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Many world wide web applications require access, transfer/ts variants) is that they_do not provide any information about the
and synchronization of large multimedia data objects (MDOs)eXpected number of times each state (represeMib® or
(such as, audio, video, and images) across the communicatidiypermedia document) is needed in a unit time interval. Without
network. The transfer of large MDOs across the networkthis information, the total response time in BidDS cannot be
contributes to the response time observed by the end users. As tgtimated. In this paper, we design and evaluate data allocation
end users expect strict adherence to response time constraints, #g0rithms so as to optimize the response time for a set of end-
problem of allocating these MDOs so as to minimize responseéISers while adhgnng to the synchro_nlzatlon requirements of the
time becomes very challenging. The problem becomes mord!DOs presentation iDHDSs In Section 2, we propose a graph
complex in the context of hypermedia documents (web pages)otion to represent navigation in the hypermedia systems and we
wherein these MDOs need to be synchronized duringintroduceOCPN modeling specification after that. In Section 3
presentation to the end users. Since the basic problem of day4e develop a cost model for the data allocation problem in
allocation in distributed database systems is NP-complete, a neddHDSs In Section 4 we describe the proposed algorithms based
exists to pursue and evaluate solutions based on heuristics f& Hill-Climbing ~and  probabilistic neighborhood search
generating near-optimal MDO allocations. In this paper, we i)approach_es. In Section 5, we include the experimental results,
conceptualize this problem by using a navigational model to@nd Section 6 concludes the paper.
represent hypermedia documents and their access behavior frol Modeling Hypermedia Documents
end users, ii) formulate the problem by developing a base casg q Navigation Model for Hypermedia Documents

cost model for response time, iii) design two algorithms to find
near-optimal solutions for allocating MDOs of the hypermedia _ A hypermedlalsystem Is a dlrepted grapB(HE) whereH
={Dy, Dy, ..., D} is the set of vertices, eaﬂ?, representing a

documents while adhering to the synchronization requirement . ;
and iv) evaluate the trade-off between time complexity to get th ypermed|a qlocument, and each directed edge Dipto Dy is
a link denoting access of documedj: from documentD,,

solution and quality of solution by comparing the algorithms .
solution with eqxhau)s/tive solution 0\>//er a sgt of gxperimgnts. Therefore, a user can start browsing the documents from (say)
] documemDp and then proceed to access docurﬁlgqt and so

1 Introduction on. We have a label attached to each directed edgesaaD,,

Many world wide web applications require access, transfergiving the probability of end users accessing docurgnirom
and synchronization of multimedia data objects (MDOs) (such aglocumentD, These probabilities are generated by gathering
audio, video, and images) [1], [4]. Moreover, the quality of statistics (about document access, and browsing through logs of
services provided in presenting these MDOs to end-users hagsers browsing activity) about end-user behavior over a period of
become an issue of paramount importance. End users havine. Further, since a user may end browsing after accessing any
started expecting strict adherence to synchronization andiypermedia document, the probabilities of out-going edges from
response time constraints. Any application or system whicha vertex do not add up to 1.0, and the difference is the probability
cannot respond quickly and in timely manner in presentingof ending the browsing at documddy, and is shown by an edge
MDOs to end users is at a clear disadvantage. In order to managennecting to the ground (see Figure 1). Arxn matrix
and present large number of hypermedia documents (web pagegvigation_prob is used to capture this information.
and their MDOs, distributed hypermedia database systems have Example 1: Suppose we have four hypermedia documents

been proposed [16]. In fact, a set of web servers can be treated BS - D, Figurel shows the navigation model and the
a distributed hypermedla database SyStem (DHDS) As th%orrespondmg na\/|gat|on prob matrix.

hypermedia documents may not be located at the end users sites,
they need to be transferred across the communication network
incurring delay (increasing response time) in presenting the
MDOs of the hypermedia documents. Therefore, the allocation of
the hypermedia documents and their MDOs govern the response
time for the end-users. Moreover, as the MDOs in a hypermedlao'1
document need to be synchronized, the allocation should also ! i . -
Figure 1: Probability model of navigational
adhere to these synchronization constraints. links between hypermedia documents.

