
Performance Evaluation of Dynamic Signature File Methods

Jae So0 Yo0

Dept. of Computer Science & Statistics
Mokpo National University

Muan-gun, Chonnam, 534-729, South Korea

Abstract
With rapid increase of information requirements

from various application areas, there has been much
research on dynamic information storage structures
that effectively support insertions, deletions and up-
dates. In this paper we evaluate the performance of
the existing dynamic signature file methods such as
the S-tree, Quick Filter and H S file, and provide guide-
lines for the most effective usage t o a given operational
environment. W e derive analytic performance evalua-
tion models of the storage structures based on retrieval
t ime, storage overhead and insertion t ime. W e also
perform extensive experiments with various data dis-
tributions such as uniform, normal and exponential
distributions.

1 Introduction
The signature file is an abstraction of documents,

which has been extensively studied as a storage
structure for unformatted data such as texts or
documents 31. Since the size of the signature file is

file can effectively work as a filter that immediately
discards most non-qualifying documents for a given
query. Many studies on the storage structure of the
signature file have been made in the past, but they are
mainly used for static environments[5, 1, 71. Though
there are certain applications having archival nature,
i.e., insertions are less frequent and updates/deletions
are seldom necessary, many applications in practice
require a dynamic information storage structure[g].

There are a few signature file techni ues for dy-
namic environments. such as the S - t r e e [j , the Quick
Filte 91 and the HS File 81. In this paper we eval-

methods and address a guideline to choose the most
efficient information access scheme for a variety of en-
vironments. We first present the dynamic signature
file methods and develop their analytic performance
cost models. We also perform experiments for the
HS file, S-tree and Quick Filter. The experiments
are performed with various data distributions such as
uniform, normal and exponential distributions. The
10,000 and 100,000 documents with various types of
parameters and queries are used. We compare their
performance based on those cost models and exper-
iments. Finally, we provide guidelines for the most
effective usage to a given operational environment.

much smal I er than that of a data file, the signature

uate T l t e performance of t I, ose dynamic signature file

M. H. Kim, Y. J. Lee & B. M. IM

Dept. of Computer Science
KAIST, 373-1 Kusung-dong

Yusung-gu Taejon 305-701 South Korea

The remainder of this paper is organized as fol-
lows. In section 2, we describe an overview of the
signature file and dynamic signature file methods. In
section 3, we develop analytic performance models for
the dynamic signature file methods and compare their
performances through those models. Section 4 per-
forms experiments and shows that the experiments
agree with analytic models. In section 5, we sum-
marize the signature file implementation techniques
with emphasis on their convenience for the multime-
dia applications processed under different conditions.
Finally, conclusions are described in section 6.

2 Signature Files
A few works have been made to enhance the ba-

sic form of the signature file for the dynamic environ-
ments. They include the S-tree, Quick Filter and HS
file, which are described below.

2.1 S-tree
The S-tree is a dynamic tree organization of

signatures[2]. An S-tree groups similar document sig-
natures in its terminal nodes and then builds a B-tree-
like index structure on top of them. Even though the
deletion requires some extra effort, the S-tree works
well and always remains balanced. The filtering capa-
bility of an S-tree heavily depends on the query signa-
ture weight, which is the number of bits set to '1' in
the query signature. Thus, while the S-tree achieves
very good performance for the heavy query weights, its
performance degradation is quite significant for light
query signature weightstg]. I t also has much space
overhead.

2.2 Quick Filter
The Quick Filter uses partitioning principles based

on linear hashing for organizing and searching for the
dynamic data file[9]. This method tends to cluster
the document signatures having the same suffixes (or
prefixes) in the same page.

Since the Quick Filter is constructed based on lin-
ear hashing, the important characteristic of this orga-
nization is that all signatures in a page have the same
suffix (or prefix) corresponding to the level of hashing
h. The Quick Filter has the advantage that the more
the number of bits set to '1' in the query signature is,
the less the number of blocks accessed is. However, it

144
0730-3157/95 $04.00 0 1995 IEEE

has the same problem of serious performance degra-
dation for light query signature weights as that in the
S-tree.
2.3 H S File

The Hiifile is a height balanced multiway tree that
is a hierairchy of nodes containing signatures[8]. The
HS file has two types of nodes, namely a leaf node and
a non-leal' node. It uses the frame sliced approach[4]
to leaf node construction to improve a filtering effect
of the signature file.

