
USIUSING THE SOFTWARE PROCESS MODEL TO ANALYZE
A SOFTWARE PROJECT ,

by

I. SUE RANFT

B.S., Ohio State University, 1983

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

Major Professor

i-0

Wit
nil %%*»

3176ia

c.Z
CONTENTS

1. INTRODUCTION 1

2. THE SOFTWARE PROCESS MODEL 5

2.1 OVERVIEW OF THE SOFTWARE PROCESS
MODEL 5

2.2 FORMAL DEFINITION OF THE SOFTWARE PROCESS
MODEL 7

3. THE SOFTWARE PROJECT 11

3.1 ORGANIZATION OF THE PROJECT 11

3.2 PROJECT'S DEVELOPMENT METHODOLOGY 15

4. APPLYING THE SOFTWARE PROCESS MODEL 21

5. CONCLUSIONS AND EXTENSIONS 31

6. REFERENCES 34

7. APPENDDCA 35

LIST OF FIGURES

Figure 1. A Simple View of the Waterfall Model

Figure 2. SPM for an idealized development [GUS88]

Figure 3. Organization Chart of Project

Figure 4. Phases of the Project 16

Figure 5. Key for SPM 23

Figure 6. SPM - design and initial code relationship 24

Figure 7. SPM - design, code and test relationship 26

Figure 8. SPM - code changes 27

Figure 9. SPM - analysis spec, DD & DFD relationship 29

Figure 10. SPM - design specifications & code changes 30

ACKNOWLEDGEMENTS

I would like to thank Dr. David A. Gustafson (Gus) for serving as the

Major Professor for this Masters Report (and his wife, Karen, for

serving the wine). Without his inspiration, ideas and reviews this

report would not have been possible. His ability to motivate and keep

me "pumped up" was not only appreciated, but greatly needed, and

again, I thank him.

Thanks also goes to Dr. Elizabeth Unger and Dr. Masaaki Mizuno for

serving on my committee. The hours they spent reviewing the report

and providing constructive criticism were appreciated.

This report would not have been possible without the existence of the

AT&T Summer-on-Campus Program. Therefore, I would like to

thank AT&T for having the program and the Department of

Computing and Information Sciences at Kansas State University for

participating in the program.

During this program several AT&T students provided support and

encouragement. A few of these individuals deserve to be recognized.

Due to Sue Saad's and Katryn Inkley's efforts, I was able to make it to

the majority of my classes and appointments on time. Their

continuous banging on my door, when conventional methods of waking

up failed, was greatly appreciated. Without, the use of Sue Saad's

dictionary and thesaurus this paper may have never been presented to

my committee. Thanks, Sue, for letting me use them during the third

shift. Thanks goes to James Watson, not only for keeping me out of

trouble during my stay at KSU, but also for insisting that I stay in my

room and continue writing when I wanted to participate in other

activities. I must also thank Dave Huchro for the late night mini-

breaks and mail messages of encouragement. When the mini-breaks

were not enough, thanks to Debbie Schoonover, Scott Young and cab

30, longer breaks were provided.

Thanks also goes to the entire staff and faculty at Kansas State

University, Department of Computing and Information Sciences. The

educational experience will always be cherished and remembered. A

special thanks to Sandy Randel for her help in formatting this report

and the making of vu-graphs (or as they are called at KSU, overhead

transparencies).

Last, but not least, I want to thank my husband, Mark, and sons,

Tucker and Elliott, for their encouragement and support. I also must

thank them, not only for tolerating my absence from home for the past

five summers, but also for tolerating my return.

1. INTRODUCTION

Software development has grown rapidly over the years. It has

doubled in size approximately every five years and it is estimated that

it will experience a tenfold increase each decade [MUS85]. Throughout

its growth, it has experienced late deliveries, cost overruns and

customer dissatisfaction. Although management and technology have

been recognized as parts of these problems, the majority of research

done has pertained to the technical side of the problem [ABD87].

Models of the software development process have been developed to

provide a means of controlling and visualizing software projects. The

most common software model is the Software Life Cycle or Waterfall

Model [BOE81]. This model is depicted simply in Figure 1. The

Software Life Cycle Model divides the development process into several

sequential phases. Although, the number and names of each phase

may differ from project to project, basic phases would include the

requirements phase, analysis phase, design phase, coding phase, testing

phase and maintenance. Associated with each phase is a set of distinct

documents that will be produced and used as inputs for the next

phase. The model also includes backward pointing arrows to indicate

- 2-

i

i

i

1 1

1 1

1 1

1

1

1

1

I
requirements

1

\ \
1

1
analysis

1

\ \
1

1
des

1

lgn
1 1

maintenance 1 1

1 1

\
1

1

1

code

/

/ !

/ i

/

\ \ / !

I

1

1

test / !

I 1

Figure 1. A Simple View of the Waterfall Model

backtracking to previous phases due to errors detected in later phases.

This model has provided traditional project management tools such as

- 3-

Gantt charts, Critical Path Analysis (CPA) and Project Evaluation

and Program Technique (PERT) with a natural way of defining

milestones and tasks. Although these management tools focus on

scheduling activities and resource computation, they do not have the

capability to handle the iterative process of software development

[LIU88]. Therefore, controlling and visualizing the true development

process is difficult.

In 1987 another software model was introduced, the Software Process

Model (SPM) [GUS87]. There are two major differences between the

SPM and the Software Life Cycle Model. First, the SPM does not

view software development as a simple, sequential process. Instead,

the model assumes that development occurs in parallel. Second, the

SPM models software development by modeling the evolution of the

full set of documents produced in a software process. These differences

make the SPM general enough that it could be usable for any project

using any development approach.

This paper is the results of a study to evaluate the usefulness of the

SPM in controlling and managing the software development process.