D, D, D; D,
D, |0 0207 0
D, |0 0 0.60.
D, 1O 0 0 O
D, |05 0 04 0

The main problem with existing models for synchronization

. ' F h igational l, Icul h
requirements (such asyTime(5]. [9], OCPN[8], AOCPN[10], rom the above navigational model, we can calculate the

probabilities of accessing a hypermedia docuni@pt from



documenD,, This is done by considering all possible paths to MDO A must be shown in sync with it. TRECPNspecifications
Dy from documentD, and calculating the probability of of hypermedia documeni, to D4 are shown in Figure 3.
accessind,, from documenD,, for each path, and taking the (40,15,2280) oCP (0,30,2280)

maximum of all these probabilities. Note that we assume each Q

document access and browsing from one document to another to ral

be independent events. Therefore, for a path witdges from (0.30,2870)

documenDID to documenDp , the probability of this path is the @ e
OCPN; OCPN, (0,80,1220)

to be less than a parameter valogl);, LetR be then x n matrix,

with each elemen; giving the cumulative long run probability e

product ofx probabilities for the edges. Since there can be

potentially infinitely long paths, we limit the length of the path by

of accessing documeDrp, from documenDp. Figure 3: TheOCPNspecification of each hypermedia document;
the tuple is [start time, duration, media size in kilobytes].

limiting the value of the cumulative probability given by the path (0:40,2870)(40,30,122(

Example 1 (Cont.): From the navigation model, we can
construct a tree for each document representing the possib@ Cost Model of Data Allocation Scheme
navigation path for each session starting from that document. Taple 1 lists a number of notations used throughout this
These are given in Figure 2. We set tipg value to be 0.01. paper.
Notice that we do not need to further expand a node if therapie 1: Symbols and their meanings.
document represented by that node is the same as that of the rq@ympor [ Meaning

(This happens in the first tree in Figure 2). Therefore, if we star S The th sie

navigating the hypermedia system from docuniptwe have D, Thejth hypermedia document
probability 0.2 that we browse documény. For documenbDs, oN Thekih MDO

we have probability 0.7 if we follow the right path frddg, but The number of sites in the network

probability 0.2x 0.6 = 0.12 if we follow the path

m

g - n The number of hypermedia documents in the database systen
D; - D, » Ds. In this case, we use the greater probability to
P
p

The number oMDOs in the database system
| The user navigation pattern matrix of site
i The probability of using document  as initial document if the

represent the long run probability of browsgfrom D, as 0.7.
Similarly other cumulative probability values are calculated.

Therefore, the matriR is i’ initial documnet ig in the previous navigation session at kite
D1 D2 D3 D4 B The navigation initial document frequencies matrix
D1 1 0.2 07 0.0 b.. The frequency of using thth document as initial point at thid sitq
1 . .
D2 10.15 1 0.6 0. C The transmission speed matrix of the network
[ The transmission speed from dit® sitei’

D3 | O 0 1 0 i’

A The access frequencies matrix
& The access frequency of documgfrom sitei
The allocation limit vector of the sites

D4

Ii The allocation limit of sité

The hypermedia document dependency matrix
The probability of retrieving documerjt  if browsing initial

document i§
OCPN; | The OCPNspecification of documeit
u The use matrix
Figure 2: Navigation path starting from each Uik The boolean value of whether documensesviDO k
hypermedia documenbifl is set as 0.01). d“rjk The presentation duration BfDO kin documenj
. . . . start; The presentation starting time DO kin documen
2.2 Modeling Synchronization Constraints on MDOs Bl P : gt in document
i . . sizg The size of théth MDO
W(_a use th@bjectCQmposnmnPetr_l Nets (OCPNSs) [8] for. bpl The browsing probability Tt
modeling the synchronization constraints among the MDOs in ot The expected number of imes docurentl be retieved

hypermedia document. Petri nets are composed by Places
(representing MDOs) and Transitions. We can transverse
Transition (called as firing) if all Places pointing to this
Transition have a token and are in an unlocked state. When the
Transition fires, the Places that the Transition is pointing to will 3-1 Overview