The HSfile of type (61 , 6 2 , f) has the followingprop-
erties, where 61 and 62 are the blocking factors of a
leaf node and a non-leaf node respectively, and f is
the number of frames in the leaf node:

IEach path from the root to any leaf node has
the same length.
,4 leaf node consists of f blocks and one
pointer block. Each leaf node has at most
bl document signatures that are stored into
1' frames, and bl pointers to the correspond-
ing documents.
A non-leaf node is composed of only one
block. Each non-leaf node has at most bz
sons and signatures.
The signatures in the non-leaf nodes are
constructed by superimposing the signatures
c:ontained in their son node.

3 Analytic Cost Model
In this section we develop analytic performance

models of our HS file[8], the Quick Filter[S] and the
S-tree[2]. the notations and descriptions of the input
and design parameters are same with [SI. Now we will
examine the performance measures for given input and
design panameters. The measures we are interested in
are listed below:

e

e

e

3.1

RHS, RQF, RST : Number of disk block accesses
on retrieval for the HS file, the Quick Filter and
the S-tree, respectively.

OHS, 0 F , OST : Additional disk space(pages)
for the 8s file, the Quick Fil ter and the S-tree,
respectively.

IHS, I q F , 15. : Number of disk block accesses
on the insertion of one document for the HS file,
the Qiuick Filter and the S-tree, respectively.

Retrieval Time
To estimate the retrieval performance we assume

that a query with w words should be processed and the
document isignatures follow uniform distribution. For
the analysis, we make use of the following measures
for searching the signature file as well as retrieving
qualifying documents.

e &on-leaf : Number of accessed disk blocks when
accessing non-leaf nodes for a given query. This
is computed as ~ ~ ~ : (n ~ = , p(i)p(w * m, i)) + 1.

n;=,(@(i)p(w * m,i)) is the average number of
matched signatures in the height h- 1. The p(w*
m, i) is also computed as (1 - (1 - t)A(i))w*m and
the X(i) and @(i) are calculated as and

b (j)

c b W - N for i= l , 2, ..., h-2, respectively.

Rleaf : Number of accessed disk blocks when ac-
cessing leaf nodes for a given query. This is com-
puted as nfz:(p(i)p(w* m, i))(f *(1 - (1 -+)'") *
c). Here, f * (1 - (1 - i)'") is the average number
of distinct frames selected.

e Re : Expected number of bits set in the 1-bit
suffix of the query signature. This is computed

Here, P(j) is the
probability that j bits are set in the 1-bit suf-
fix of the query signature and can be written as

Cj=l m W , W (Q)) (j * P(j)) .

(WQ))
e h o d e : Number of accessed disk blocks when ac-

cessing nodes except root node
for a given query in the S-tree. This is computed

m,i) is the number of matched signatures at

According to these measures, we can calculate the
retrieval times of the HS file, Quick Filter and S-tree
as follows:

as E::;l(n:=l P (M w * m19) rIid=,(P(i)P(W *
dept h d.

RHS = &on-leaf + &eat

RST = &ode + 1

3.2 Storage Overhead
In addition, we make use of the following measures

for estimating the storage overhead needed to main-
tain the signature file.

e Olea : Additional storage space for maintaining
the f,af nodes in the H S file. This is computed
as [&(a + f)l*

e Osnon-lcap : Additional storage space for main-
taining the superior non-leaf nodes of leaf nodes in
the H S file. This is computed as [&I. Here,
the BO is [&I.

