
THE SOFTWARE DEVELOPMENT SYSTEM: STATUS AND EVOLUTION

Carl G. Davis and Charles R. Vick

B a l l i s t i c M i s s i l e Defense Advanced Technology Center
Hu n t sv i 1 1 e, A1 a bama

Summary

The Software Development System (SDS), a research
program designed f o r the development o f sof tware
f o r B a l l i s t i c M i s s i l e Defense software, i s evo lv ing
toward increased c a p a b i l i t y i n the areas o f tes t ing ,
q u a l i t y assurance, and system-level d e f i n i t i o n .
Th is paper discusses the evo lu t i on o f SDS and
plans f o r f u t u r e development.

I n t roduc t i on

The problems invo lved i n de tec t ing and intercep-
t i n g a th rea ten ing B a l l i s t i c M iss i l e , o r more
s p e c i f i c a l l y numerous, simultaneous reen t ry vehi-
c les , rank among the most cha l leng ing technolog-
i c a l endeavors o f modern times. System complexi ty
i s der ived from the synerg i s t i c e f f e c t s o f u l t r a -
r a p i d response, problem/solut ion s i ze and complex-
!ty, and a nondetermin is t i c problem space.
i n teg ra ted response from the most soph is t i ca ted o f
modern technology i n sensors, k i l l mechanisms, and
computer science/engineering i s basic t o the
r e a l i z a t i o n o f such systems. Many such technolog-
i c a l responses i n data processing have been
developed over the past decade by the B a l l i s t i c
M i s s i l e Defense Advanced Technology Center
(BMDATC).
advanced e f f o r t i n sof tware en ineer ing.
sof tware problem i s t y p i c a l l y 91) extensive,
r e q u i r i n g development o f up t o 1 m i l l i o n l i n e s o f
rea l - t ime code and several t imes t h i s number i n
support sof tware i ns t ruc t i ons ; (2) u l t ra respons ive
w i t h t ime l i nes i n the mi l l i seconds; (3) complex
mathematical and l o g i c a l a lgor i thms which de tec t
and determine the nature o f ob jec ts i n a h o s t i l e
problem space and d i r e c t k i l l mechanisms toward
the des t ruc t i on o f th rea ten ing ob jec ts i n e i t h e r
the atmosphere o r ou ter space; (4) evasive o f
conventional t e s t i n g s ince the software can never
be executed i n the ac tua l problem space (nuc lear
e f f e c t s and massive a t tacks) u n t i l i t i s a c t u a l l y
c a l l e d upon i n an engagement. These, among o the r
issues, a re the mot iva t ing fo rce behind the co l -
l e c t i o n o f sof tware engineer ing technology der ived
by BMDATC over the past several ears known as the
Software Development System (SDSf. An overview o f
SDS, along w i t h problem charac te r i s t i cs and the
developmental environment, has been
described.l,2,3,4 Much i n t e r e s t has been demon-
s t ra ted throughout the e n t i r e sof tware community
s ince the i n i t i a l re lease o f SDS i n 1977, and
components are being used i n a v a r i e t y o f non-BMD
applications.5,6 Recent endeavors i n evo lv ing SDS
c a p a b i l i t i e s inc lude new technologies i n sof tware

An

Among these has been an extensive and
The

t e s t i n g and q u a l i t y assurance, extensions t o deal
w i t h the system requirements in te r face , and i r r te r -
p r e t a t i o n o f the system i n terms o f d i s t r i b u t e d
data processing. This paper w i l l concentrate upon
a discussion o f t e s t i n g and q u a l i t y assurance
extensions t o SDS.
requirements i n t e r f a c i n g and d i s t r i b u t e d data
processing are described i n d e t a i l i n Referenc.e 7.

Extensions needed f o r systems

SDS Descr ip t ion

SDS cons is ts o f a sequence o f a c t i v i t i e s designed
t o promote an e f f i c i e n t un fo ld ing o f a system w i t h
an emphasis upon e a r l y d e f i n i t i o n o f the computa-
t i o n a l requirements. The research framework which
provided the focus o f SDS research a c t i v i t i e s i s
shown i n Figure 1. The prev ious ly described1
cha rac te r i s t i cs and goals o f SDS a re summarized i n
the fo l low ing .

