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Abstract 

This p a p e r  descr ibes  4 s i m p l e  t r ee  p a t t e r n  m a t c h -  
i n g  a l g o r i t h m  f o r  t h e  code  g e n e r a t o r  of compi l e r s .  
T h e  i n t e r m e d i a t e  code  ( R e g i s t e r  T r a n s f e r  L a n g u a g e )  
is m a t c h e d  with t h e  tree-rewri t ing ru le s  of t h e  i n s t r u c -  
t i o n  d e s c r i p t i o n  w h i c h  describe t h e  t a r g e t  archi tecture 
t o  genera te  t h e  a s s e m b l y  code.  T h e  hash ing  f u n c t i o n  is  
u s e d  in o u r  s y s t e m  t o  t r a n s f o r m  4 t r ee  p a t t e r n  m a t c h -  
i n g  p r o b l e m  i n t o  4 s i m p l e  n u m b e r  c o m p a r i s o n .  Com- 
pared with GNU C c o m p i l e r  (gcc),  t h e  t r ee  p a t t e r n  
m a t c h i n g  t i m e  c a n  be reduced by 69% a n d  t h e  c o m p i l e r  
t i m e  by  6%, a n d  t h e  space  o f  t h e  i n s t r u c t i o n  descrip-  
t i o n s  c a n  be reduced by  4.10 t i m e s  o n  DLX a n d  2.14 
o n  SPARC. T h e  s i ze  of t ab le ,  w h i c h  is n e c e s s a r y  f o r  
code genera tor ,  i s  qui te  s m a l l  in o u r  m e t h o d .  

1 Introduction 

Code selection can be done by the tree pattern 
matching. Through instruction patterns, target in- 
structions are first described, then the tree pattern 
matcher searches for a cover [5] of the input tree. How- 
ever, if there are several possible covers in a given in- 
put tree, this process usually becomes indeterminat- 
ed. The cost of the instruction patterns indicates the 
quality of code such as execution time or code size. By 
choosing the code according to  the cost, the ambiguity 
of code selection is resolved. 

There are several methods to  select the cover of 
the minimum cost. Graham and Glanville [12] pro- 
pose a concept about the use of LR parsing. In this 
method, instruction patterns are written in prefix or- 
der and interpreted as a context free grammar. More- 
over, through the modified LALR(1) parser which is 
constructed by the above grammar, the cover can be 
found by parsing the input tree. Because the essence of 
the grammars is ambiguous, some heuristics and sim- 
plifications are offered to  resolve the ambiguity. Using 
general tree pattern matching method to  avoid ambi- 
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guities is guaranteed to  select the cover of the mini- 
mum cost. For instance, the general methods which 
use a dynamic programming algorithm are used in 
TWIG [l]. 

Our experience with the tree-rewriting rules has 
shown that such a method is easy t o  use and the speci- 
fication of the instruction patterns is independent from 
the actual tree pattern matching algorithm. Howev- 
er, at the early time of the architecture development, 
the architecture will be changed sometimes. Thus, a 
flexible compiler is necessary for the architect design- 
ing a new architecture. For the need of an architect, 
how to retarget a compiler to  different machines is an 
important issue. 

The goal of our research, A r d e n  (Architecture de- 
velopment environment) compiler, is design a flexible 
compiler to  help the architect retarget the compiler t o  
a new instruction set. A r d e n  compiler uses a simple 
and efficient tree pattern matching method to  produce 
an efficient code generator. By traversing a template 
of tree-rewriting rule from the bottom up, it can be 
hashed to  a charac te r i s t i c  n u m b e r  which can represent 
the rule. Then, the tree pattern matcher can generate 
the cover sets by comparing the charac te r i s t i c  n u m b e r  
of a subtree in an RTL tree with those of tree-rewriting 
rules from the bottom up. In order to  output efficient 
codes, the action phase will choose a cover set of a 
minimum cost instructions for each RTL tree. Thus, 
the tree pattern matching problem will become a sim- 
ple number comparsion. By changing the instruction 
descriptions, we can retarget the code generator to d- 
ifferent instruction sets more easily. 

In the next section, we illustrate the flowchart of 
A r d e n  compiler. Instruction description is discussed in 
section 111. Section IV describes a simple tree pattern 
matching algorithm. Section V will show the experi- 
mental results, and conclusions are given in the final 
section. 