Additional storage space for main-
taining the: non-leaf nodes except superior non-
leaf nodes in the H S file. This is computed as
C;"=;"[&]. Here, the Bi is [a1 for each
i= l , 2, ..., h-2.

e Onon-lco

145

Osleaf : Additional storage space for maintaining
the leaf nodes in the S - t r ee . This is computed

f&l.
Osnon-leaf : Additional storage space for main-
taining the non-leaf nodes in the S - t r ee . This
is computed as c:i,'[&1. Here, the So is

[&I and the Si is [&I for each i=l , 2, ...,
sh-2.

According to these measures, we can calculate the
storage overheads of the H S file, QuickFi l ter and S -
t r ee as follows :

e O H S = Oleof + Osnon- leaf + Onon- leaf

N e OQF = Ba*lf

3.3 Insertion Time
We can calculate the insertion times of the HS file,

Quick Filler and S-tree as follows :

IHS = 2(h + f) - 1 + all where h is estimated
as [logbl+b2 N1-t-1, and a1 is the average number of
accessed blocks to reorganize the file when an overflow
occurs. The cy1 is estimated as 1-1.

I F = 2 + a2, where a2 is the average number of
over%ow pages accessed when inserting one document
and is estimated as [&I.

IST = 2sh + as , where sh is at most Fogk N1 - 1,
and a3 is the average number of accessed nodes to
reorganize the file when an overflow occurs. The a3 is
estimated as [el.
3.4 Performance Comparison

We compare the performance of the HSfile with the
S-tree and the Quick Filter using the developed ana-
lytic cost models. The values of each input and design
parameter are presented in Table 2 and are based on
[71.

Table 1 : The values for parameeters

We investigate the retrieval performance and stor-
age requirement of dynamic signature file methods in
the following three cases.

CASE 1 : A data file consists of 10,000 documents
and the page size is 1K bytes.

CASE 2 : A data file consists of 10,000 documents
and the page size is 2k bytes.

CASE 3 : A data file consists of 100,000 docu-
ments and the page size is 1K bytes.

11 ol wwds in Ox qwr).

Figure 1 : Analytic retrieval performance

To save the space, Figure 1 show the retrieval per-
formances of the dynamic signature file methods on
the CASE 3. The theoretical results show that the HS
file achieves about 240% and 300% performance gains
on retrieval over the Quick Filterand the S-tree on the
average. Table 3 illustrates the storage overheads of
the dynamic signature file methods on the three cases.
The storage overheads of the HS file, Quick Filter and
S-tree are about lO.l%, 11.5% and 18.7% on the av-
erage. The HS file uses the least storage space, while
S-tree is worst.

Since we assumed that document signatures follow
unform distribution, probabilities that overflow oc-
curs in the HS file, Quick Filter and S-tree are &,

and &, respectively. Therefore, the a1, a2 and
a3 are directly proportional to k, and k, respec-
tively. When the database consists of 100,000 doc-
uments and the number of frames is 8, the average
number of blocks accessed in order to insert one doc-
ument in the HS file, Quick Filter and S-tree is about
11, 2, and 8, respectively. That is, the Quick Filter
achieves the best insertion performance, while the HS
file is the worst. However, the difference of insertion
performance between the HS file and the Quick Fil-
ter is very small over that of retrieval performance
between them. As a result, since in the information
retrieval applications, retrievals occur much more fre-
quently than insertions, we can see that the HS file is
significantly better than other dynamic signature file
methods, in terms of whole system performance.

4 Experiments
In this section, to compare the performance of

dynamic signature file methods and investigate the
characteristics of the HS file, we actually implement
them and perform extensive experiments with vari-
ous data distributions: uniform, normal and e x p e
nential. Three basic distributions were used over the

b

146

Quick Filter

HS Fils 10215

Table 2 : Storage overhead

range of [--231, 231 - 11: 1) a uniform distribution, 2)
a normal distribution N(O,c) , where c = 1 / 3 ~ 2 ~ ’ and
3) an explonential distribution l / B ~ e (” + ~ ~ ’) / ~ , where
0 = 1 / 4 ~ 5 ! ~ ~ . The experiments are also performed for
various sizes of databases and various performance pa-
rame ters.