SDS was designed f o r maximum u t i l i z a t i o n
o f t he computer as a development too l .
Th is i s obtained through machine ana lys is
o f system descr ip t ions both a t the
requirements and design l eve l , and
through computer-a ided approaches t o
tes t i ng , v e r i f i c a t i o n and Val i da t i on .

SDS s t r i v e s f o r e a r l y d e f i n i t i o n o f data
processing as an i n t e g r a l p a r t o f an
o v e r a l l system d e f i n i t i o n through an
emphasis upon decomposition and formal-
ism.

SDS a l lows e a r l y d e f i n i t i o n o f s t ruc tu re
bu t seeks t o avoid premature design
decis ions through expressive techniques
which a l low expression and eva lua t ion o f
s o l u t i o n a1 te rna t i ves and through p r w i d -
i n g t r a c e a b i l i t y t o design d e d s i o n s
when they are made.

0

0

0

The remainder o f t h i s paper w i l l d iscuss the
spec i f i cs o f new technologies app l ied t o the
tes t i ng , v e r i f i c a t i o n , and v a l i d a t i o n areas o f
SDS.
demonstrated q u a l i t y a t each l e v e l o f d e f i n i t i o n ,
t he f o l l o w i n g techniques are computer-aided
approaches f o r a s s i s t i n g i n tes t ing , v e r i f y i n g ,
and v a l i d a t i n g software.

I n complying w i t h the goals o f SDS t o ha'ie

Adaptive T e s t i n g

Increased computer assistance i n the t e s t i n g
process has been a goal o f t he SDS and comes about

326

US. Government work not protected by US. copyright.

I MANAGEMENT OVERLAY 1
VERIFICATION AND VALIDATION

- +
DATA
PROCESSING REOUIREMENTS PROCESS DESIGN

ENGINEERING
0 SYSTEM ENGINEERING W ENGINEERING

BMD

PROCESS
PERFORMANCE

(PPU)

DATA PROCESSING

PERFORMANCE
REQUIREMENTS - REOUIREMENTS

(DPSPR)

L 5 4 - p DEVELOPMENT -
Figure 1. SDS Research Framework

as a na tura l consequence o f the des i re t o reduce
t e s t i n g costs. Due t o the s i ze and complexi ty of
t he systems under development, most o f the e x i s t i n g
techniques t h a t r e l y on fo rc ing a program t o t e s t
p rev ious ly u n t r i e d paths o r segments8~9 f a i l i n
the sense t h a t a l l paths cannot be exercised.
Test ing theory i s i n I t s infancy,lO and hence we
must look f o r a p r a c t i c a l approach which w i l l
de r i ve the maximum in fo rmat ion about program
opera t ion given a sequence o f tes ts . This adap-
t i v e t e s t i n g approach seeks t o generate t e s t case
c r i t e r i a based upon performance and automated
techniques f o r t e s t case generation, data co l l ec -
t i o n and reduct ion, employs t e s t case per tu rba t ion .

I n the per fo rmance-cr i t i ca l wor ld o f weapons
systems, the use o f performance parameters t o
evaluate system e f fec t i veness a r i ses from the
des i re t o p a r t i t i o n the i npu t space i n t o regions
o f acceptable and unacceptable performance.
t h i s can be achieved w i t h a reasonable degree o f
accuracy, then much in fo rmat ion could be i n f e r r e d
from such a d e f i n i t i o n . Quest ions about pe r fo r -
mance aga ins t expanded o r new th rea ts could much
more r e a d i l y be answered. In fo rmat ion about the
robustness o f a system and the achievement o f
design goals cou ld a lso be obtained more read i l y .
Th is approach cou ld a lso produce the in fo rmat ion
which i n e f f e c t a l lows an ana lys is f o r s e n s i t i v i t y
t o stress, which has been almost impossible t o
o b t a i n w i t h l a rge systems.

Computer-aided t e s t case generaion can i n i t s e l f
s i g n i f i c a n t l y reduce t e s t i n g costs. Back-of-the-
envelope studies i n d i c a t e a t l e a s t 50% savings i n
t e s t i n g costs through automation, which t rans la tes
i n t o a 25% reduc t ion i n system development costs.
Th is comes about through e f f i c i e n c i e s i n t e s t case
generat ion and data reduc t ion and analyses tasks.
To be e f fec t i ve , however, t h i s must be an approach
t h a t w i l l cause t e s t i n g t o proceed toward a pre-
de f ined l i m i t (boundary) i n an e f f i c i e n t manner.
Th is necessi tates in fo rmat ion about the system
being embedded i n an a lgor i thm designed t o search
a complex performance surface.
an i n t e l l i g e n t per tu rber o f t e s t cases and t h e i r
automated generat ion a lso has p o t e n t i a l app l i ca-
t i o n as a system design aid.

