential applica-
tion as a system design aid. If the system

327

parameters rather than the threat are varied, the
potential exists to allow the system to be "tuned"
against given input conditions. System parameters
contributing to poor performance then become
readily identifiable and candidates for redesign.

There are several components and activities which
must logically exist in an adaptive tester (Fig-
ure 2). The test cycle would begin by inputting,
with the aid of interactive graphics, a normal
threat case well within the anticipated performance
boundary of the system._ _Using a flexible interac-
tive data base builder,!! the required formats to
allow computer-aided test case generation are
built. Rapid modification is achieved through
defining the test case as a hierarchy of files.

ORIECTIVE: ACCURATEL uwos ¥ REDUGE COsT
ey

TINE FOR TESTING THROUGH AUTOMATED AND ADAFTIVE ANALYSIS

e INTERACTIVE <
TesTeeD s

ACENARIO scenamio
DATA

aramcAL
ITERACTIVE
Aty

SCEMARID
CHANGES

Lo
i romasmion rnromuance)
oo Pt
e

PERFORMANCE
EVALUATOR

BATIONALE:

@ THE MAGNITUDE OF EVEN AN OPTIMAL SET OF TESY TEsTING”

PEEN MADE
THE CAUSES OF SOFTWARE PERFORMANCE LTS

Figure 2. Adaptive Testing

The interactive testbed consists of the process
under test and the environment to which it must
interact. A properly instrumented process is
executed and performance data are recorded for
subsequent analysis.

The third activity, performance evaluation, strives
to develop an indication of the stress of the
system based upon the performance data. Statis-
tical techniques such as factor analysis are used
to determine parameters upon which stress para-
meters are based.

The Parameter Perturbation Algorithm (PPA) provides
an intelligent perturbation of the input parameters
based upon stress parameters. The PPA is designed
to take advantage of previous tests and defined
heuristics to decide upon the parameters to per-
turb. The key to successful search by the PPA is
the ability to span the input space with a complete
set of heuristics. The loop is now closed through
the generation of a new test case, and testing is
then repeated in an automated and closed-Toop
manner until a point on the boundary is reached.

The feasibility of this adaptive testing approach
has been demonstrated on a system level test
object (Figure 3). This test object has both
random and deterministic parameters and is a
system-level model of a midcourse and terminal BMD
system. Closed-loop testing has been achieved for
this test object. Based upon the success and
experiences gained in testing, the extension to

more detailed models is in progress. Several key
issues have been identified which must be resolved
before an effective testing tool for large systems
is available. The issues and approaches for their
resolution are discussed below.

TRACK AND DISCRIMINAT) =

PROCESSING INTERCEPTOR
/ ASSIGNMENT

TRACK AND DATA /

COLLECTION DETERMINE ACHIEVABLE

DISCRIMINANT
THREAT

// ACQUISTION
/

PLATFORM

SENSORS
DATA PROCESSOR
INTERCEPTORS

THREAT CLOUD
1RV TYPE
2DECOY TYPES

VARIABLE COMPOSI TION
THROW WEIGHT CONTRAINT

® 7 AVAILABLE DISCRIMINANTS:

L4 E TOE
NHPS) x (T)/(NO. OF THREAT OBJECTS)

Figure 3. System Level Model

The adaptive tester must be able to efficiently
Tocate a point on the boundary in the face of the
randomness in the system under test. Some method
must be derived to allow an accurate determination
of the "position" with respect to the boundary in
a single or small number of runs. One approach
for keeping the number of tests within reasonable
bounds involves using an expected value analog of
the random process that will give accurate esti-
mates of the position within threat space. This
expected value analog would allow an estimate of
location to be used by the PPA in searching for
the boundary. Once the expected value analog
indicates the boundary has been reached, the
stochastic model can then be run a sufficient
number of times to achieve the desired confidence
that the boundary has been located. For a simple
system, the feasibility of construction of an
expected value analog which gives good agreement
between deterministic and stochastic models (Fig-
ure 4) has been demonstrated. The difficulties of
doing this for a more complex model are currently
being investigated. It is not unreasonable to
expect that during a hierarchical software develop-
ment functional models of the system would be
developed, but the requirement that these models
reflect to a certain accuracy the stochastic
nature of the system may prove too difficult to
achieve.