This paper will describe the SPM and the software project to which it

4-

was applied. It will then present information generated by reviewing

the project from the viewpoint of the SPM and demonstrate the SPM's

usefulness in managing a software project.

2. THE SOFTWARE PROCESS MODEL

2.1 OVERVIEW OF THE SOFTWARE PROCESS MODEL

The Software Process Model was introduced in 1987 in a paper titled

"Modeling and Measuring the Software Development Process" [GUS87].

The information presented in this chapter has been taken exclusively

from this article and another titled "The Software Process Model"

[GUS88].

The SPM is a product-based model of the software development

process. The product being denned is more than the executable

implementation; it also includes documentation produced (both, formal

and informal) during the development process. The SPM actually

models the evolution of the documents produced as part of a software

project.

Traditional software development models have the following

deficiencies:

1. They prescribe a sequential order of document development.

2. They focus on final documents.

3. They do not include all the documents (documents expressed

informally).

The SPM does not suffer from these deficiencies. In fact, the SPM

assumes parallel development of documents. It also assumes that

information learned from earlier and/or later efforts on a document is

used as one works toward the final version of a document. Since the

SPM does not prescribe an order of activities and there is no

assumption made on the number, form and purpose of documents

produced, the SPM may be applied to a variety of lifecycle schemes.

The SPM views the development of a software system as the process of

transforming representations of the system. Each traditional phase of

the software development lifecycle produces a distinct representation

of the system. The SPM views these distinct views as documents and

each provides a unique view of the system. Therefore, each document

that represents these views must also be identifiably distinct. Using

the SPM, each document is either written in a different language or

the documents are identifiable in some other manner. Thus, a

requirements document can be distinguished from a specification

document; a specification can be distinguished from a design; a design

.

can be distinguished from an implementation; and so on.

. FORMAL DEFINITION OF THE SOFTWARE PROCESS MODEL

Since the SPM views the software development as the process of

evolving a set of documents, the process is time dependent and

therefore a real-time clock is a critical component of the model. The

following definitions formally characterizes the SPM.

1. DEFINITION:

The Software Process Model (SPM) is a set of document

histories, SPM = {Hi,Hi,...,Hn } where each Hi is a history of

the different versions of one document.

2. DEFINITION:

A document history Hi is a tree whose nodes are versions of

documents, and Hi = (V,-,.E,-, r,) where

• Vj is a set of document versions of type i,

• Ei is a set of order pairs of the form (a, 6),

a, b t Vi, which represent transitions from one version in V,-

to another, and

• r,- is the root of the flj tree or the initial version.

The SPM uses a tree to represent document history to allow the

modeling of the development of alternative final versions (e.g.

development of a system for various customers with one or more

different features).

3. DEFINITION:

A document version <J,-(j) e V; is an ordered pair

diU)-[d'iU)MiU)] where

• d'i(j) consists of the text of the document version, and

• td{(j) is a real time stamp which represents the completion

date/time for d'j(j).

The time stamp can be augmented with additional management

data which will allow the calculation of various measures such as

the number of person-hours used to develop the document

The granularity of a document history is arbitrary and depends

upon the needs of a particular project. One can either determine

that a new version is created when a developer reports that a

document is ready for review, after the review and required

corrections made, or each time the online version is edited.

The use of the SPM to describe a possible software project is

illustrated in Figure 2. This represents an idealized development that

went through two passes on the documentation.

1 8 -

1 1

1 6 - l_l

1 time
1 (months)

1 4 -

1 1

1 2 -
o

1 1

o o

1 -
o l_l

sow srs ss US code

Figure 2. SPM for an idealized development [GUS88]

- 10-

The SPM shows patterns of software development in much greater

detailed than the Software Life Cycle Model. In addition the SPM

models parallel activities and provides a complete project history. The

next chapter will describe a software development project in which the

SPM was applied. It will be followed by a chapter describing how the

SPM was applied.

11

S. THE SOFTWARE PROJECT

S.l ORGANIZATION OF THE PROJECT

The goal of the software project was to develop an information system

to replace an existing system which no longer adequately met the users

needs and was costly to maintain. The existing system ran on an IBM

mainframe, used a hierarchical data base which was no longer

supported, and was written in PL/I. The system had little, if any

documentation, which made maintenance virtually impossible. The

users wanted the new system to be fully documented, run on their own

AT&T 3B4000 machine, use INFORMIX database system and be

coded in 4GL, C or embedded C.

The project's development team was staffed with personal from two

locations, in different states, and the users were located in nine

different states. This made management of, and communication

within, the project difficult. The individuals and groups that were

involved in the project is depicted in Figure 3 and a list of their

responsibilities are listed below.

12-

1

1

1

1

1

1

1

1

project
manager

1 1

1 Implementation 1

1 manager 1

1 1

I

1 developn
1 manager
1

1

ent
I

1

1^\
1

1 Interface 1

1 coordinator
1

1

1

1 development 1

1 coordinator
1

1 1

1

1 development 1 1

1 leader 1 1

1 1 1

/ \
1

1 users 1 1 te

1 interface 1

1

1 team 1

1 1

sters
I I

1 1

developers
II II
I I

developers
I I

II II

|

1 1

1 users 1

1 1

Figure 3. Organization Chart of Project

13

1. The project manager had to ensure the successful execution of all

phases of the project to ensure its overall success. She was

responsible for providing the necessary project planning, had to

coordinate and integrate activities across multiple functional

lines, control all project funding and staffing requirements, assign

and track action items, monitor progress, ensure that adequate

interfaces were in place to disseminate information and provide it

in a non-disruptive manner, and coordinate project management

status meetings.

2. The implementation manager was responsible for ensuring that

the user interface team's activities were performed according to

the agreed upon schedule. He acted as chairperson of the user

interface team and had to keep the project manager informed of

all user activities and status.