I f

The combination o f

I f the system

parameters r a t h e r than the t h r e a t a re varie!, t h e
p o t e n t i a l e x i s t s t o a l l ow the system t o be tuned"
aga ins t g iven i n p u t condi t ions. System parameters
c o n t r i b u t i n g t o poor performance then become
r e a d i l y i d e n t i f i a b l e and candidates f o r redesign.

There are several components and a c t i v i t i e s which
must l o g i c a l l y e x i s t i n an adapt ive t e s t e r (F ig -
u re 2). The t e s t cyc le would begin by i npu t t i ng ,
w i t h the a i d o f i n t e r a c t i v e graphics, a normal
t h r e a t case we1 1 w i t h i n the an t i c ipa ted performance
boundary o f the system.
t i v e data base bui lder, ' l t h e requ i red formats t o
a l l ow computer-aided t e s t case generat ion are
b u i l t .
de f in ing the t e s t case as a h ie rarchy o f f i l e s .

Using a f l e x i b l e i n te rac -

Rapid mod i f i ca t i on i s achieved through

unU.m< . rnl * I o * I M T Or w ~ " u o . T * u , s I ~ o I .urcU€* -M I X W I Y I I I M TS"Hm U A C m I V I e L ~ . W O I O u I Z I O 1-E- WAVE I I N M A M TO MW*m S X I I E - DM CL-0 1- U0 WI1IIIIxI
IYECIYY.w'X)ImA"Im~1IM*I*Cr Lou"

Figure 2. Adaptive Test ing

The i n t e r a c t i v e testbed cons is ts o f the process
under t e s t and the environment t o which i t must
i n t e r a c t .
executed and performance data a re recorded f o r
subsequent analysis.

The t h i r d a c t i v i t y , performance evaluat ion, s t r i v e s
t o develop an i n d i c a t i o n o f the s t ress of the
system based upon the performance data.
t i c a l techniques such as f a c t o r ana lys is a re used
t o determine parameters upon which s t ress para-
meters a re based.

The Parameter Per tu rba t ion Algor i thm (PPA) provides
an i n t e l l i g e n t pe r tu rba t i on o f the i npu t parameters
based upon s t ress parameters. The PPA i s designed
t o take advantage o f previous t e s t s and de f ined
h e u r i s t i c s t o decide upon the parameters t o per-
tu rb . The key t o successful search by the PPA i s
t he a b i l i t y t o span the i npu t space w i t h a complete
s e t o f heu r i s t i cs .
t he generat ion o f a new t e s t case, and t e s t i n g i s
then repeated i n an automated and closed-loop
manner u n t i l a p o i n t on the boundary i s reached.

The f e a s i b i l i t y o f t h i s adapt ive t e s t i n g approach
has been demonstrated on a system l e v e l t e s t
o b j e c t (F igure 3).
random and de te rm in i s t i c parameters and i s a
system-level model o f a midcourse and terminal BMD
system. Closed-loop t e s t i n g has been achieved f o r
t h i s t e s t ob jec t .
experiences gained i n tes t i ng , the extension t o

A p roper l y instrumented process i s

S t a t i s -

The loop i s now closed through

Th is t e s t ob jec t has both

Based upon the success and

327

more detailed models i s i n progress. Several key
issues have been ident i f ied which must be resolved
before an effect ive tes t ing tool for large systems
i s available. The issues and approaches for t h e i r
resolution are discussed below.