The adaptive tester must be able to accurately
characterize the performance boundary. After a
sequence of boundary points is obtained, their
connectivity is still in question. This is due to
the high dimensionality and complexity of the
performance surface being defined. Characteriza-
tion of the performance boundary has been achieved
as a polynominal in threat parameters where the
coefficients are determined by regression analysis
on the boundary points; however, automated approaches
investigated so far tend to treat the system as
simply connected, and for this reason the cognitive
capabilities of the human mind prove invaluable in
perceiving the boundary shape.

328

08
THREAT 1
07 |
e SYSTEM MODEL
—— ANALOG
08 r—
Zos |-
<
I3
&
E 04
a THREAT 2
o
w
S o3
.3 P
g
x
w
02 P
THREAT 3
Mr \ \
——
° 1 1 1 L 1 1)
0 1000 3000 5000 7000

Figure 4, Model Comparison

The adaptive tester must be able to search a highly
irregular, discontinuous and highly granular surface.
The PPA algorithm must be able to efficiently
determine the global maximum of the surface and
reach the boundary efficiently. The problem is one
of classical optimization theory. Five desirable
characteristics of the algorithm have been
jdentified.12 The algorithm must be

[} global--able to find global rather than
Tocal extrema

) immune--not sensitive to discontinuities
or extreme granularity

° successful--reaches boundary a high
percentage of the time

° efficient--reaches the boundary with only
a small number of tests

() proximate--a boundary point is reached
which is in some neighborhood of the
boundary point which is nearest to the
initial test point.

The approach taken in the adaptive tester is to
combine the highly global and immune character-
istics of random search with heuristics to provide
an efficient, successful, and proximate approach.
The generation of heuristics for this approach
requires much insight into the system operation.
The heuristics range from the known relationships
that exist (e.g., increasing the number of threaten-
ing objects will generally increase the expected
number of penetrators) to more detailed relations
between software parameters at a lower level. The
issues are threefold: the time and costs involved
in generation of the heuristics, the relationships
between heuristics at various levels of detail in
system testing, and the transferability of heuris-
tics between systems. Another related issue is

the ability to transfer the knowledge of the
system embodied in the heuristics to a designer in
terms that will facilitate his understanding of
the system. Experiences so far have indicated

that a relatively complete set of heuristics is- -

requir?g to achieve efficient algorithm perfor-
mance.

The adaptive tester must also deal with the redun-
dant performance data that is obtained at almost
every level of detail. With the large amount of
data which is recorded, techniques which recognize
significant dependencies among parameters and
eliminate redundant parameters before further
processing are desirable. It is highly desirable
that these techniques be automated and produce
those statistically significant parameters which
form the basis for the generation of heuristics
for a PPA. This has proved to be most difficult
to perform in an on-line basis.

Finally, implementation issues also clearly
interdict themselves between the successful
achievement of an adaptive testing capability.
Rapid and efficient communication and modification
of the testing system is essential. The user must
be able to enter directives required by the tester
such as scenario inputs, performance evaluation
rules and adaptive algorithm heuristics (Figure 5).
The required data which might be of interest

for post-processing must also be specified. In
addition, there must be a flexible method of
threat definition and an input system which can
handle system simulations of varying complexity.

A large and flexible working data base from which
the PPA can extract information and determine the
next tests cases must be available. The new cases
must also be checked against many constraints.

The theory of the testing of large software
systems is such that there are no practical
guidelines which guide the testing process. The
adaptive tester is a computer-aided approach
designed to provide through heuristics a way of
obtaining highly desirable information from the
testing process. While issues still remain for
resolution, the feasibility of such an approach
has been demonstrated and, if successful, will
have significant impact in lowering testing costs
of future system development.