become active (a token is added to these Places) and locked. In order to reduce response time for the end-users browsing
Places will become unlocked when their durations have expiredactivities, we need to develop a cost model for calculating the
All OCPN models can be mapped to a correspondiggime total response time observed. This response time depends on the
model [2]. In Figure 3, the following synchronization constraint location of the MDOs and the location of the end-user. Further, it
is represented in OCPN1: MDB®has to be shown at the start of depends on the synchronization constraints among the MDOs of
browsing the hypermedia document, and after 40 units of timghe hypermedia document browsed. The hypermedia document

The delay matrix
i The delay of presentation starting time of documentsitei
The total delay




navigational model presented in Section 2.1 is used to estimate A box will be added at the beginning of ed@@PN which
the number of accesses (times browsed) to each MDO from eaalepresents the delay in starting the presentation of the
site. This gives us information regarding affinity between thehypermedia document so as to adhere to the synchronization
MDOs and the sites of the distributed environment. Typically,requirements. The duration of this delay box is related to the
one would assign a MDO to a site which accesses it most. But thisrowsing site and the sites where MiBOs in the document are
may incur large delay for other sites which need to access thiallocated. Thus, we usl,  to represent the duration of the delay
MDO. Further, synchronization constraints may imposebox when siteS accesses documBnt
additional delays in transferring the MDO to the end-user site.  From theOCPN representations, we have the starting time
'I_'h_is is dqne when two streams of MDOs nged to simultaneou_slyétartJk and durationdur,,  of eacklDO O, in each document
finish their presentation, and one of them is for shorter duratlonDj . In addition, then x | usage matrixis generated from the
than the other. Since we are buffering the MDOs at the user site§cpN specifications. If documerd; usMDO O, then set
before the start of the presentation, the MDO allocation problem,, o 1, otherwise, set,  to 0. Then, by multiplyigy U, we
needs to minimize this additional delay that is incurred becausgap, estimate the access frequencies of B from each site.
of the synchronization constraints. We also take into|etgizg be the size dfiDO O, .
consideration limited buffer space constraint at end-users site and . _ .
user interaction during MDO presentation. With this |nformat|qn, we can calculath by,
_ sizg

3.2 Total Response Time Cost Function dj = maxyy, - (— —dur—start)  EQ3.1

Suppose there arm sites in the distributed hypermedia . . :
database system. L&  be the name ofisithere1<i<m . wheresitg(K represents the site the is e.lllocated.
Thesem sites are connected by a communication network. A  We can calculate the values ofdjl 1<i<m,1<j<n by
communication link between two site asd will have a Using the above for_mula. This formula means t_hat the dglay is
positive integerc, associated with it giving the transmission€dual to the maximum value of (transmission duration -
speed from sitéto sitei’ . Notice that these values depend on thePresentation duration - presentation starting time) for b0
routing scheme of the network. If fixed routing is used, we canil the document. A negative value implies that the transmission
have the exact values. However, if dynamic routing is in used, wdiMme is shorter than the presentation time, we can start presenting
can only obtain the expected values. Let thera bgpermedia e MDOS in the hypermedia document as soon as the MDOs

documents, calledD;, D,, ..., D,}  accessikg/DOs, named arrive at the end-user site. A positive value implies that we must
{0, 0, ..., 0 . delay the presentation, otherwise the MDOs presentation will end

F th iqati del fructt after the synchronization time, and hence will not adhere to the
rom the navigation model, we can constructtrees %/nchronization constraints.

representing the navigation path of the session starting from eac )
document. As in Section 2.1, we must limit the level we willuse ' nerefore, we have the cost function,
for our cost model by a threshold valbpl, say 0.001. These t= ‘gSingu Lay; EQ3.2
trees will give us some information about the probabiijty of

retrieving documenbD;  if we start navigating frdby

site(K O

By minimizing this value through the change of the function
sitg(K , we obtain the data allocation scheme that is optimal (the