I R V N P f
2 DECOV TYPfS
VARIABLE M Y O I l T l O N
TIIROll WElQUT CONTRAINT

WATFORM

SfNSORS
DATA PROCESSOR
INTERCEPTORS

0 IAVAILABLE DIKRIMINIWTI.

ACHIEVAOLE DISCRIMINANTDETERMINED BY
WlPSl x ITNINO. OF THREAT (W E C I I I

Figure 3. System Level Model

The adaptive t e s t e r must be able to e f f ic ien t ly
locate a p o i n t on the boundary i n the face of the
randomness i n the system under t e s t . Some method
must be derived to allow an accurate determination
of the "position" w i t h respect to the boundary i n
a s ingle o r small number of runs.
f o r keeping the number of t e s t s w i t h i n reasonable
bounds involves u s i n g an expected value analog of
the random process tha t will give accurate e s t i -
mates of the position w i t h i n th rea t space. T h i s
expected value analog would allow an estimate of
location to be used by the PPA i n searching for
the boundary. Once the expected value analog
indicates the boundary has been reached, the
s tochast ic model can then be r u n a suf f ic ien t
number of times to achieve the desired confidence
t h a t the boundary has been located. For a simple
system, the f e a s i b i l i t y of construction of an
expected value analog which gives good agreement
between deterministic and stochastic models (F i g -
ure 4) has been demonstrated.
doing this for a more complex model are currently
being investigated.
expect tha t d u r i n g a hierarchical software develop-
ment functional models of the system would be
developed, b u t the requirement tha t these models
r e f l e c t to a cer ta in accuracy the s tochast ic
nature of the system may prove too d i f f i c u l t to
achieve.

One approach

The d i f f i c u l t i e s of

I t is not unreasonable to

The adaptive t e s t e r must be able t o accurately
characterize the performance boundary. After a
sequence o f boundary points is obtained, their
connectivity i s s t i l l i n question. T h i s is due to
the h i g h dimensionality and complexity of the
performance surface being defined. Characteriza-
t ion of the performance boundary has been achieved
a s a polynominal i n th rea t parameters where the
coeff ic ients are determined by regression analysis
on the boundary points; however, automated approaches
investigated so f a r tend t o t r e a t the system as
simply connected, and for this reason the cognitive
capabi l i t i es of the human mind prove invaluable i n
perceiving the boundary shape.

[THREAT1

0.7

0.8

3 0.5

d
I-

I 0.4
0
0
E

5
0.3

n

0.2

0.1

- !SYSTEM MODEL - - &NALOCI

0 1 I 1 I I I 1-
0 loo0 30oo Moo 7UQ

Figure 4. Model Comparison

The adaptive tester must be able t o search a h-ghly
i r regular , discontinuous and highly granular surface.
The PPA algorithm must be able t o e f f ic ien t ly
determine the global maximum of the surface and
reach the boundary e f f ic ien t ly .
of c lass ical optimization theory.
character is t ics of the algorithm have been
identified.12 The algorithm must be

The problem i s one
Five desirable

0 global--able to find global ra ther than

0 immune--not sensi t ive t o discont inui t ies

0 successful--reaches boundary a h igh

local extrema

o r extreme granularity

percentage of the time

efficient--reaches the boundary w i t h only
a small number of tests

proximate--a boundary point is reached
which i s i n some neighborhood of the
boundary paint which is nearest to the
i n i t i a l test point.

0

The approach taken i n the adaptive t e s t e r i s t o
combine the highly global and immune character..
i s t i c s of random search w i t h heuris t ics to provide
an e f f ic ien t , successful, and proximate approach.
The generation of heuris t ics f o r this approach
requires much insight into the system operation.
The heuris t ics range from the known relationships
tha t e x i s t (e.g. , increasing the number of threaten-
ing objects will generally increase the expected
number of penetrators) t o more detailed relat ions
between software parameters a t a lower level. The
issues a re threefold: the time and costs invo'lved
i n generation of the heuris t ics , the relationships
between heuris t ics a t various levels of de ta i l i n
system test ing, and the t ransferab i l i ty of heut-is-
t i c s between systems. Another related issue it;

328

t h e a b i l i t y t o t r a n s f e r t h e knowledge o f t h e
system embodied i n t h e h e u r i s t i c s t o a designer i n
terms t h a t w i l l f a c i l i t a t e h i s understanding of
t h e system.
t h a t a r e l a t i v e l y complete s e t o f h e u r i s t i c s i s
requir-74 t o achieve e f f i c i e n t a lgor i thm p e r f o r -
mance.

Experiences so f a r have i n d i c a t e d

The adapt ive t e s t e r must a lso deal w i t h the redun-
dant performance data t h a t i s obta ined a t almost
every l e v e l o f d e t a i l . With t h e l a r g e amount o f
data which i s recorded, techniques which recognize
s i g n i f i c a n t dependencies among parameters and
e l i m i n a t e redundant parameters be fore f u r t h e r
processing are des i rab le. It i s h i g h l y des i rab le
t h a t these techniques be automated and produce
those s t a t i s t i c a l l y s i g n i f i c a n t parameters which .
form the bas is f o r t h e generat ion o f h e u r i s t i c s
f o r a PPA.
t o perform i n an o n - l i n e basis.