2 Flowchart of Arden Compiler 

The compiler of Arden consists of the gcc front -end, 
the tree pattern matcher, the instruction description, 
and the action phase. The front-end of gcc takes c 
program as input, and outputs the intermediate code 
(RTL tree). A template of tree-rewriting rule in in- 
struction description which is used to  describe the 
target instructions can be hashed to a c h a r a c t e l i s t i c  
n u m b e r ,  and this character i s t ic  n u m b e r  is used to rep- 
resent the tree-rewriting rule which includes this tem- 
plate. The cover sets of an RTL tree are generated by 
the tree pattern matcher, which compares the charac-  
t e r i s t i c  n u m b e r  of a subtree in an RTL tree with those 
of the tree-rewriting rules from the bottom up. The 
subtree, matched with a tree-rewriting rule, will be 
replaced by the corresponding replacement node the 
replacing process will continue until the root of the 
RTL tree is encountered. The action phase outputs 
the assembly code which has a minimum cost among 
the cover sets for the target machine. 

C program 

1 

Cover sets 

Assembly code 

Figure 1: Flowchart of Arden compiler 

3 Instruction Description 

3.1 Insitruction Description 

In order to generate the machine assembly code, 
the instruction description of a target machine can be 
represented by the tree-rewriting rules which contain 
macro expression, a replacement node, a template, 
and sets of condition expressions, cost, and action. 
A tree template, composed of a replacement node and 
a template, represents a computation which is per- 
formed by one or more machine instructions. A set 

of condition expression is used to select a proper ac- 
tion. After a template has been matched with a sub- 
tree in an RTL tree, the condition expression must be 
checked. The syntax of a tree-rewriting rule in an in- 
struction description is described as the following: 

%defineinsn 
0 Macro expression Q 
{ Replacement +- Template } 
Q Condition expression1 Q 
Q Cost2 Q 
{ Action1 1 
Q Condition expression2 Q 
Q c o s t 2  Q 
{ Action2 } 

0 Condition expressionN Q 
Q CostMQ 
{ ActionN} 
% 

The entry between two @s is optional. 

M a c r o  e x p r e s s i o n  defines the macro strings which 
will be expanded in template, condition expres- 
sion, or action. 

R e p l a c e m e n t  is a replacement node, and t e m p l a t e  
is the representation of an RTL tree. 

C o n d i t i o n  e x p r e s s i o n  will settle some constraints 
for the operands in the template and will be 
checked by the tree pattern matcher when the 
template is matched with a subtree in an RTL 
tree. 

C o s t  is the execution cycle time of the action code. 

A c t i o n  returns the assembly code for the rule. 

For example, add  and sub  instructions in SPARCar- 
chitecture can be defined in cane rule by the following 
macro expression. 

%defineinsn 
@ VAR macroaperator = {”plus” ,”minus”} 

& macro-opcode = {”add”,”sub”) 62 
{ (I SI 0) c (macro-operator:SI (r SI 1 )(I SI 2 ))} 
@ %i2 < 4096 and %i2 2 -4096 62 
@cost=l@ 
{ macro-opcode %rl ,  %i2, %rO } 
Q %i2 2 4096 or %i2 < -4096Q 
@cost=3@ 
{ ”sethi hi(%i2), gl; or 10(%0;2), gl, gl; 

macro-opcode %rl ,  gl, %rO;” } 
% 

The above a c t i o n  is just a piece of SPARCassembly 
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code. In this m a c r o  express ion ,  macro -opera tor  is ei- 
ther plus or minus, and macro-opcode  is either add or 
sub. The applicablilty of the rule will be settled by 
a set of condition expression. The operands contain 
strings like %m and %in where n is the order of the 
operands in the tree template. For example, a target 
register operand is represented by the string %TO, and 
the immediate value of the second operand by %22. 
When the template is matched with a subtree in an 
RTL tree, the tree pattern matcher will check the sec- 
ond operand %i2. If the value of %i2 is between -4096 
and 4095, the code of a c t i o n 1  will be outputed; other- 
wise, the code of a c t i o n 2  will be output. The action of 
the tree-rewriting rule is outputed in the action phase 
and consists of statements which are assembly codes 
or assembler modules. For example, if macro-opera tor  
is replaced by p l u s  in the template, the macro-opcode 
will be replaced by add.  This rule indicates that the 
target register is equal t o  the result of the first source 
register plus the immediate value. For example, if the 
RTL tree is “reg 3 +reg4 + 30”, “(r SI O)+-(plus :SI ( r  
SI 1 )(I SI 2 ))” can be matched in the tree-rewriting 
rules, and thus the instruction “ a d d  r4, 30, TJ’ is out- 
puted. 