For each site, we use an irreducible continuous-timed(gelay incurred) response time is minimal), while adhering to the
Markov process [13] to model the user behavior in initial gynchronization constraints.

browsing document (i.e., the document first browsed) as . .
stationa?y regular tra(nsition probability matrif,1<i <nz . 33'3 User Interactions and Buffer Space Constraints
These processes will converge in the long run and from these T1he model presented above does not consider user
long run behaviors, we can estimate the probability of browsindnteractions and buffer space constraints. It assumes that the user
each document from each site as the initial browsing documengloes not interrupt the presentation and the size of the local
These Markov chains will have + 1 states representing the Storage facility is large enough for storing any one of the
probabilities of using each of the documents as the initialyPermedia documents in the hypermedia database system. By
browsing document (n states), and probability of not browsingincluding user interactions and buffer space constraints, there can
any of the documents (n+1l)th state). Normalize the be four different cases for hypermedia document allocation
probabilities derived from long run behavior Markov chain at Problem given below.
each site and multiply them by a const@mnwe have the expected No user interaction and unlimited buffer spaceThis
frequencies of initial document out 8fbrowsing sessions. The is essentially the best scenario, because we can retriédB@l
resultant information is represented byrarx n maarix in a hypermedia document at the beginning since there is no
We multiply this matrix to theyx n  matriR obtained from  Storage limitation. As there is no user interaction, the data can be

the hypermedia document trees to generatenann mistrix discarded immediately after use. The cost function for the

with entriesa; giving the expected number of tings  needs td©SPONSe time for each hypermedia document, as presented in

retrieve theMDOs in D; . Further, we need the starting time, Section 3.2, is the maximum of the delays of the embedded

duration, size, and presentation rate of eMO in each MDOs for satisfying the synchronization requirements.

hypermedia document. This information can be obtained from  User interaction and unlimited buffer space By

the OCPN specification of MDOs in a hypermedia document. including user interactions, some of f®0Os in a hypermedia
document may need to be presented multiple times (e.g. play in



reverse or stop and resume later). However, as there is unlimited
buffer space, the system can storeMIDOs of a hypermedia

; 38 41
document once they are retrieved. Therefore, the delay for
handling the user interactions is some local processing time that
is irrelevant to the data allocation of M®Os. The cost function Figure 4: The transmission speed between
. . . the sites in Kilobytes per second.
is thus same as that in the Section 3.2. sl 9 3
No user interaction and limited buffer spaceln this s1 o 38 a4

scenario, the system can not use the retrieving all the MDOSs in
. S2 |38 0 35

advance strategy. Instead, the system must retrievMEes

only when it needs to present thed®Os. Therefore, every S3 41 35 0], )

synchronization point in the hypermedia document may cause Suppose after the analyses of the long run behavior of the

some delay and the cost function in such situation is thdVlarkov chain in each site, the expected starting document

summation of these delays. Indeed, the model presented ifiequencies out db= 900 browsing sessions, matexs,

Section 3.2 can be generalized to deal with this scenario. D1 D2 D3 D4

First, we need to decompose each document into component S1 1100 200 300 200

sub-documents. From th®@CPN specifications, we have the S2 225 450 225 0
states representing thDOs in each document. Denote this set S3 300 100 100 4Q0,
of states aSand forls, s0 S , we can get the starting time and  Then the matriyA (B x R) s,

ending time of the state (i.e., presentation of the corresponding D1 D2 D3 D4

MDO) from theOCPN specifications. Then, we can decompose

the document by composing 8MDOs starting at the same time SL | 245 340 630 29

into a sub-document (so if there &r&DOs there will beh sub- S2 12925 495 6525 1485
documents in maximum). S3 | 515 200 530 448
User interaction and limited buffer spaceIf we know In this example, there areMDOs, namely A, B and C (E is

the expected number of times each sub-document will beé delay state, so there is no associative adii2D). If we
presented in each hypermedia document, we can calculate tt@locate A at Site 2, B at Site 3and C atsite 1, then  is equal to,
expected response time of each document in each site. It is just g = ma><%E2—2——%— 15_4(% (1220 o M- 5

the weighted sum of the delays of the sub-documents in the 38 Ua1 ar

document. To calculate the expected number of times each Similarly, we can calculate the values of all
document is needed, we must know the probabilities of relevantl;, 1<i<3,1<j<3 when we have theVDO allocation

user interactions (such as reverse playing, and fast forwardscheme. And the total response time delay will be,