-m XI

U 0 1 frd“!€cs I ” tk ieafnodc

Figure 2. Storage overhead of the HS file

We use 100 sample queries to evaluate the char-
acteristics of the H S file and the performances of
the dynamic signature file methods. We discuss the
performance comparison of the dynamic signature file
methods with various numbers of frames and with var-
ious types of queries. For convenience, we discuss the
performance comparison of the dynamic signature file
methods when 100,000 documents with various num-
bers of fra.mes and with various types of queries are
used and the page size is 1 kbytes. First, we investi-
gate how much frame-based document signature con-
struction affects the retrieval performance. When the
number of’ frames chosen for word signature is six-
teen, we found that the retrieval performance of frame-
based document signature construction is about 20%
better than the conventional document signature ex-
traction method. Second, we experiment the retrieval
performanlce of the H S file according to the number
of frames in the leaf node when the number of docu-
ments is 100,000. We can see through the experiment,
that the larger the number of frames is, the better
the retrieval performance is. When the size of a doc-
ument signature is 512 bits and the size of a pointer
is 4 bytes, the HS file has at most sixteen frames in
the leaf node. The reason is that when the HS file
has only one pointer block in the leaf node, the size
of a frame signature must not be less than that of a
pointer. As a result, the retrieval performance of the
H S file using sixteen frames is about 3.3 times better
than that of the H S file using two frames.

According as the number of frames in the leaf nodes
is increased, the storage space that the HS file usee is
shown in Figure 2. We can see through the figure
that when constructing HS file, the more the num-
ber of frames in the leaf nodes, the higher the storage
space that it occupies. This is because according as
the number of frames in the leaf node is increased, the
occurrence rate of overflow in the HS file is decreased,
and thus the number of its internal nodes and the
height of HS ffile is reduced.

Figure 3 shows experimental results on retrieval of
each dynamic signature file method when data follows
uniform, normal and exponential distributions. The
number of frames in the leaf node of the HS file is six-
teen. In the figure, symbols U, N and E represent uni-
form, normal and exponential distributions, respec-
tively. Figure 3(a) shows that the H S file achieves
greatly similar retrieval performance independently of
data distributions. However, we can see through Fig-
ure 3(b) and (c) that the Quick Filter and S-tree are
somewhat dependent on the data distributions. The
retrieval performance of each method, when data fol-
lows uniform distribution, is better than that of each
method when data follows skewed distributions such
as normal and exponential distributions.

I 3 ?!1 E I

x of words in U% quny

(3 Hs file (h) Quick RitE

I of - d i n ulc qvry

(C) suec

Figure 3. Retrieval performance

Figure 4 illustrates the retrieval performance of dy-
namic signature file methods when data follows uni-
form distribution and the number of frames in the leaf
node of the HS file is 16. We can see through Figure 4
that the HS file is much more efficient than the other
dynamic signature file methods, independent of the
number of words in the query. From the experimental
results, we showed that the H S file achieved about 180 - 360% and about 200 - 400% performance gains on
retrieval over Quick Filler and S-tree, on the average.
This is because the H S file uses frame-based signature
extraction method and

When the number of
number of frames is 16, the storage overheads of the

147

uick Filter and S-tree are about 9.8%, 10.3%
and HSfiiel 21.2 a/ 0 , respectively. As a result, the storage over-
head of the HS file is much less than that of S-tree,
while it is similar to that of the Quick Filler.

When the number of frames in the HSfile is 16, the
average number of blocks accessed in order to insert
one document in the HS file, Quick Filter and S-tree
is about 20, 4 and 10 on the average, respectively.
We found that the the Quick Filter achieves the best
insertion performance, while the HS file achieves the
worst. The reason is that the Quick Filter is con-
structed based on the linear hashing and the HSfile
uses the frame-sliced approach to the leaf node. In the
information retrieval applications where retrievals oc-
cur much more frequently than insertions, however,
such difference of insertion performance among dy-
namic signature file methods can be ignored.

In order to verify the correctness of the analytic
model, the error rate is computed as follows, where E
and T indicate a theoretical result and an experimen-
tal result, respectively. The error rates on retrieval are
0.5 - 7% and 0.5 N 15% in case of 10,000 and 100,000
documents respectively.