DEFINE
INPUT
PARAMETERS

DEFINE
TEST OBJECT
PARAMETERS

OPERATING
PARAMETERS

PERFOAM
TeST NUMBER OF AV:

NUMBER OF DECOYS

[rad noTA 7

CONTOURS CONTOUR

oRAW CHANGE
/ CONTOUR AXES
A
SELECT AN OPTION VIA TRACKSALL

Figure 5. Interactive Graphic Display

The theory of the testing of large software
systems is such that there are no practical
guidelines which guide the testing process. The
adaptive tester is a computer-aided approach
designed to provide through heuristics a way of
obtaining highly desirable information from the
testing process. While issues still remain for
resolution, the feasibility of such an approach
has been demonstrated and, if successful, will
have significant impact in lowering testing costs
of future system development.

Software Quality Laboratory

In addition to testing as a means of determining
confidence in a program's performance, the appli-
cation of formal proof techniques provides another
equally valuable approach. Much useful informa-
tion can be derived about the correctness of a
program through the addition of redundant informa-
tion in the form of executable assertions.14 The
goal of the software quality laboratory is to
effectively apply the.techniques of formal verifi-
cation to large real-time programs.. Even though
formal proof techniques for large programs are not
practical, incomplete attempts at program proofs
provide much enhanced error detection capability.
For example, many assertions about a program occur
as a natural consequence of the design and can be
effectively used in static analysis for common
semantic errors.

The software quality laboratory contains tools
which assist in detecting common semantic errors,
allow instrumentation for testing, and support
formal verification of computer programs.

The facility has been designed to analyze both
FORTRAN and PASCAL along with two dialects--IFTRAN
and verifiable PASCAL. Verification condition
generators have been implemented for both lan-
guages which handle logical, multidimensional
arrays. The simplifier contains many standard
simplification rules that can be invoked to cause
automatic simplification of verification condi-
tions. Rules not in the simplifier can be applied
to individual verification conditions. These can
be text replacement or pattern matching rules
which can be saved as axioms to be reused. The
software quality laboratory executes on the CDC
6400 and CDC 7600 machines and is written in a
structured dialect of FORTRAN (IFTRAN).

The approach taken for formal verification using
the software quality laboratory is to divide the
program into small segments each of which is
verified independent of all other parts. Each
verification condition is tightly coupled to a
verification path through a code segment. This
approach is designed to aid the verification of
large programs.

The software quality 1aboratory15 is most
effectively utilized when most of the common
syntax errors have been removed by a compiler
(Figure 6). Initial checks would be static
analyses for common semantic errors. These
semantic errors differ from those detected by a
language processor in that sequences of statements
must be examined rather than a single statement.

| conRect conRECT CORRECT ComRECT

SYNVAX ERRORS ' SEMANTIC ERRORS

EXECUTION ERRDRS $TRUCTURAL ERRORS)
VERIFICATION
comDITION

SYNTAX sTATIC EXECUTION
ANALYSIS AnaLYsIS TEsT CRHERATOR
ASSERTED INDENTED GRAPH CHECKING TEST RESULTS ANNOTATED
8MD SOURCE FPROGRAM

- usTING

usTING
0IAGNOSTICS

“coRRECT”
M0 SOURCE
CALL CHECKING EXECUTION v
ERRORS ve's
UNITS CONSISTENCY N

COVERAGE
REPORT

MODE CHECKING EXECUTION OF
. EXPRESSION:
ASSERTION

ASSERTED/ACTUAL USE
. EXCEPTIONS

SMPLIFIED
SET/USE CHECKING ve's

® DETECTION OF SEMANTIC ERRORS.
® ASSISTANCE IN TESTING

® SYMBOLIC EXECUTION

@ AID IN FORMAL VERIFICATION

Figure 6. Software Quality Lab Steps
in Validating a Program

These errors are reported in terms of groups of
statements that could cause the error rather than
a single statement. Without the addition of
redundant information, the lab supports static
analysis for the following types of errors:

. Set/use errors--variables used prior to
setting or initialized and not used.
Two types are detected--the use of a
variable before it is set and the
variable set but not used.