3. The development manager was responsible for ensuring that the

software development activities were performed according to the

agreed upon schedule, raising alerts when appropriate to ensure

successful development of the software and keeping the project

manager informed of all development activities and status.

14-

4. The development coordinator was responsible for monitoring the

progress of the various software development activities (in both

locations), reporting the development status to the development

manager and coordinating users' and developers' review

meetings.

5. The development leader was responsible for coordinating and

monitoring the software development efforts of the remote

location, reporting the remote location's development status to

the development coordinator and coordinating all remote review

meetings.

6. The interface coordinator was responsible for coordinating the

various user interface team activities and monitoring the progress

of these activities, reporting the status of implementation

activities to the implementation manager and acting as the

primary contact for the developers.

7. The developers consist of personnel from two locations. The

responsibilities of this group was to provide the software

development and to review the user documentation.

8. The testers are responsible for developing system test plans and

15

performing system testing.

9. The user interface team was composed of one user representative

from each location and was chaired by the implementation

manager. They were responsible for ensuring that the users'

needs were communicated to and understood by the developers,

and that the developers' needs were communicated to and

understood by the users. They had to participate in analysis and

design reviews and to ensure that specifications were understood

by users at their locations. They had to develop user acceptance

test plans and perform the user acceptance testing. They also

had to develop user documentation that would provide detailed

information to the users on how to use the system.

S.t PROJECT'S DEVELOPMENT METHODOLOGY

The software development followed the Software Life Cycle Model.

Development was divided into five major phases, Analysis Phase,

Design Phase, Implementation Phase (coding), Testing Phase (system

testing and user acceptance testing), and Conversion Phase (parallel

testing). Figure 4 shows each phase with their associated inputs and

outputs.

16-

I
Analysis l< user requirements document

I I

I

I data flow diagrams
I data dictionary
I
mlnl-speclf icatlons

V
I I

I
Design l< design standards

design specifications

I I

I Code |< coding standards
I I

I

I
user reference manual

I
unit & module-tested system

V

I
Test l< test plans

I system-tested & user-accepted system
I verified user reference manual
V

I I

I
Conversion

I

I I

Figure 4. Phases of the Project

17-

The Analysis Phase would begin after the user interface team had

completed the User Requirements Document. During this phase the

developers would analyze the required functions of the system. This

would be accomplished by reviewing the user requirements with the

user interface team. The input into this phase is the User

Requirements Document and the outputs are data flow diagrams, data

dictionary and mini-specifications.

The Design Phase would begin after the documents from the Analysis

Phase had been approved by the user interface team. Activities in this

phase involves reviewing the mini-specifications that were produced in

the Analysis Phase and determining how to provide the system that

was specified in these documents. Development of the test plans and

user documentation would begin during this phase. The inputs for

this phase are the data flow diagrams, data dictionary and mini-

specifications from the previous phase and design standards. The

outputs of this phase are the design specifications.

The Implementation Phase (or coding) would begin after the design

specifications had been completed. Activities involved translating the

system design specifications produced in the Design Phase into

18-

structured code. Each program would be tested separately upon

completion. After every program in an entire module was tested, the

module would be tested. This incremental approach to program

testing was to ensure that errors were detected early enough to make

the necessary corrections and retest without affecting the entire

system. The development of user documentation, the system test plan,

and user acceptance test plan would also be completed during this

phase. The inputs to this phase would be the design specifications and

coding standards. The outputs would be the user reference manual

and unit and module-tested system.

The Testing Phase would begin after the system software had been

unit and module tested. This phase would include system testing and

user acceptance testing. Activities included rigorously testing the

completed system by using the system test plan that was developed by

an independent group other than the developers. Other activities

included verifying that instructions and information to perform the

system's functions were included in the user documentation. The

successful completion of this phase ensured the users that the system

performs according to their expectations. Inputs for this phase

10

included system test plan, user acceptance test plan, user reference

manual and unit and module-tested system. Outputs of this phase

included system-tested system, user-accepted system and verified user

reference manual.

The Conversion Phase (or parallel testing) would be the final phase. It

would included operating the fully tested system and the current

system in parallel mode until the users were comfortable with the

performance of the new system. The new system would then cut over

as the sole production system. Inputs into this phase are system-tested

and user-accepted system and verified user reference manual. Output

of the phase is a production system.

The use of the Software Life Cycle Model made creating milestones

easy. Since it was anticipated that a phase would only start after the

completion of the previous phase, management used the phases as

milestones. Each milestone, or phase, was then divided into activities.

The activities for each phase was virtually identical since they were

associated with a particular function of the system. For example, the

design phase would have an activity called "design function A",

implementation would have a function called "code function A", and so

20-

forth.

These milestones and activities, along with their expected start and

completion dates, were then entered into a software program that

generated bar charts. These charts were intended to provide

management with a means of visualizing and controlling the project.

However, they failed on both counts. Basically, the charts only showed

if a particular activity or phase was on time or late. Even at that, the

information would be erroneous, since the information was based on

estimates of how much of the activity or phase was completed.

Studies have shown that these estimates steadily increase from the

beginning of a task until the activity reaches 80 to 90 percent

completed. Then there is little increase in percentage of work done

until the task is completed.

The next chapter will explain how the Software Process Model, when

applied to this project, would have been a better management tool.

21

4. APPLYING THE SOFTWARE PROCESS MODEL

The SPM was applied to one of the twelve sub-system of this project.

There are two reasons why this particular sub-system was chosen to

apply the SPM. One reason was that this sub-system was one of the

project's larger sub-systems. The other reason was, while most of the

sub-systems had two or three developers working exclusively on them,

this sub-system had many different developers working on different

phases of development. If the SPM showed signs of peculiar patterns,

then it was important that these patterns related to the development

process not a particular developer's style.