F i n a l l y , implementation issues a l s o c l e a r l y
i n t e r d i c t themselves between t h e successful
achievement o f an adapt ive t e s t i n g c a p a b i l i t y .
Rapid and e f f i c i e n t communication and m o d i f i c a t i o n
o f t h e t e s t i n g system i s essent ia l . The user must
be ab le t o en ter d i r e c t i v e s requ i red by t h e t e s t e r
such as scenar io inputs , performance eva lua t ion
r u l e s and adapt ive a lgor i thm h e u r i s t i c s (F igure 5).
The requ i red data which might be o f i n t e r e s t
f o r post-processing must a lso be spec i f ied . I n
add i t ion , there must be a f l e x i b l e method o f
t h r e a t d e f i n i t i o n and an i n p u t system which can
handle system s imulat ions o f vary ing complexity.
A l a r g e and f l e x i b l e working data base from which
t h e PPA can e x t r a c t in fo rmat ion and determine t h e
nex t t e s t s cases must be ava i lab le . The new cases
must a lso be checked aga ins t many cons t ra in ts .

The theory o f t h e t e s t i n g o f l a r g e sof tware
systems i s such t h a t there a r e no p r a c t i c a l
gu ide l ines which guide the t e s t i n g process. The
adapt ive t e s t e r i s a computer-aided approach
designed t o prov ide through h e u r i s t i c s a way o f
o b t a i n i n g h i g h l y des i rab le in fo rmat ion from the
t e s t i n g process. While issues s t i l l remain f o r
reso lu t ion , the f e a s i b i l i t y o f such an approach
has been demonstrated and, i f successful, w i l l
have s i g n i f i c a n t impact i n lower ing t e s t i n g costs
o f f u t u r e system development.

Th is has proved t o be most d i f f i c u l t

I - I I

Figure 5. I n t e r a c t i v e Graphic D isp lay

The theory o f t h e t e s t i n g o f l a r g e sof tware
systems i s such t h a t there a r e no p r a c t i c a l
gu ide l ines which guide t h e t e s t i n g process.
adapt ive t e s t e r i s a computer-aided approach
designed t o p rov ide through h e u r i s t i c s a way o f
o b t a i n i n g h i g h l y d e s i r a b l e i n f o r m a t i o n from the
t e s t i n g process. While issues s t i l l remain f o r
reso lu t ion , the f e a s i b i l i t y o f such an approach
has been demonstrated and, i f successful, w i l l
have s i g n i f i c a n t impact i n lower ing t e s t i n g cos ts
o f f u t u r e system development.

The

Software Qual it.y Laboratory

I n a d d i t i o n t o t e s t i n g as a means o f determin ing
confidence i n a program's performance, t h e appl i-
c a t i o n o f formal p roo f techniques prov ides another
e q u a l l y va luable approach. Much usefu l informa-
t i o n can be der ived about the correctness o f a
program through t h e a d d i t i o n o f redundant 'nforma-
t i o n i n the form o f executable a s s e r t i o n s . ~ 4 The
goal o f t h e sof tware q u a l i t y l a b o r a t o r y i s t o
e f f e c t i v e l y apply t h e techniques o f formal v e r i f i -
c a t i o n t o l a r g e rea l - t ime programs. Even though
fonnal p roo f techniques f o r l a r g e programs a r e no t
p r a c t i c a l , incomplete attempts a t program proofs
p rov ide much enhanced e r r o r d e t e c t i o n c a p a b i l i t y .
For example, many asser t ions about a program occur
as a na tura l consequence o f the design and can be
e f f e c t i v e l y used i n s t a t i c ana lys is f o r common
semantic e r ro rs .