3.2 Tree-rewriting Rules 

The front-end of A r d e n  translates source programs 
into an intermediate representation (RTL).  The RTL 
program is a series of expression trees which are then 
transformed into postfix order for the bottom-up com- 
parison. Fig. 2 shows the RTL of an assignment 
a:=b+l in which both a and b are local variables; one 
is stored at offset 4, and the other at offset 8 for the 
stack pointer which is stored in register sp. The m e m  
operator will return the content of a memory location. 
In translating an  RTL tree, there are two steps:(l) 

/:= \ 
mem 

I 

SP 

SP 

Figure 2: Intermediate representation of a:=b+l 

traversing the tree in postfix order and (2) producing 
code for each individual node. Each nonterminal node 
in the template represents an intermediate result cal- 
culated and will be replaced by a replacement node in 
tree-rewriting rules. Fig. 3 shows the tree-rewriting 
rules needed to  translate the RTL tree of Fig. 2. The 

instruction add of rule1 in Fig. 3 is to  add the con- 
tent of a memory location (addressed by the sum of 
stack pointer and an offset) and a register, and returns 
the result into a register. By repeatedly searching, a 

Rewrite rule cost Action 

Rule 1 : 
regi - ,+, 

J I add rt, rj, ri I 5 

/+\ 
sp const 

Rule2: 
reg,- const 1 mov const, ri I 

Rule3: 

/:=\ 
null C- 

/+\ 
sp const 

Figure 3: Tree-rewriting rules for a:=b+l 

cover set=( 2,1,3} 
n 

U 
rule1 

Figure 4: The cover tree for a:=b+l 

subtree in an RTL tree can be reduced to  a replace- 
ment node, and the RTL tree can be rewritten by the 
tree-rewriting rules. After tree pattern matching, the 
nodes of an RTL tree will be marked with cover sets 
which include all the possible matching combination- 
s of the replacement rules, and the subtrees will be 
replaced by replacement nodes. The labeled tree is 
called a cover tree [5]. Fig. 4 shows how to transform 
an RTL tree into a cover tree. 
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4 A Simple Tree Pattern Matching Al- 
gori t hm 

+ 

The target assembly code is generated by tree pat- 
tern matching in which an RTL tree is reduced into 
a replacement node by repeatedly searching for the 
subtree in the RTL tree. The subtrees, matched with 
template, will be replaced by the corresponding; re- 
placement node. By using the hashing function from 
the bottom up, each node of the template can get it- 
s own c h a r a c t e r i s t i c  n u m b e r ,  then the tree-rewriting 
rule can be marked with the character i s t ic  n u m b e r  of 
the root in the template. The cover sets of an RTL 
tree are generated by the tree pattern matcher which 
compares the c h a r a c t e r i s t i c  n u m b e r  of a subtree in an 
RTL tree with those of the tree-rewriting rules from 
the bottom up. Then, the action phase will choose 
a minimum cost instructions for the output assembly 
code. The hashing function is defined as F(root,  left ,  
right)=(root+left*right) mod p r i m e  - the root  is the 
root of the tree, le f t  is the left subtree of the root, r ight  
is the right subtree of the root, and the p r i m e  number 
is 17041. Hence, we will represent each operator and 
terminal node with a different number. Below is an 
example of operator/terminal node representation. 

operator/terminal 1 different number 
ree I 203 

302 
I mem I 204 I 

Rewrite rule Cost Action Characteristic number - 
Rulel: 

1 add rj, rk, ri 7429 reg,- + 
/ \  

reg, regk 

Rule;?: 
reg,-)- + Id m[rj], rt 

3 addrt,rk,ri 14759 / \  ym reg2 

Figure 5: Tree-rewriting rules represent some instruc- 
tions of a target machine 