To apply the SPM to this project a list of all documentation produced

during the project was needed. Also needed, was the history of each

document (e.g. initial release date and dates that changes were

implemented). This information was then plotted on a graph with the

x-axis representing time/date and the y-axis representing the

documents. Added to the graph were any unresolved modification

requests.

After the documents and unresolved modification requests were

22-

plotted, apparent patterns were observed on the SPM. Hypotheses

were drawn from these patterns and further investigation proved these

hypotheses were correct. This chapter will discuss these patterns and

hypotheses to illustrate that the SPM would be a valuable

management tool. In the case of this project, the SPM gave more

insight into this project than the current method used. To make the

illustrations more effective, only excerpts of the SPM will be presented

in this chapter. However, the entire project's sub-system's SPM can be

found in appendix A. When viewing the SPMs use Figure 5 as a key.

Once the SPM was plotted, apparent patterns were observed. One of

these obvious patterns is depicted in Figure 6. As Figure 6 illustrates,

when the initial version of code was completed, the design specification

was changed. Since this is only an excerpt of the original SPM, the

statistics are not obvious. However, 18 of the 21 modules showed this

pattern. That is approximately 86%. This percentage led to the

hypothesis that the design specifications were not correct and had to

be changed when coded. Interviews with some of the developers

proved the hypothesis was correct. Their reason for inadequate design

specifications was inexperience with structured design, which was the

23

required methodology in the design phase.

UR user documentation
PP project plan
AN analysis spec.
DD data dictionary
DF data flow diagram
DB data base document
DS design standards
TS test standards
cs coding standards
UT user acceptance test plan
ST lntegratlon/sys test plan
PT parallel test plan
TP training plan
DP user documentation plan

1 Dl - D29 design specification for
modules 1 -29

1 CI - C29 code for modules 1-29
1 Tl - T29 test cases for modules 1-29
1 Ul - U29 user documentation for modules

1-29

• Initial version of a document
some of which are coded by color:

red - initial design document
blue - Initial code
green - Initial test cases
brown - initial stubs

o changes after initial version
(same color code as above)

outstanding modification request

Figure 5. Key for SPM

- 24-

05/28-0909 1

21-1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I | I | | |

14-1
i i i i i i i i i i i i i oa 1 1 1 1 1 1 I [

7-1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I | | I | I

04/30-1
I I |

23-1
I I I I |

16-1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I I | |

9-1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I I | | | |

2-1
1 I

03/26-1
1 I I I I I I | | | | | | | | | | | | | | | | |

i9 -i mm ii cm i i i i i i i i i i

12-1
1 1&-MMII OQOB ii i i i i i i i i i i i i

02/26-1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I 1 1

19-1 II II
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12-1
1 1

5-1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I I | | | |

01/29-1
1 1 1 1 1 1 1 1 1 1 1 I I I I | | | | 1 1 1 1 1

22-1
i i cm

15-1
1 1 1 1 1 1 1 1 1 1 1 1 I 1 I I I I I I I I I |

8-1
1 1

1-1
1 1 1 1 1 1 1 1 1 1 I I I I I I I I | | | | |

12/25-1
1 1

18-1
1 1

11-1
1 II 1

4-1
1 1

11/27-1
1 1

20-1
I 1

13-1
1 1 1 1 1 1 1 1 I I I I I I | | | | 1 1 1 1 1 1

io/3o-rr\-_rcmzcoz€mzozozccmomom
D C D c D C D C D C D C D C D C D C D C D C D C
2 2 3 3 4 4 5 5 6 6 7 7 9 9 1

1

1

1

1

2

1

2

1

3

1

3

1

4

1

4

1

5

1

5

Figure 6. SPM - design and initial code relationship

25-

Another obvious pattern occurred during the weeks of 1/8/89 and

1/15/89 and is depicted in Figure 7. In the first week approximately

24% of the design specifications and 24% of the coded modules were

changed. In the following week Vhe test cases associated with them

were changed. Since these changes occurred during the same weeks it

was assumed that they were caused by the same problem. I spoke

with the developers and testers, and again the assumption was

confirmed. The changes were due to the decision to handle error

messages differently. The tester also further substantiated the findings

of the first pattern. They indicated that 98% of the design

specifications, for the entire project, were changed when the initial

version of the software was released for testing. Due to these changes,

the testers had to modify their test cases which were written from the

design specifications.

Another hypothesis was made concerning the week of 1/29/89. During

this week 11 out of 27 design specifications were changed. This is

approximately 41%. Again a hypothesis was made that the changes

were all related. Further investigation not only confirmed this

hypothesis, but also revealed that these changes were due to the same

26-

decision discussed above. This meant that B7% of the design

specifications were changed due to the decision of handling error

messages differently. The impact of this decision was astonishing.

02/26 -1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I 1 I I I I

19 -1
1 I I I I I I I I I I | I | | I | | | | | |

12 -1
1 1 1 1 1 1 1 1 I I I I I I I I I I I | | |

5 -1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I

01/29 -I I I I | | | | | | | | | | | | | | | | | | |

22 -I I I I | I | | | | | | | | | | | | | | | | |15-iiQiQiOiOiOiOiQi
s 00_0O_0O_00_0O„0O_0O_i i

1 -1
1 1

12/25 -1
1 1 1 1 1 1 1 1 1 1 1 1 I I 1 1 I I I I I I

13 -1 1 1 1 1 1 1 1 1 1 I I I I I I I I I I I 1 1

11 -1
1 1

4 -1
1 1 1 1 1 1 1 1 1 1 1 I 1 1 I I I I I I I I

11/27 -1
1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 I I

DCTDCTDCTDCTDCTDCTDCT
I

111444777111111111222 1

333444555333 1

Figure 7. SPM - design, code and test relationship

During the week of 11/13/89, the SPM indicated that six of the ten

coded modules (60%) were changed. Again, investigation proved that

the changes were all related. Investigation also revealed that three of

the four modules that were not changed, had been changed the week

27.

before. This increased the percentage of modules changed to 90%.