The sof tware q u a l i t y l a b o r a t o r y conta ins t o o l s
which a s s i s t i n de tec t ing common semantic e r ro rs ,
a1 low ins t rumenta t ion f o r tes t ing , and support
formal v e r i f i c a t i o n o f computer programs.
The f a c i l i t y has been designed t o analyze both
FORTRAN and PASCAL along w i t h two dialects--1FTRAN
and v e r i f i a b l e PASCAL. V e r i f i c a t i o n c o n d i t i o n
generators have been implemented f o r both lan-
guages which handle l o g i c a l , mu1 t id imensional
arrays. The s i m p l i f i e r conta ins many standard
s i m p l i f i c a t i o n r u l e s t h a t can be invoked t o cause
automatic simp1 i f i c a t i o n o f v e r i f i c a t i o n condi-
t ions .
t o i n d i v i d u a l v e r i f i c a t i o n condi t ions. These can
be t e x t replacement o r p a t t e r n matching r u l e s
which can be saved as axioms t o be reused. The
sof tware q u a l i t y l a b o r a t o r y executes on the CDC
6400 and CDC 7600 machines and i s w r i t t e n i n a
s t r u c t u r e d d i a l e c t o f FORTRAN (IFTRAN).

The approach taken f o r formal v e r i f i c a t i o n us ing
t h e sof tware q u a l i t y l a b o r a t o r y i s t o d i v i d e the
program i n t o small segments each o f which i s
v e r i f i e d independent o f a l l o t h e r par ts . Each
v e r i f i c a t i o n c o n d i t i o n i s t i g h t l y coupled t o a
v e r i f i c a t i o n path through a code segment. Th is
approach i s designed t o a i d the v e r i f i c a t i o n o f
1 arge programs.

The sof tware q u a l i t y laboratory15 i s most
e f f e c t i v e l y u t i l i z e d when most o f the c o m n
syntax e r r o r s have been removed by a compi ler
(F igure 6). I n i t i a l checks would be s t a t i c
analyses f o r common semantic er rors . These
semantic e r r o r s d i f f e r from those detected by a
language processor i n t h a t sequences o f statements
must be examined r a t h e r than a s i n g l e statement.

Rules n o t i n t h e s i m p l i f i e r can be app l ied

329

Figure 6. Software Qual i ty Lab Steps
i n Validating a Program

These e r ro r s a re reported i n terms of groups of
statements t ha t could cause the e r ror ra ther than
a s ing le statement.
redundant information, the lab supports s t a t i c
analysis fo r the following types of errors:

Without the addition of

Set/use errors--variables used pr ior t o
se t t i ng o r i n i t i a l i zed and not used.
Two types a re detected--the use of a
variable before i t is s e t and the
variable set b u t not used.

Mode errors--mistakes w i t h the use of
real and integer variables.

External reference errors--misuse of
external routines w i t h incorrect number
of parameters.

I n f i n i t e loop errors--control variable
not increment on one path.

Unreachable code errors--structural l y
unreachable code.

Units consistency checking i s provided s t a t i c a l l y
w i t h the addition of assertions about the uni t s of
variables.
hand sides of assignment statements and re la t iona l
expressions and will f l ag inconsistencies i n units
i f unlike units a re added, subtracted, o r compared.
Units can be checked across more than one module
i f each module contains a description of the units
f o r each physical variable i t re fers to i n the
form of an assertion.

Another s t a t i c check is tha t of asserted versus
actual use. Through the use of data flow analysis
the actual versus asserted use is checked. This
type of checking can be used to detect incorrect
usage of variables between modules through the use
of an INPUT and OUTPUT asser t ion of the fonn INPUT
(var iab le l i s t) and OUTPUT (var iab le l i s t) . An
INPUT asser t ion s t a t e s t ha t the named variable
meets the conditions tha t i t is; i t i s a global
variable, which will have a value when the routine

Analyzers compare the r igh t and l e f t

An OUTPUT assertion s imi la r ly is used to a s se r t
the listed variables a re global, will be assigned
i n the routine, will not be used to supply a
variable to the routine (unless a l so declared as
an i n p u t variable), and are the only variables s a t
i n the routine. T h i s assertion of variables w h i c h
a r e s e t prior to entry to a module (INPUT) and
those assigned o r read from auxiliary storage
(OUTPUT) allows a r e s t r i c t ion upon the global
variables which may be used o r s e t by a particuli ir
module and can a l so be used d u r i n g executicin to
catch e r rors such as data out of expected range.

Upon completion of the s t a t i c analysis phase the
software quali ty laboratory supports execution
through providing output to show path coverage,
f a l se assertions, and values of the input variables
upon module entry as well as values of the output
variable upon module ex i t .