Mode errors--mistakes with the use of
real and integer variables.

External reference errors--misuse of
external routines with incorrect number
of parameters.

Infinite loop errors--control variable
not increment on one path.

Unreachable code errors--structurally
unreachable code.

Units consistency checking is provided statically
with the addition of assertions about the units of
variables. Analyzers compare the right and left
hand sides of assignment statements and relational
expressions and will flag inconsistencies in units
if unlike units are added, subtracted, or compared.
Units can be checked across more than one module
if each module contains a description of the units
for each physical variable it refers to in the
form of an assertion.

Another static check is that of asserted versus
actual use. Through the use of data flow analysis
the actual versus asserted use is checked. This
type of checking can be used to detect incorrect
usage of variables between modules through the use
of an INPUT and OUTPUT assertion of the form INPUT
(variable 1ist) and OUTPUT (variable list). An
INPUT assertion states that the named variable
meets the conditions that it is; it is a global
variable, which will have a value when the routine
is called, will not be changed in the routine
(unless it is also declared as an OUTPUT variable),
and is the only global variable used in the routine.

330

An OUTPUT assertion similarly is used to assert
the listed variables are global, will be assigned
in the routine, will not be used to supply a
variable to the routine (unless also declared as
an input variable), and are the only variables set
in the routine. This assertion of variables which
are set prior to entry to a module (INPUT) and
those assigned or read from auxiliary storage
(OUTPUT) allows a restriction upon the global
variables which may be used or set by a particular
module and can also be used during execution to
catch errors such as data out of expected range.

Upon completion of the static analysis phase the
software quality laboratory supports execution
through providing output to show path coverage,
false assertions, and values of the input variables
upon module entry as well as values of the output
variable upon module exit.

fault detection can be introduced to a program
under analysis by the Software Quality Laboratory
through the inclusion of assertions with a FAIL
clause. While similar results could be obtained
with a sequence of IF tests, the assertions
provide an explicit statement of conditions under
which the code that follows is expected to operate
and there is also a separation of error handling
from the rest of the code.

Tools to assist in formal verification are also

an integral part of the software quality lab.
These tools include a verification condition
generator and a simplifier, which may be used
interactively to verify single modules. The
verification condition generator uses assertions
which have been inserted into the source code to
generate conditions of the form A implies B, where
A is the initial assertion on a program path
conjuncted with predicates along the path and B is
the assertion at the end of the path. The required
substitutions are made by symbolically executing
the final assertions and any predicates backwards
to the initial assertion. Using the INITIAL
assertion to state conditions which are true when
the module is entered, the FINAL assertion to
define conditions which are true upon exit from
the module and the ASSERT statement to express
loop invariants or any condition that is true at
that point, verification conditions are then
generated for each verification path in the
program. Each logically possible path between
program entry, loop entry, loop exit and program
exit corresponds to a verification path. Each
verification path must begin and end with an
INITIAL, FINAL or ASSERT statement. The advantages
for associating verification conditions with
verification path are described in Reference 5.

The verification condition simplifier uses a set
of arithmetic, logical and relational simplifica-
tions in an attempt to reduce a verification
condition to true. The user is presented the
results of the attempt to allow input to supply
additional simplification rules which may be
unique to the problem under analysis. Once a new
rule has been applied, the modified result is sent
to the simplifier and a new result presented. To
reduce the effort of repeatedly entering rules, a

rule is assigned an axiom number and saved in a
library of rules.

Interactive simplification using the software
quality laboratory is designed to aid in the
development of assertions and to improve the
performance of the simplifier. The user interacts
with the software quality lab through requesting
verification conditions, providing trial asser-
tions, specifying additional simplification rules,
and requesting the symbolic execution of expres-
sions. The software quality lab responds by
generating verification conditions from assertions
interactively entered or in the code, simplifies
the verification conditions, symbolically executes
expressions over specified program paths, validates
simplification rules, and applies them to verifica-
tion conditions.