The remaining module which was not affected, turned out to be the

cause of all the other changes. The SPM in Figure 8 illustrates these

changes.

12/25 -1
1 1 1 1 1 1 1 1 1 1 1

18 -I I I I 1 1 1 1 1 1 1 1

11 -1
1 1 1 1 1 1 1 1 1 1 1

4 -1
I 1 1 1 1 1 1 1 1 1 1

11/27 -1
1 1 1 1 1 1 1 1 1 1 1

20 -1
1 1 1 1 1 1 1 1 1 1 I

13 OCOOO 1 I O i i

6 -
1

i i i i OOO i i i

10/30 -1111111110 1

23 -I I I 1 1 1 1 1 1 1 1 1

16 -I 1 1 1 1 1 1 1 1 1 1 1

9 -1
1 1 1 1 1 1 1 1 1 1 1

2 -1
1 1 1 1 1 1 1 1 1 1 1

9/25 -1
1 1 1 1 1 1 1 1 1 1 1

cccccccccc 1

1471111122 1

3 4 5 9 3 9 1

Figure 8. SPM - code changes

28-

In reviewing the 1987 SPM it was evident that the analysis

specification, data dictionary, and data flow diagrams were closely tied

together. However, the relationship was not apparent in the SPMs for

the next two years. Figure 9 contains an excerpt of the SPM for the

three years. In 1987 the initial version of the three documents were

released the same week. Also, in the same year, three changes were

applied to the documents, again during the same time frame. Then in

1988 and 1989, two changes were made to the data dictionary, and

none to the data flow diagrams or the analysis specifications. There

were however, a number of changes requested for the analysis

specifications and only one was requested for the data flow diagrams.

From these SPMs, it was concluded that these documents were not

kept up to date. It was further concluded that the modification

requests probably affected more than the analysis specifications.

Investigation into this matter revealed that these documents were not

kept up to date. It was also discovered that 26% of the requested

modifications for the analysis specification would also have to be

reflected in the other two documents.

29-

1 1987 1988 1989
1

1 11/29 -MM 11/27
_.-.-,- 1

1

1 22 ooo 20 "l_CC 1

1 15 -MM 13 -Ml 1

1 8 -II 1 1
6 -III 1

1 1 -MM 10/30 -III 1

1 10/25 -MM 23 -Ml 1

1 18 —
I I I I

16 -|_|_|_ 1

1 11 —
t 1 1 I 9 -lo 1 I 1

1 4 -MM 2 -Ml 1

1 09/27 -M~M 09/25 -l~M~
1 20 -II II 18 -III
1 13 -MM 11 -III
1 6 -MM 4 -III
1 08/30 -M _M 08/28 -l

_M _
04/30 -lol

-

1 23 OOO 21 - lo |_|_ 23 -|_l_
1 16 -MM 14 - lo 1 1

16 -
1 1

1 9 -MM 7 -III 9 -
1 1

1 2 -II |"| 07/31 co: 2 -|~I~
1 07/26 -|_|_|_| 24 03/26 -lol_
1 19 -MM 17 -Ml 19 -

1 1

1 12 -MM 10 -
1 M 12 -M _

1 5 OOO 3 -rrr 5 -l~l~
1 06/28 -MM 06/26 -mi 02/26 -

1 1

1 21 -MM 19 -Ml 19 -lo 1 01 1

1 14 -MM 12 -lo 1 1 12 -1
1

1 7 -MM 5 -ioo: 5 — lo l_

1 05/31 -MM 05/29 01/29 -1
1

1 24 -1 l_l_l 22 -M~l~ 22 — lo 1

1 17 -MM 15 -III 15 —
1 1

1 10 999 8 -III 8 -1
1

1 3 -
1 ii i

1 -III 1 -
1 1

1 04/26 -M~M 04/24 -M
_

l

_
12/25 -l~l~

ADD ADD A D D
I

N D F N D F N D F 1

Figure 9. SPM - analysis spec, DD & DFD relationship

- 30-

Figure 10 depicts yet another obvious pattern. From this illustration

it was apparent that the design specifications were kept up to date to

reflect changes made in the code. When this was investigated it was

found that the developers were required to keep the two documents

consistent and the testers tested for consistency.

05/28-1
1 1

21-1
i i i i i i i OO 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14-1
1 1

7-1
1 1

04/30-1
1 1 1 1 1 1 1 1 1 1 1 1 1 OODO 1 1 1 1 1 1

23-i i i i i i OO i oooo
16-1

1 1 [1 1 1 1 1 1 t 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9-1
1 1

2-1
1 1

03/26-1
1 1

19-1
1 1 1 OO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12-1
1 I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1

5-1
1 1 1 I 1

02/26-1
I I I I I 1 I I I 1 I I I I I I 1 1 I I I I I I

19-1
1 1

12-1
I I I I I I I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5-1
1 1

01/29-1
1 OO

22-1
I 1 1 1 1 1 1 I 1 1 1 1 1 1 1 1 1 OO 1 1 1 1

15-1
I I I I I I I I I I I I I I 1 1 1 1 1 1 1 1 1 1

R-OOOQ ' ' ' OO ' OOOOOO ' OO '
j

1-1
1 1

12/25-1 1

DCDCDCDCDCDCDCDCDCDCDCDC
114455667799111111112222

334455663344

Figure 10. SPM - design specifications & code changes

31

5. CONCLUSIONS AND EXTENSIONS

This paper has demonstrated that the SPM can be a useful

management tool. Since the SPM shows patterns of the software

product development in greater detail then the current tools available,

it provides management with a more effective means of visualizing

and controlling software projects.