Fault detection can be introduced to a program
under analysis by the Software Quality Lab0rator.y
through the inclusion of asser t ions w i t h a FAIL
clause. While s imi la r r e su l t s could be obtained
w i t h a sequence of IF t e s t s , the asser t ions
provide an exp l i c i t statement of condition!; under
which the code tha t follows is expected t o operate
and there is a l so a separation of e r ro r handling
from the r e s t of the code.

Tools to a s s i s t i n formal ver i f ica t ion a re a l so
an integral par t of the software qua l i ty lab.
These too ls include a ver i f ica t ion condition
generator and a s impl i f ie r , which may be used
in te rac t ive ly to verify single modules. The
ver i f ica t ion condition generator uses asser t ions
which have been inserted in to the source code to
generate conditions of the form A implies B , where
A i s the i n i t i a l asser t ion on a program path
conjuncted w i t h predicates along the path and B is
the asser t ion a t the end of the path.
subs t i tu t ions a re made by symbolically executing
the f inal asser t ions and any predicates backwards
t o the i n i t i a l assertion. Using the INITIAL
asser t ion to s t a t e conditions which a re true when
the module is entered, the FINAL asser t ion to
define conditions which a re t rue upon e x i t from
the module and the ASSERT statement t o express
loop invariants o r any condition tha t i s t rue a t
t ha t point, ver i f ica t ion conditions a re then
generated f o r each ver i f ica t ion path i n the
program.
program entry, loop entry, loop exit and program
e x i t corresponds t o a ver i f ica t ion path.
ver i f ica t ion p a t h must begin and end w i t h an
INITIAL, FINAL o r ASSERT statement. The advantages
fo r associating ver i f ica t ion conditions w i t h
ver i f ica t ion path a re described i n Reference 5 .

The required

Each log ica l ly possible path between

Each

The ver i f ica t ion condition s impl i f ie r uses a s e t
of ari thmetic, logical and relational simplifica-
t ions i n an attempt to reduce a ver i f ica t ion
condition t o true. The user i s presented the
r e su l t s of the attempt to allow i n p u t to supply
additional simplification rules which may be
unique to the problem under analysis.
rule has been applied, the modified result is sen t
to the s impl i f ie r and a new r e s u l t presented.

Once a new

To
i s ca l led , will not be changed i n the routine
(unless i t i s a l so declared as an OUTPUT var iab le) ,
and is the only global variable used i n the routine. reduce the . e f fo r t of repeatedly entering ru les , a

330

r u l e i s assigned an axiom number and saved i n a
l i b r a r y o f ru les .

I n t e r a c t i v e simp1 i f i c a t i o n us ing t h e sof tware
q u a l i t y l a b o r a t o r y i s designed t o a i d i n the
development o f asser t ions and t o improve t h e
performance o f the s i m p l i f i e r . The user i n t e r a c t s
w i t h the sof tware q u a l i t y l a b through request ing
v e r i f i c a t i o n condi t ions, p r o v i d i n g t r i a l asser-
t ions , s p e c i f y i n g a d d i t i o n a l s i m p l i f i c a t i o n ru les,
and request ing the symbolic execut ion o f expres-
sions.
generat ing v e r i f i c a t i o n cond i t ions from asser t ions
i n t e r a c t i v e l y entered o r i n the code, s i m p l i f i e s
t h e v e r i f i c a t i o n condi t ions, symbol ica l l y executes
expressions over s p e c i f i e d program paths, v a l i d a t e s
s i m p l i f i c a t i o n ru les , and app l ies them t o v e r i f i c a -
t i o n condi t ions.

It i s f e l t t h a t upon completion, t h e Adaptive
Tester and t h e sof tware q u a l i t y l a b o r a t o r y can
prov ide cos t e f f e c t i v e ana lys is o f l a r g e r e a l t ime
system. These too ls , i n the fo rmat ive stage,
hopefu l l y w i l l p rov ide the framework from which
more extended c a p a b i l i t i e s can be developed. The
i n t e g r a t i o n o f t e s t i n g i n t o the sof tware develop-
ment cyc le w i l l a lso prov ide a b i g step toward
prov id ing a s i g n i f i c a n t l y increased c a p a b i l i t y t o
produce demonstratably r e l i a b l e sof tware systems.