Once we have these probabilities, we can calculate the expected t = 11430+ 4573.25% 2913@ 86291.25.

number of time each document is presented by employing the Suppose we add user interactions and worst case buffer space

first step analysis methqd [13]. Note tha_t these probapilities CaRonstraints to this hypermedia database system. After adding the
be generated by observing user interaction over a period of t'm%robability of relevant user interruption to tHdDO, the

For example, suppose the relevant probability o&O k augmentedCPNof D, is shown in Figure 5.

in a documenitis ip;x . Assume that the expected number of time ) (40,15,2280)
. . . OCPN, :
thisMDO is needed isndo_ej . Then, we hdye

mdo_ef = 1+ ipy x mdo_ef,
mdo_ef = (L—ipy)™ EQ 3.3
Similarly, we can estimate the expected number of times
other MDOs composing this document are needed. Then, the Figure 5: The augmented OCPN by including user-interaction.
expected number of times this document is needed is just the 1 < the expected number of timéBO Ais needed when
maximum of these values. Denote this valueas  for documen(ljOcumenDl is retrieved is,

D;, we It'1a_ve, ] Ok =1 20 34 mdo_et, = 1+ 0.4x mdo_et,,
et; = max mdo_g), for Ok, uj. = Qs. mdo_et, = (1-0.4" = 1.667.

And the de"?‘yf’dn will become, Similarly, the expected number of timd®O Bis needed is,
di = ma)(csue; —dur —starty) Cet;, for Ok, uy = 1. mdo_ets = 1+ 0.5x mdo_ets,
sl O mdo_ets = (1-0.57" = 2.

Example 1 (Cont.): Assume that the hypermedia database
system is distributed in a network with 3 sites.

Notice that when we nedgl again,A is also needed. Thus,

. L . et;, = max1.667 3 = 2.
In Figure 4, the transmission speed between the 3 sites are

given. These values can be represented as am ratrix
with entryc;. representing the transmission speed féom S to

Since we have worst case buffer space constraints, so the
delayd,, will become

_ 280 1220 . - _
dy = Ena ¥‘15‘40%DH‘55‘°DDD"2 = 10.

t. orme_E‘]t( =1 +ipjk + ipjk2 +..=(1- iﬂk)'l'



4 Proposed Data Allocation Algorithms document, we must retrieve and use the starting MDO
The data allocation problem in its simple form has beeniMmediately, so their transmission _delay will have a great effect
shown to be NP-complete [3] and the problem discussed here & the overall document presentation delay. Thus, we have two
more complex than the simple case: there kdte differenSets of MDOs: critical MDOs (CMDOs) and non-critical MDOs
allocation schemes for a system with sites andk MDOs, (OMDOs).
implying that an exhaustive search would requixgk™) inthe  The random algorithm starts with an initial solution using the
worst case to find the optimal solution. Therefore, we must useite affinity algorithm and then constructs the two MDO sets. It
heuristic algorithms to solve the problem. then tries to merge OMDOSs to some random sites by using either
4.1 The Hill-Climbing Approach the m_lgrate operatlpn or the swap operatlon vv_hlchever gives
. .. _.__more improvement in the solution quality. It continues to do so
W_e have d_eveloped an algorlthm bqsed on the H'”'C“mb'_ngfor MAXSTEPtimes but will stop if there is no improvement in
technique to T'nd a near optimal solu_tlon. The data aIIocaﬂonMARGlN number of trials. It then chooses one of the CMDOs
problem solution consists of the following two steps: and migrate it to a random site or swap it with another randomly
1) Find an initial solution. selected CMDO. This is repeated FAXCOUNTtimes. The
2) Iteratively improve the initial data allocation by using the algorithm preserves the best solution found so far and then does

hill climbing heuristic until no further reduction in total g neighborhood search on CMDOs again to see if there is further
response time can be achieved. This is done by apply'”%provement.