Error Rate=[Max(T, E) - Min(T , E)] / M a z (T , E)
The error rates on storage overhead of HS file and

Quick Filter are very small. However the difference
between analytic model and experimental result of S-
tree is more than that of HS file and Quick Filter. The
error rates on insertion are very small. As a result, the
conclusion from the experiment is that the analytic
and experimental results agree well.

..
z

0 1 4 6 8 10 12
X Of wnd- I" Ihc que?

Figure 4. Experimental retrieval performance

5 Discussion
In this section, we summarize the results in a guide

that provides information for selecting a signature file
structure for dynamic applications. To do this, we first
present criteria that should allow users to express spe-
cific characteristics of their applications. They extend
criteria for storage structures by Tiberio. Secondly,
we provide guidelines for the most effective usage to a
given operational environment.
5,l Selection Criteria

Multimedia documents are typically large and can
be considered a8 a consecutive area of bytes with vari-
able length from the data storage point of view. They
are identified by a unique document identifier. Cur-
rently, we consider only documents with two types of
data, text and image among multimedia data types.
The text query expresses the fact that, in a typical
query on text data, only a small set of words is used

as a search pattern. Since the total number of words
in the natural language text is high, the selectivity of
individual words is also high.

The specification of a image data query reflects the
fact that the number of documents that can be rec-
ognized by image analyzers is much smaller than the
number of distinct words in a natural language text.
Obviously, selectivity of the image data descriptors is
much lower and the specification of a reasonable image
query leads to query signatures with higher weights
than for text queries.

In order to get a storage structure that is best
suitable for specific environment, we may classify the
methods according to their suitability degree for each
criteria. To do this, we have chosen the following lev-
els : A = excellent, B = good, C = fair, D = requires
a little effort, E = requires much effort, F = cannot
use at all.

Now the criteria for signature file structures are pre-
sented based on Tiberio's criteria[6]. The dynamic
storage structures may have the following four criteria
that influence their performance: 1) query signature
weight, (2) the size of a data file, (3 I storage overhead,
(4) support of applications.

As we have seen in previous section, query signature
weight is also related to the type of multimedia data.
Low-weight queries are typical for text data of nat-
ural language, while heavy-weight queries are typical
for image data such as technical drawing, photograph
and so on. Since the number of distinct words in the
text data is very large, the selectivity of one word is
very high and usually few words are enough to form a
selective query.

On the other hand, the number of distinct descrip-
tors in image documents is low. The reason is that
good general image analyzers have not been yet devel-
oped. Most of image analyzers depend on applications
and are capable of recognizing only specialized sets of
components classified as a descriptor. In order to find
an image document, we should give a query with many
descriptors because, in general, the selectivity of those
descriptors is very low. As a result, the query signa-
ture weights for image documents is very heavy. It
should be noted that the query signature weight does
not depend much on the number of descriptors in the
documents. The total of distinct descriptors is much
more important. We consider the following three cri-
teria regarding query signature weight: SS1 = low,
SS2 = medium, SS3 = high.

Since the performance of the storage structures de-
pends on the size of a document file in the signature
files, we consider the following three criteria: SS4 =
small, SS5 = medium, SS6 = large. One of criteria
that we have necessarily to consider is SS7 = support
of applications such as range queries, partial match
queries and synonym handling. The last criterion is
SS8 = space requirements. This will make it possible
to consider the storage structures according to their
convenience in terms of space overhead.

5.2 Guidelines for Dynamic Applications
Until now, we have investigated and analyzed the

performance and characteristics of dynamic signature

148

file organizations. Based on these researches, we ad-
dress a guideline to choose the most appropriate sig-
nature file structure for a variety of applications.

Since ad1 the information is very general and even
vague, a numeric form is less suitable. Therefore,
we evaluate various access methods using grades de-
scribed in the previous subsection. The main con-
tribution of this work is the performance comparison
framework that can be used to select a good imple-
mentation configuration for a specific problem. To
illustrate the process of decision-making, we consider
two different files of multimedia data. One is office
text data files and the other is a constantly growing
image file with few updates.