The SPM has the capability to alert management of problems

encountered during the development process. This was illustrated

when the SPM indicated a problem during the design phase. The

problem was made known by the pattern generated by the continuous

changes to design specifications when initial code was completed.

This paper has proved that the SPM can be used to ensure

consistencies between documents. By plotting changes in documents,

both developers and managers are alerted as to whether or not a

change is incorporated in other documents. This will reduce, if not

eliminate, inconsistencies between user's requirements, design and test

specifications, user documentation and code.

The SPM shows parallel development effort and yet maintains the

traditional correspondence between phases of development. Although

32-

the software project presented in this paper used the Software Life

Cycle Model and management set specific dates for the completion of

each phase, the SPM indicated that the coding phase did not start

after the design phase was completed. The initial code of some

modules were completed during the week of 10/30/88 and other

modules were not designed until the week of 12/22/89. Yet, at the

same time, the SPM maintained the traditional phases for individual

modules.

An extension to this paper would be automating the drawing of the

SPM and developing an interface with a source control change system.

The SPMs presented in this paper has proved that they have the

ability to show the impact that a change has on the entire

development process. However, no matter how great the impact, the

information is after the fact. An interface to a source control change

system could provide management with a tool to determine the impact

of a change before the change is ever incorporated into a document.

Whenever a change is requested a SPM could be plotted and indicate

what documents that request would effect. For example, if the users

requested that another functionality be added to a module then they

would generate a modification request for their user requirements. If

33

that module was already coded and tested then the source control

change system would generate two more modification requests, one for

the code and another for the test cases. Before the modification

request is accepted, an SPM could be plotted which would indicate the

documents that had to be changed. This would enable management a

means of visualizing the impact of the request before a decision is

made to make to accept or reject the change request.

34

e. REFERENCES

[ABD87] Abdel-Hamid, T. K. and Madnick, S. E., "An Integrative

System Dynamics Perspective of Software Project

Management: Arguments for an Alternative Research

Paradigm", MIT Industrial Liaison Program Report, April

1887.

[B0E81] Boehm, B. W., Software Engineering Economics, Prentice-

Hall, Englewood Cliffs, NJ, 1981.

[GUS87] Gustafson, D. A., Melton, A. C, Baker, A. L. and Bieman,

J. M., "Modeling and Measuring the Software Development

Process", Proceedings of the Twentieth Annual Hawaii

International Conference on System Sciences, 1987.

[GUS88] Gustafson, D. A., Melton, A. C, Chen, Y., Baker, A. L.,

and Bieman, J. M., "The Software Process Model",

Preceedings from the Twelfth Annual International

Computer Software and Applications Conference, published

as CompSAC88, October 1988.

[LIU88] Liu, L. and Horowitz, E., "Object Database System for a

Software Project Management Environment", Preceedings

of the AMC Sigsoft/Sigplan Software Engineering

Symposium on Practical Software Development

Environments, published as Sigsoft Software Engineering

Notes, Vol. 13, No. 5, November 1988.

[MUS85] Musa, J. D., "Software Engineering: The Future of a

Profession", IEEE Software, January 1985.

- A35

7 APPENDIX A

SPM FOR DOCUMENTS PRODUCED IN 1987

12/27
20
13
6

11/29
22
15

10/25
18
11
4

09/27
20
13
6

08/30
23
16
9

2
07/26

19
12
5

06/28
21
14
7

05/31
24
17
10
3

04/26
19
12
5

03/29
22
15
8
1

02/22
15
8

1

01/25
18
11

MillMillMM!Mill
1 1 1

-PPFr!Mill
ii i m
ii i HMillMillMillMillMillMillMillMill
MillMillMillMill
1 M MMill
OCO I

Mill'
Mill'
Mill'
Mill"
Mill'
Mill"
M 1 1

Mill"
Mill"
Mill"
Mill"
Mill"
Mill"
1 M 1

1"

Mill"
Mill"

\\~i

Mill"
Mill'
Mill"
II II 1"

Mill"
Mill"
1 1 1 1

1"

Mill'DPAB5B0
R P N D F B S

- A36-

SPM FOR DOCUMENTS PRODUCED IN 1988

12/26
18
11
4

11/27
20
13
6

10/30
23
16
9
2

09/25
18
11
4

08/28
21
14
7

07/31
24
17
10
3

06/26
19
12
5

05/29
22
15
8
1

04/24
17
10
3

03/27
20
13
6

02/28
21
14
7

01/31
24
17
10
3

=n :
FFi

=n :
F!

:
i

:FFnFFRFFFF!Fn :
FSB

ol lo 1

°i ri fi 1 1 riTi i

!'!! ffir pi in n-

-P6| '

!

!"!-!
!
liniUBIl II l-l 1 IP-H

1 IqI i m mm mi I I

1 O 1 1 M M M 1 II 1 1 II 1 1 II 1

lTn#! :
!

=
!

=
!

:
!

=
!

=
!

=
!

!=!=!=!
!

:
!=!

=
!

=!H :n:

:nis:R:n:n:
!

:n=in-nfl-nj.i-!-!-!-
^FFFFFFFFFIFFRFFFFIFFFF

1 1 1 1 1 1 1 1 1 M 1 II 1 1 II 1 1

=FFFFFFFFFFFFFIFFIFFI-FIH-FFm i i i a i i m i j m i i 1

1 1 M 1 Ml IIin ri ri rrri rrii i i n i i i n i i i

ii i i i i i i i ii i i ii i i ii i i i n i i i

i ii i ii i i i i i i i ii i

nl=FFPH :aH =
!