some operations on the initial allocation scheme. Since ) ) . .
there are finite number of allocation schemes, the heuristic The worst-case running time of the algorithm is
algorithm will complete its execution. O(MAXSTEP< MAXCOUNJT It is reasonable to set

For step one, one possibility is to obtain the initial solution by MAXSTEPas a multiple of the number @MDGs and the
allocating theMDOs to the sites randomly. However, a better NUmber of sites. Similarif)AXCOUNTis set to be a multiple of
initial solution can be generated by allocatingO to the site ~ the number o€EMDOs and the number of sites.
which retrieves it most frequently (this information can be MAXSTEP= d10nm] OMDQE
obtained from the matriA x U ). If that site is already saturated, _
we allocate thé/DO to the next site that needs it the most. We MAXCOUNT = bnt] CMDOS]
call this method th& DO site affinity algorithm With these assumptions, we will have@(mzkz) algorithm.

In the second step, we apply some operations on the initish Results

SOIUt'O_n to reducg the total response time. Two types of In this section, we present the experimental results for the
operations are deflneq, nar.nefygrate.and swap (see below). . data allocation algorithms described in Section 4. Comparisons
These operalltlons are iteratively applled until no more reductlor}m]c)ng these algorithms will be made by considering the quality
is observed in the total response time. of solutions and the algorithm running time. SincekKfdDOs
migrate( Q, §) : moveMDO Oy to § . This operation can  andm sites there ark™  allocation schemes for exhaustive search
be applied to eackDO, and arMDO can be moved to any one algorithm, the problem sizes of the experiments we conducted
ofthem—1 sites at which it is not located. Therefore, there canyere limited. We conducted 10 experiments with number of
be a maximum ofk(m-1) migrate operations that can be MDOs ranging from 4 to 8, and number of sites ranging from 4
applied during each iteration. to 8. Each experiment consisted of 100 allocation problems with
swapg Q, O,): swap the location oMDO O, with the the number of sites and the number MDOs fixed. Each
location of MDO O, . This operation can be applied to each allocation problem had between 4 and 16 documents, and each
distinct pair ofMDOs. Therefore, there can be a maximum of document used a subset of t>Os with its own temporal
k(k—1)/2 swap operations that can be applied during eachconstraints on them. The communication network, Mi2O
iteration. sizes, the link costs, and the temporal constraints betBés
4.2 The Random Search Approach iq egch. document were randor_nly gengrated from_ a uniform
’ o o . distribution. The two data allocation algorithms described above
One drawback of the Hill-Climbing approach is its high ;ore tested for every case and statistics was collected.
complexity. Another problem is that the algorithm can be trapped ) .
in some local minimum. This is because the exchange or In Tat_>|e 2, fpr each_ of the exp_erlm_ents conducted na
migration of MDO is done only if the movement will give a better Folumn-W|se fashion, Wef_!'St the following: i) the number of s_ltes,
solution. To increase the chance of finding the global optimal") t_he numbgr oMDOs, i) the numbgr of pr(_)bler_ns for which
solution, we must introduce some probabilistic jumps [6], [7]. °Ptimal solutions are generated by hill-climbing, iv) the average
The probabilistic jumps must be large enough by involving dewgﬂon in percgntage of near optimal solutions from optlmal
MDOs that can have a great effect on the solution quamy_s_olgtlon when optimal solution was not regch, v) and vi) provide
Otherwise, if the jump is small, the algorithm may be remains'm_'lar resuIFs for random search algorithm. The _number of
trapped in the same local minimum. Thus, before the executior’?pt'mal solutlons_ca_n reflect how good the algorlth_m is; whereas
of the algorithm, we must determine which subset of the MDOthe av_erage deviation shovys how b‘_""d the algorithm performs
set is important. One possible set of important MDOs is thehen it cannot generate optimal solution.
MDOs which are presented at the beginning of some hypermedia
document. The reason being that when we browse a hypermedia



Table 2: Experimental results of the two algorithms.