Table 4 shows the degrees of suitability of dynamic
signauture file methods according to the criteria of
storage structures. The SSF is a simple file of fixed-
length sigiiatures 91. It is called single-level signature
file or signature f! le method with bit-string represen-
tation. Table 4 is based on the results of performance
analysis of dynamic signature file methods based on
analytic cost models and experiments. For this ap-
plication such as the office text file, HS file is much
better than any other dynamic signature file method.
The reason is that a office text file is characterized by
low weight query signatures. The applications such as
image files are different because of large data files and
higher query signature weights that we can expect for
image queries. For such conditions, we recommend
that quzck filler and HS file are used. However, even
for high wleight queries, HS file is more efficient than
quick filter.

Q n i c k R l t a E

HS

D B B B A P B

B A A A A A P B

Table 4 : Degrees of convenience

6 Conclusions
We have evaluated the performance of dynamic sig-

nature file methods in terms of retrieval time, stor-
age overhead and insertion time. We have first de-
veloped analytic cost models and evaluated the space-
time performance of these methods in the various en-
vironments. Then, we have carried out extensive per-
formance experiments with various data distributions
such as uniform, normal and exponential distribu-
tions and a wide range of parameter values. We have
found that experiments closely agree with the ana-
lytic cost models, which strongly substantiate our per-
formance results and enable the analytic cost models
to be used for various types of environments that are
difficult to be constructed for actual performance ex-
periments. Through analytic cost models and various
experiments, we have shown that the HS file has im-
proved performance significantly in both the retrieval

time and the storage overhead over the methods pro-
posed earlier.

We have also summarized the dynamic signature
file methods with emphasis on their suitability for
dynamic applications processed under different con-
ditions. The criteria for dynamic storage structures
were presented for guidelines that can be used to ee-
lect effective implementations for specific applications.
They should allow users to express specific character-
istics of their applications. Based on the criteria, we
have provided a dynamic storage structure that can
outperform others for the most effective usage to a
given operational environment.

References
J . W. Chang. J . H. Lee and Y. J . Lee, "Mul-
tikey Access Methods Based on Term Discrimi-
nation a.nd Signature Clustering," ACM SIGIR,

U. Deppisch, "S-tree: A Dynamic Balanced Sig-
nature Index for Office Retrieval," ACM SIGIR,

C. Faloutsos, "Signa,t,ure-based Text Retrieval
Methods : A Survey, IEEE Computer Society
Technical Committee on Data Engineering, Vol.
13, No. I , Mar. 1990, pp. 25-32.

Z. Lin and C. Faloutsos, "Frame-Sliced Signature
Files," IEEE Trans. on Knowledge and Data En-
gineering, Vol. 4, No. 3, Jun. 1992, pp. 281-289.

C. S. Roberts, "Partial Match Retrieval via the
Method of the Superimposed Codes," Proc. IEEE
67, Dec. 1979, pp. 1624-1642.

P. Tiberio and P. Zezula, "Selecting Signature
Files for Specific Applications," 5th Annual Eu-
ropean Computer Conference, May 1991, pp. 718-
725.

J. S. Yoo, J. W. Chang, Y-J Lee and M. H. Kim,
"Performance Evaluation of Signature-Based Ac-
cess Mechanisms for Efficient Information Re-
trieval," IEICE Trans. on Infonnaiion and Sys-
tems, Vol. E76-D, No. 2, Feb. 1993, pp. 179-183.

J . S. YOO, Y-J Lee, J. W. Chang and M. W.
Kim, "The HS File : A New Dynamic Signature
File Method for Efficient Information Retrieval,"
5t h Int ern at ion a1 Conference, D EXA '94, Athens
Greece, September, 1994, pp. 571-580.

P. Zezula, F. Rabitti and P. Tiberio, "Dynamic
Partitioning of Signature Files," ACM nans. on
Information Systems, Vol. 9, No. 4, Oct. 1991,

1989, pp. 176-185.

1986, pp. 77-87.

pp. 336-369.

149