After applying the hashing function F into tree- 
rewriting rules, we can get the character i s t ic  n u m b e r  
for each tree-rewriting rule in Fig. 5. The processes of 
character i s t ic  n u m b e r  calculation are depicted as the 
following: 
The first rule: F(+, reg,, regk)=(302+203*203) mod 1704k7429 

The second ruh: F(mem, reg,, null)=(204+203*1) mod 17041=407 

F(+, mem[regj], regk)=(302+407*203) mod 1704k14759 
The third rule: F(+, regj, regk)=(302+203*203) mod 17041=7429 

F(mem, regj + ‘egk, nul1)=(204+7429*1) mod 17041=7633 

RTL tree 

(Characteristic number=7429) 

Rule 2 
(Characteristic number=14759) 

(Characteristic numbe~7633) 

Treerewriting rules 

Figure 6: Simple tree pattern matching by the hashing 
function 

The tree-rewriting rules in Fig. 5 represent some 
instructions of a target machine. Each rule is marked 
with a character i s t ic  n u m b e r  computed by the hash- 
ing function. In tree pattern matching, the assembly 
instruction of the target machine will be generated by 
the action of a tree-rewriting rule. To illustrate, let 
us traverse the RTL tree by tree pattern matching. 
The process is shown in Fig. 6. After the character -  
i s t i c  n u m b e r s  of the three rules have been generated, 
the tree pattern matcher will traverse the RTL tree 
from the bottom up. The tree pattern matcher will 
compute the character i s t ic  n u m b e r  of a subtree in the 
RTL tree - F(+, reg4 ,  reg5)=’7429. Then, Comparing 
the character i s t ic  n u m b e r  7429 with those of the tree- 
rewriting rules, we find that rule1 matches with the 
subtree of the RTL tree. The template of the first 
rule in which j=4 and k=5 matches with the leftmost 
leaf of the RTL tree. If we use this rule, the subtree 
“reg4+reg5”  of the RTL tree will be replaced by ~ e g 7 ,  

and the instruction “ a d d  r4, r5, r7’ will be generated. 
The second rule in which i=3, j=7, and k=6 matches 
with the root of the RTL tree. If we choose the second 
rule, the RTL tree will be replaced by a single node 
regs; then both instructions “ld m[r7], r8” and “add 
r8, r6, r3” will be generated. The code which gener- 
ated by the tree pattern matcher to translate the RTL 
tree are shown as the following: 

add r4, r.5, r7 
2d m[r7], rR 
add r8, 7-6, 7-3 

The tree pattern matching algorithm includes two 
phases: 1. the preprocessing phase. 2. the tree pat- 
tern matching phase. The preprocessing phase parses 
the instruction description, and calculates the char- 
ac te r i s t i c  n u m b e r  for each tree-rewriting rule. For a 
specific target instruction set, the preprocessing phase 
only needs to be done once. As for the tree pattern 
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matching phase, an RTL tree can be parsed by con- 
sulting the character i s t ic  numbers of the tree-rewriting 
rules t o  produce the cover sets. 

4.1 Preprocessing Phase 

The use of macro strings is for the reduction of tree- 
rewriting rules which are used to  describe the target 
instructions. Then, in preprocessing phase, the macro 
strings will be expanded by the tree pattern matcher 
for each tree-rewriting rule. The  tree pattern match- 
er first expands macro strings for each tree-rewriting 
rule. Next, the tree pattern matcher computes a char- 
ac ter i s t ic  number for each template, and then sorts 
the templates again according to  their character i s t ic  
numbers. 

4.2 Tree Pattern Matching Phase 

There are two steps to  traverse an RTL tree in the 
tree pattern matching phase. The first step is to tra- 
verse the RTL tree in postfix order. Then, each node 
in an RTL tree will get a character i s t ic  number, and 
the tree pattern matcher will compare this character -  
i s t i c  number with those of the tree-rewriting rules. If 
the character i s t ic  number of a subtree in an RTL tree 
is equal to  that of a tree-rewriting rule and one of the 
condition expressions in this rule can be satisfied, the 
tree pattern matcher will record the information of 
match node in the match parsing stack. The match n- 
ode is the root of the subtree in an RTL tree which can 
be replaced by a replacement node. The second step is 
to  replace each match node by a replacement node in 
the match parsing stack until the root is encountered. 
After that ,  the tree pattern matcher outputs the cov- 
er sets. If there exist multiple cover sets, the action 
phase will choose a one of minimum cost. The cover 
sets which are generated from the traversal of an RTL 
tree are shown in Fig. 7. 