6 Conclusions

A probabilistic navigational model for modeling the user
behavior while browsing hypermedia documents is developed.
This model is used to calculate the expected number of accesses
to each hypermedia document from each site. Synchronization
constraints for presenting the MDOs of hypermedia documents
are modeled by using the OCPN specification. A cost model is
developed to calculate the average response time observed by the
end-users while browsing a set of hypermedia documents for a

No. of | No. of [|No. of Opt. | Aver. % No. of Opt. | Aver. %

Sites [ MDOs||Sol. (H) Deviat. (H) [ Sol.(R) Deviat. (R)
Z Z 93 15.4163 98 T1.0071
4 8 81 5.3714 70 5.0961
5 2 92 19.3567 97 1.1011
5 8 83 11.5364 62 5.6252
6 4 97 5.2258 92 4.8935
6 8 82 11.6584 56 2.8690
7 4 88 3.0582 86 1.8645
7 8 77 3.9969 62 4.4913
8 2 88 3.8620 90 1.5051
8 8 72 9.7750 50 3.6533

From Table 2, we note that the Hill-Climbing algorithm two

given allocation of MDOs. This cost model is generalized to take
into consider end-user interaction while accessing MDOs, and
limited buffer space constraints at the end-user site. After that,

MDO data allocation algorithms, one based on Hill-climbing

generated optimal solutions for a large number of problems —heuristic, and other based on Probabilistic Random search are
853 cases out of a total of 1000 cases, corresponding to aboptoposed. The two algorithms use extreme approaches: a high
85% of the test cases. Most of the non-optimal solutions are in theomplexity extensive incremental strategy and a fast random
range of 0-5% deviation from the optimal solution while a few search. Results indicate that there is a trade-off between
solutions are in the range of equal to or more than 20%. Thexecution time and solution quality. The random search
average percentage (only for non-optimal cases) is about 7.938fgorithm is cost-effective if fast execution is desired. If the
across all cases. These results indicate that the Hill-Climbingolution quality is the more prominent factor, the Hill-Climbing
algorithm is able to generate high quality solutions in comparisorapproach is a viable choice for small problem sizes.

to random search algorithm.

It seems that the algorithms cannot handle case with larggl]
problem space such as thousands MDOs (running time is too
long). In such case, we can group MDOs into clusters and use the
algorithms to allocate the clusters instead of individual MDOs. [2]

5.1 Comparison of Running Times

Table 3 contains the average running times of both(3]
algorithms for each experiment. For comparison, the time taken
to generate the optimal solutions by using exhaustive search até]
also listed. All the algorithms were implemented on a SPARC
IPX workstation and the time data was measured in milli-
seconds. As can be seen from the table, although the Randolél
Search algorithm took much short time compared with
exhaustive search and about 1 order of magnitude less time th4n|
the Hill-Climbing Approach. Such margins become highly
significant when the problem size is large. Therefore, while theg)
Hill-Climbing algorithm may be preferred for small problem
sizes, the Random algorithm would be a better choice for Iargég]
problem sizes. From the experiment results presented in thgo]
previous section, we observe that there is a trade-off between
execution time and solution quality. The random searchy;qj
algorithm is very cost-effective if fast execution is desired. If the
solution quality is the more prominent factor, the Hill-Climbing

approach is a viable choice for an off-line allocation. [12]
Table 3: Average running times (msecs) of all algorithms.
No. of | No. of [|Exhaustive Hill Random [13]
Sites | MDOs||Search Climbing | Search
7 7 753 3895 2747 [14]
4 8 6457.69 1014.08 183.12
5 4 18.34 68.36 4557
5 8 50224.66 2011.78 314.17 [15]
6 4 51.88 85.14 67.28
6 8 273494.96 2885.52 446.66
7 4 176.10 166.09 97.67 [16]
7 8 1587830.28 |  4721.17 620.85|
8 4 333.23 169.28 134.06
8 8 5755754.63  12053.53 875.84
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