=F
1 1 1 1 1 1 1 Ml 1 1 1 II 1 Ml 1 1 1 II 1 1 1

EjEiEj:j^j:H^!:!$j!Ej:!:iJ:j:REjj:i:j:
:

l

:
l

:
!

:
!

:
!

:n :
l

:
l

:
l

:R :
l

:
!l

:
l-l-l!-!-!-!-

1 II II 1 II II II II 1 1 II II II 1 M M
II 1 II 1 1 1 1 1 II Ml 1 II II 1 III 1 II
1 1 1 1 II 1 1 II II II 1 II 1 II 1 1 1 1 1 1 1UFXDBBDTCUSFTBRPNDFBSSSTTTPP

5 C T
111

BCTU BCT0
2222 3333

A37

SPM FOR DOCUMENTS PRODUCED IN 1988 (cont)

12/25
18
11
4

11/27
20
13
6

10/30
23
16
9

2
09/25

18
11
4

08/28
21
14
7

07/31
24
17
10
3

06/26
19
12
5

05/29
22
15
8

1

04/24
17
10
3

03/27
20
13
6

02/28
21
14
7

01/31
24
17
10
3

j_fl_jj_|_jM_M_jj_fl:jj:|:j:j:j|:ri:nnp:i:

m:
i!
:

!

:
i!
:

!

:
!

:
l

:im:
ii
:

!

=
i

:
!

:
!!
:

!

:
!

=
!

:
ii
:R:

i

:

|E|:|:||:|:||E|E|E|E||EpH|:|E|:|:||E|E|E|:||:|:|:|E

|=|=|?f
|i|=| |=|=j=|=| j=|=|=i !=i=j=|=| |=|=|=|=| |=|=|=j=

rcci nm CilUCiriin ri~rnri~rn~rr
M_|_jj=j=!j=j=j=j=jfl=[=jfl=j=j=jfl=j=j=jM=i=j:

=i:|b:i|b:|=|=| 1=1=1=1 1=1=1=1=1 |=j:j=|=||=i=|=j:

D C T
4 4 4

D C
5 5

BEIU
6 6 6 6

13 C T
7 7 7

D C T
8 8 8

U D C T U C C T U
1111

- A38-

SPM FOR DOCUMENTS PRODUCED IN 1988 (cont)

12/25 -

18
11 -

4 -

11/27
20 -

13
6

10/30 -

23 -

16 •

9 -

2
09/25

18
11 •

4
08/28

21
14
7

07/31
24
17
10
3

06/26
19
12
5

05/29
22
15
8
1

04/24
17
10
3

03/27
20
13
6

02/28
21
14
7

01/31
24
17
10
3 BEIt B C T

1111 111
1111 2 2 2

m

B

BIT
111
3 3 3

C C T
111
4 4 4

111
S 5 5

13 C T S C T U
111 1111
6 6 6 7 7 7 7

- A39

SPM FOR DOCUMENTS PRODUCED IN 1988 (cont)

12/25
18
11
4

11/27
20
13
6

10/30
23
16
9
2

09/25
18
11
4

08/28
21
14
7

07/31
24
17
10
3

06/26
19
12
5

05/29
22
15
8
1

04/24
17
10
3

03/27
20
13
6

02/28
21
14
7

01/31
24
17
10
3

m

BCTU dctd
1111 1111
8888 9999

DCIO
2 2 2 2
1111

D C T
2 2 2
2 2 2

D C T BCT
2 2 2 2 2 2
3 3 3 4 4 4

A 10

SPM FOR DOCUMENTS PRODUCED IN 1988 (cont)

12/25 -

18 -

11 -

4 -

11/27 -

20 -

13 -

6 -

10/30 -

23 -

16 -

9 -

2 -

09/25 -

18 -

11 -

4 -

08/28 -

21 -

14 -

7 -

07/31 -

24 -

17 -

10 -

3 -

06/26 -

19 -

12 -

5 -

05/29 -

22 -

15 -

8 -

1 -

04/24 -

17 -

10 -

3 -

03/27 -

20 -

13 -

6 -

02/28 -

21 -

14 -

7 -

01/31 -

24 -

17 -

10 -

3 -

*

•

c T

1

c c T D" e T U D c T U

1

c

9

c

l

T

A41

SPM FOR DOCUMENTS PRODUCED IN 1989

12/31
24
17

10
3

11/26
19
12
S

10/29
22
IS
8
1

09/24
17
10
3

08/27
20
13
6

07/30
23
16
9
2

06/25
18
11
4

05/28
21
14
7

04/30
23
16
9

2
03/26

19
12
5

02/26
19
12
5

01/29
22
15
8
1

_
i~i

_
i~i~i~i~i~i

_
i

-
i~i

_
i~i~ii~i

_
i

_
i m*~i~i nut~\~\

-H-l-i-i-i-n-ri-rri-li-n-im-i-iPn-i-i

=
!

=
!

=
!

=
!

:
l

=
!

=
!

=
!

:
!

=
!

=
!

:
!

=
!

:
!!

=
!

=
!

=
!!

=
!

=n =
!!
=

!

:
B=!