The sof tware q u a l i t y l a b responds by

Conclusions

Experience and i n t e r e s t i n the SDS has been h igh
and several components o f SDS a r e being used w i t h
success i n a wide v a r i e t y o f app l i ca t ions . These
experiences are enhancing our understanding o f t h e
p o t e n t i a l use o f the computer as an a i d t o s o f t -
ware development. Also the adapt ive t e s t i n g and
q u a l i t y assurance programs, f o r example, show much
p o t e n t i a l f o r improving the e f f i c i e n c y o f the
t e s t i n g process through computer a ids.

The problems i n developing sof tware f o r l a r g e
systems have been compounded by the inc reas ing
hardware c a p a b i l i t y , and t h i s complex i ty must be
addressed i n any sof tware approach.
prov ide the development c y c l e bu t have t h e i r r o o t
i n the requirements area. This d e f i n i t i o n o f the
requirements f o r a processing component o f a
system i n such a way as t o a l l o w design freedom
y e t achieve preciseness remains a y e t t o be
achieved goal.

The issues

Acknowledgements

Spec i f i cs concerning the Adaptive Tester and
sof tware q u a l i t y l a b o r a t o r y a re taken from docu-
mentation prov ided by General Research Corporation,
Santa Barbara, C a l i f o r n i a , who i s developing them
under support o f the BMD Advanced Technology
Center, Huntsv i l le , Alabama.

References

1. G. G. Davis and C. R. Vick, "The Software
Development System," I E E E Transactions on
Software Engineering, Vol. SE-3, No. 1,
January 1977, pp. 69-84.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

C. 6. Davis, "Requirements Problems i n Large
Real Time Systems Development, INFOTECH
Sta€e-of-the-Art Report, S t ruc tured Ana lys is
& Design, 1978.

C. R. Vick, " F i r s t Generation Sof tware
Engineering System, 'I Proceedings ACM Nat ional
Conference, 1977. r

C. G. Davis, "Test ing Large Scale Real Time
Systems," INFOTECH State-of - the-Ar t Report,
t o be published.

M. W . Al fo rd , "The Software Requirements
Engi;eering Methodology (SREM) a t the Age o f
Two, Proceedings COMPSAC 78, November 1978.

R. C. Slegel, "Applying SREM t o the V e r i f i c a -
t i o n and V a l i d a t i o n o f an E x i s t i n g Software
Requirements Speci f icat ion," Presented COMPSAC
78, November 1978.

C. R. Vick, Research and Development i n
Computer Technology, "HOW Do We Fol low the
Las t Act?" Keynote Speech Preceding 1978
I n t e r n a t i o n a l Conference on Para1 l e 1 Pro-
cessing, September 1978.

E. F. M i l l e r , Jr., " T u t o r i a l Program Test ing
Technique," I E E E Catalog No. EH0130-5, 1977.

C. V. Ramamoorthy, R. C. Cheung, and K. H.
K i m , " R e l i a b i l i t y I n t e g r i t y and Large Compu-
t e r Programs," E l e c t r o n i c Research Laboratory,
U n i v e r s i t y o f C a l i f o r n i a , Berkeley, Memorandum
No. ERL-M430, March 1974.

J. B. Goodenough and S . L. Gerhact, "Toward
a Theory o f Test Data Select ion,
Transactions Software Engineering, Vol. I,
No. 2, June 1975.

R. G. U t t l e y , e t al. , "Adaptive V&V Midyear
Report," General Research Corporation, Santa
Barbara, C a l i f o r n i a , CR-6-767, J u l y 1977.

D. W. Cooper and R. G. U t t l e y , "Adaptive V&V
Research Plan [Updated June 1977) General
Research Corporation, Santa Barbara,
C a l i f o r n i a , CR-4-767, August 1977.

R. L. Stone, E. R. Buley, R. G. U t t l e y ,
"Research Progress Eva lua t ion Report," F i n a l
Report, Volume 2, General Research Corporation,
Santa Barbara, C a l i f o r n i a , CR-8-9-767,
February 1978.

S . H. Saib, J. P. Benson, and R. A. Melton,
"Executable Assertions--An A id t o Re1 i a b l e
Software," Proceedings o f the 11th Annual
Asi lomar Conference on C i r c u i t s , Systems, and
Computers, PacY f i c Grove, Cal i f o r n i a,
November 1977

S . H. Saib, "A Methodology f o r Program
Verification,"Proceedings o f t h e Summer
Computer S imu la t ion Conference, Chicago, J u l y
1977.

I E E E

331