It is felt that upon completion, the Adaptive
Tester and the software quality laboratory can
provide cost effective analysis of large real time
system. These tools, in the formative stage,
hopefully will provide the framework from which
more extended capabilities can be developed. The
integration of testing into the software develop-
ment cycle will also provide a big step toward
providing a significantly increased capability to
produce demonstratably reliable software systems.

Conclusions

Experience and interest in the SDS has been high
and several components of SDS are being used with
success in a wide variety of applications. These
experiences are enhancing our understanding of the
potential use of the computer as an aid to soft-
ware development. Also the adaptive testing and
quality assurance programs, for example, show much
potential for improving the efficiency of the
testing process through computer aids.

The problems in developing software for large
systems have been compounded by the increasing
hardware capability, and this complexity must be
addressed in any software approach. The issues
provide the development cycle but have their root
in the requirements area. This definition of the
requirements for a processing component of a
system in such a way as to allow design freedom
yet achieve preciseness remains a yet to be
achieved goal.

Acknowledgements

Specifics concerning the Adaptive Tester and
software quality laboratory are taken from docu-
mentation provided by General Research Corporation,
“Santa Barbara, California, who is developing them
under support of the BMD Advanced Technology
Center, Huntsville, Alabama.

References

C. G. Davis and C. R. Vick, "The Software
Development System," IEEE Transactions on
Software Engineering, Vol. SE-3, No. 1,
January 1977, pp. 69-84,

1.

331

1.

13.

14.

15,

C. G. Davis, "Requirements Problems in Large
Real Time Systems Development, INFOTECH
State-of-the-Art Report, Structured Analysis
& Design, 1978.

€. R. Vick, "First Generation Software
Engineering System," Proceedings ACM National
Conference, 1977. w0

C. G. Davis, "Testing Large Scale Real Time
Systems," INFOTECH State-of-the-Art Report,
to be published.

M. W. Alford, "The Software Requirements
Engineering Methodology (SREM) at the Age of
Two," Proceedings COMPSAC 78, November 1978.

R. C. Slegel, "Applying SREM to the Verifica-
tion and Validation of an Existing Software
Requirements Specification," Presented COMPSAC
78, November 1978.

C. R. Vick, Research and Development in
Computer Technology, "How Do We Follow the
Last Act?" Keynote Speech Preceding 1978
International Conference on Parallel Pro-
cessing, September 1978.

E. F. Miller, Jr., "Tutorial Program Testing
Technique," IEEE Catalog No. EH0130-5, 1977.

C. V. Ramamoorthy, R. C. Cheung, and K. H.
Kim, "Reliability Integrity and Large Compu-
ter Programs," Electronic Research Laboratory,
University of California, Berkeley, Memorandum
No. ERL-M430, March 1974.

J. B. Goodenough and S. L. Gerhart, "Toward
a Theory of Test Data Selection," IEEE
Transactions Software Engineering, Vol. I,
No. 2, June 1975,

R. G. Uttley, et al., "Adaptive V&V Midyear
Report," General Research Corporation, Santa
Barbara, California, CR-6-767, July 1977.

D. W. Cooper and R. G. Uttley, "Adaptive V&V
Research Plan [Updated June 1977] General
Research Corporation, Santa Barbara,
California, CR-4-767, August 1977.

R. L. Stone, E. R. Buley, R. G. Uttley,
"Research Progress Evaluation Report," Final
Report, Volume 2, General Research Corporation,
Santa Barbara, California, CR-8-9-767,

February 1978.

S. H. Saib, J. P. Benson, and R. A. Melton,
"Executable Assertions--An Aid to Reliable
Software," Proceedings of the 11th Annual
Asilomar Conference on Circuits, Systems, and
Computers, Pacific Grove, California,
November 1977

S. H. Saib, "A Methodology for Program
Verification,"Proceedings of the Summer
Computer Simulation Conference, Chicago, July
1977.