I lol lol 1 1 1 1 1 1 1 1 1 1 1

Ijirjirrrrrjljliirrjrjllljnirpjjziijiu

HiH-l-H-ilillllliTsBI-Mn-h-!—
1

—
1

—
1

—
1

—
i

—
1

—
1

—
1

—
1

—
i
—

1

—
i

—
i

—
1 gnp M~l

-B i

—
i

—
i

—
i

—
|

O i i i i i irn ii i i Hi i ii i

UP ADDdETCUSPTE BCT B C~ T U DCTO

A42-

SPM FOR DOCUMENTS PRODUCED IN 1989 (cont)

12/31 -rrriT t trrrriT t t ti T ' " T IT T T
"

r IT T T T 1

24 -
1 1 1 1 1 1 1

17 -1
I I I 1 1 1

10 -1
1 I I 1 1 1

3 -1
1 1 1 1 1 1

11/26 -1
1 1 1 1 1 1

19 -1 1 1 1 1 1 1

12 -1
1 1 1 1 1 1

5 -1
1 1 1 1 1 1

10/29 -1
1 1 1 1 1 1

22 -
1 I I I I 1 1

IS -1
1 1 1 1 1 1

8 -1
| | 1 1 1 1

1 -1
1 1 1 1 1 1

09/24 -1
1 1 1 1 1 1

17 -1
| | 1 1 1 1

10 -1
I 1 1 1 1 1

3 -1
1 1 1 1 1 1

08/27 -1
| 1 1 1 1 1

20 -
1 1 1 1 1 1 1

13 -|
| 1 1 1 1 1

6 -1
1 1 1 1 1 1

07/30 -1
1 1 1 1 1 1

23 -
1 1 1 1 1 1 1

16 -1
1 1 1 1 1 1

9 -1
1 1 1 1 1 1

2 -1
1 1 1 1 | 1

06/25 -1
1 1 1 1 1 1

18 -|
| | 1 1 1 1

11 -1 1 1 1 1 1 1

4 -1
1 1 1 1 1 1

05/28 -1
1 1 1 1 1 1

21 -1
1 1 | 1 1 1 mi ICO II"

14 -1
1 1 1 1 1 1 iiiim 1

1

7 -1
1 1 1 1 1 1

04/30 -1
1 1 1 1 1 1

=ii=i=H=i

23 -
1 1 1 1 1 1 1

16 -|
| | 1 1 1 1

9 -1
1 1 1 1 1 1

2 -1
1 1 1 1 1 1

03/26 -1
1 1 1 1 1 1

mm
1 1 n 1 1

M'
T -l-IPB-

S:|:R=IPR
1 1 1 1 1 1 1 1

1

«OM
1 1 II 1 Ml'

02/26 -|~
amm
"in i i i i ii '1

19 -1
1 1 1 1 1 1 i i i 1 1 i i 1

1

12 -1
| 1 1 1 1 1 i i i 1 1 i i i r

5 -1
1 1 1 1 1 1 i i OH i i ii'

01/29 -1
1 1 1 1 1 1

22 -
1 1 1 1 1 1 1 R-l-F -IF

Jj_
-j-|PJ-|- -IR-H-I

15 -1
1 Q 1 1 1

8 -otani 1 1

i -rn nilmm IrrHi'
M I l l

ii l l I Ri-i-m
15 C T
4 4 4

D C
5 5

B C T
6 6 6 6

B C T
7 7 7

C c T
8 8 8 8

D C T U DC
9 9 9 9 11

T U
1 1

- A-13-

SPM FOR DOCUMENTS PRODUCED IN 1989 (cont)

12/31
24
17
10
3

11/26
19
12
5

10/29
22
15
a
i

09/24
17
10
3

08/27
20
13
6

07/30
23
16
9
2

06/25
18
11

4
05/28

21
14
7

04/30
23
16
9
2

03/26
19
12
5

02/26
19
12
5

01/29
22
15
8
1

D C T U
1111
1111

D C T
ill
2 2 2

rn-
D" C T
111
3 3 3

PR

I I I

D C T
1 1 1

4 4 4

m

C" T
1 1

5 5

P

PPPl

D" C T
111
6 6 6

Pff

C C T D
1111
7 7 7 7

- A44-

SPM FOR DOCUMENTS PRODUCED IN 1989 (cont)

12/31
24
17
10
3

11/26
19
12
5

10/29
22
15
8
1

09/24
17
10
3

08/27
20
13
6

07/30
23
16
9
2

06/25
18
11
4

05/28
21
14
7

04/30
23
16
9
2

03/26
19
12
5

02/26
19
12
5

01/29
22
15
8
1

F! R PR

ECTU E C" T U 15 CCTD BCT BCI Be?
1111 1111 2 2222 222 222 222
8888 9999 1111 222 333 444

A45

SPM FOR DOCUMENTS PRODUCED IN 1989 (cont)

12/31 -

24 -

17 -

10 -

3 -

11/26 -

19 -

12 -

5 -

10/29 -

22 -

15 -

8 -

1
-

09/24 -

17 -

10 -

3 -

08/27 -

20 -

13 -

6 -

07/30 -

23 -

16 -

9 -

2 -

06/25 -

18 -

11 -

4 -

05/28 -

21 -

14 -

7 -

04/30 -

23 -

16 -

9 -

2 -

03/26 -

19 -

12 -

5 -

02/26 -

19 -

12 -

5 -

01/29 -

22 -

15 -

8 -

1 -

PR

BCTO CCT B C T
2222 222 2222
5555 666 7777

I I

D C T D C C T
2 2 2 2 2 2 2
8 8 8 8 9 9 9

USING THE SOFTWARE PROCESS MODEL TO ANALYZE
A SOFTWARE PROJECT

by

I. SUE RANFT

B.S., Ohio State University, 1983

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

Software development has grown rapidly over the years. Models of the

software development process have been developed to provide a means

of controlling and visualizing software projects. In 1987 the Software

Process Model (SPM) was introduced. The SPM models software

development by modeling the evolution of the full set of documents

produced in a software process.

This paper evaluates the usefulness of the Software Process Model as a

management tool by applying it to a software project. This paper

describes the SPM and the software project to which it was applied. It

also presents information which was generated by reviewing the

project from the viewpoint of the SPM and demonstrates the SPM's

usefulness in managing a software project.