For the match node “mem”, this subtree can be 
matched by the template of rules, then we can rewrite 
this subtree as a single replacement node reg7. Next, 
“reg7+reg6” can be matched by the template of ru le l ,  
and the cover set[l]={3, 1) will be output. As for the 
match node “+”, this subtree can be matched by the 
template of rule1 and this subtree can be rewritten as 
a single replacement node reg7. Then, the rest of the 
RTL tree can be matched by the template of ruZe2. 
At last, the cover set[2]={1, 2) will be output. There 
are several different combinations of rules which are 
matched into an RTL tree. If several different cover 
sets are matched into the root of an RTL tree, the one 
of the minimum cost will be selected. 

reg,+- a, match node = mem 
cover s e t [ ~ l = ( ~ )  reg, - a & reg, _ _ _ _ _ _  * / \  

matchnode=+ reg, reg, 
cover set[11=(3,1)1 

1 
RTL tree 

f match node = + 
f cover set[2]=( 1) reg, 

t match node = + 
cover set[2]=( 1, 2) 

y m  reg, 

reg7 

Figure 7: The cover sets of an RTL tree 

5 Experimental Results 

We have implemented two code generators for DLX 
and SPARC. The comparison of number of rules and 
size of instruction descriptions between gcc and Ar- 
d e n  is shown in Table 1. Compared with gcc, Arden 
use fewer rules t o  describe a target architecture. In 
addition, the preprocessing phase takes 0.2 second for 
DLX and 0.6 second for SPARC. The tables generated 
by preprocessing phase occupy 29 KB for DLX and 6 5  
KB for SPARC. The program size of the tree pattern 
matching phase is 87 KB. Table 3 summarizes the tree 
pattern matching time of the SPEC [13] benchmarks 
compiled by gcc and Arden. Compared with gcc, the 
average matching time can be reduced by 69%. In Ta- 
ble 4, only the compiler time is included in the three 
comparisons with the manufacturer’s C compiler (c- 
c), gcc, and Arden. The compiler time in Arden is 
less than in gcc and cc. Arden runs 1.06 times faster 
than gcc on average. All the above measurements are 
carried out on a SPARC 10 workstation. 

6 Conclusions 

In the paper, we have presented a simple number 
comparison method for tree pattern matching to  pro- 
duce a code generator. Our experiment shows that 
this method can reduce the tree pattern matching time 
by 69%, and the instruction descriptions size of gcc is 
3.92 times more than Arden on average. Moreover, 
this method can get an  optimal instructions for an 
RTL tree. Because table generated through prepro- 
cessing phase is very small, the  space which code gen- 
erator needs is greatly reduced. In other words, the 
tree pattern matching time and the complexity of s- 
pace get a significant reduction. Furthermore, if we 
want to retarget the code generator t o  different ma- 
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I . .  , Annual Symposium on Principles of Programming 

Arden 
.05 

.05 
-08 
.06 
.05 

.oa 

Languages, 1987, pp. 168-177. 

[4] Davison, J. W., and Fraser, C. W., ”The Design 
and Application of a Retargetable Peephole Opti- 
mizer,” ACM Trans. Program Lang. Syst., Vol. 2, 

Table 1: Instruction descriptions size for gcc and .Ar- No. 2, Apr. 1980, pp. 173-190. 

den [5] Emmelmann, H. S., and Landwehr, F. W., ”BEG 
- A Generator for Efficient, Back Ends,” Proceed- 
ing of ACM Conference on programming Language 
Design and Implementation, Vol. 24, No. 7, June 
1989, pp. 227-237. 

[6] Fraser, Christopher W., and Hanson, David R., ”A 
Code Generation Interface for ANSI C,” Software- 
Practice and Experience, Vol. 21, No. 9, Sep. 1991, 
pp. 963-988. 

Table 2: Tree pattern matching time for C SPEC 
Benchmarks in seconds 

chines, what we need is only to  change the instructi.on 
descriptions. Such a characteristic can help the archi- 
tect to  design a new architecture more easily. 
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