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Abstract

Realizing a shift of software engineering towards a
component-based approach to software development re-
quires the development of higher level programming
systems supporting the development of systems from
components. This paper presents a novel approach to the
design of large software systems where a program-in-the-
large describing the system's architecture is executed at
run-time to rule over the assembly and dynamic coopera-
tion of components. This approach has several advan-
tages following from a clean separation of concerns be-
tween programming-in-the-small and programming-in-
the-large issues in instantiated systems.

1: Introduction

For thirty years software engineering has pursued a
paradigm shift from line-based to component-based soft-
ware development [8]. Component software requires
high levels of reusability and interoperability, and brings
forth a higher level of programming, namely the assem-
bly of independently developed and reusable components
into systems, termed programming-in-the-large (PIL) [3]
as opposed to programming-in-the-small (PIS, i.e., the
development of individual components). While object-
oriented technology provides a sound basis for the devel-
opment of both fine- and coarse-grained reusable compo-
nents [5], we still lack adequate notations and tools for
programming-in-the-large. Such notations should let
system designers specify the "plan of how components
fit together and cooperate" [6], i.e., the software architec-
ture of the system [13].

In current approaches to component software, soft-
ware architectures are implicit, i.e., architectural deci-
sions such as those related to the overall system's topol-
ogy and global control structures are implemented in the
components' code, which has several drawbacks. For ex-
ample, components are less reusable and harder to inte-
grate due to the architectural assumptions they embed
[4].

Based on these considerations, we propose a new ap-
proach to programming-in-the-large which is centred
around two main ideas: the program-in-the-large of a
system should describe the system's architecture; and it

should be executed at run-time as an independent (higher-
level) program with respect to the components' pro-
grams. We term this approach Dynamic Architectural
Programming-in-the-Large (DAPIL). This paper presents
this vision. Section 2 provides the rationale for DAPIL
by stating the implicit architecture problem underlying
current approaches to component-based development. In
section 3, we present a sample syntax and semantics for
a programming language for DAPIL and in section 4 we
sketch the component and system model underlying
them. Section 5 discusses how our approach accommo-
dates addressing dynamic architectures in a reflective
way. Section 6 points out at some benefits of the pro-
posed approach and section 7 draws some conclusion and
presents future work.

2: The implicit architecture problem

Designing software architectures is a complex activ-
ity where very high-level decisions are taken affecting all
the functioning of a system. For example, a phrase such
as a "layered system" has a very rich meaning concern-
ing the expected behavior of the involved components
(layers), the communication topology, the expected in-
teractions between layers, and so forth. Our goal is that
of providing tools to describe such ideas and integrating
components according to such description. Related re-
search efforts can be broadly partitioned into two classes:
Module Interconnection Languages (MILs) and Architec-
tural Description Languages (ADLs). MILs [12] support
the separate description of implementation relationships
between modules. They are based on a very limited no-
tion of software composition (e.g., routine defini-
tion/use binding), and hardly capture high-level, architec-
tural choices [13]. ADLs [13] represent a more recent ap-
proach, explicitly addressing the description of architec-
tures. Nevertheless, they are intended to be specification
languages, whereby specified architectures must subse-
quently be implemented by conventional means.

In both approaches, architectural choices are dis-
persed in the components' code, either because they can-
not be expressed by the higher-level notation (in the case
of MILs) or because the notation describes concepts
which anyway require conventional PIS implementation
(in the case of ADLs). We term this problem the implic-



it architecture problem. Some consequences of implicit
architectures are the following.

Implicit architectures affect components’ reusabil-
ity. Saying that architectural choices are dispersed in the
components’ code is just the same as saying that com-
ponents embed architectural assumptions. This implies
that components be reusable, at best, within a class of
systems sharing common architectural characteristics;
moreover, it may hinder the combined reuse of compo-
nents with conflicting architectural assumptions [4].

Implicit architectures affect systems’ adherence to
specifications. Architectural design documents provide a
high-level view of a system which is potentially a valu-
able support for development, maintenance, and evolu-
tion. Unfortunately, architectural descriptions are seldom
coherent with implemented systems, i.e., the implicit
(implemented) architecture usually differs from the ex-
plicit (specified) one, either because architectural designs
are twisted in their very first implementation (due to the
unfeasibility of mapping architectural concepts to those
supported by traditional programming languages) or as a
consequence of unfaithful maintenance [10].

Implicit architectures affect run-time system man-
agement complexity. If architectures are implicit, run-
time management activities such as dynamic reconfigu-
ration or support for plug-and-play components, which
are related to the system's architecture and conceptually
independent of the components' inner workings, must
nevertheless be defined and implemented at the compo-
nent level. This yields the well-known technical com-
plexity of providing any form of dynamic reconfigu-
rability.

Implicit architectures affect design reusability. If ar-
chitectures are implicit, architectural designs can be
reused only by reusing the code which implements them
within components (this is actually the basic idea behind
object-oriented frameworks [11]). So, just like compo-
nents can only be reused within a class of systems with
the same architecture, architectures can only be reused
within a class of systems with similar implementation
(e.g., same programming language).

3: The linguistic aspect of DAPIL

Our approach separates two different programming
levels related to PIL. First, the basic building blocks of
a “program-in-the-large" (components and connectors)
are described in an interface description language. Sec-
ond, their assembly is described by the proper program-
in-the-large.

3.1: Components

We let a component's interface be structured (or seg-
mented [13]), i.e., a component interacts with the envi-
ronment through a set of distinct interaction points
termed ports. Each port is specified by a state machine
whose states represent abstract views of the component's
internal state, as relevant for a specific pattern of cooper-

ation with the environment, and whose transitions are
labelled by component events occurring on that port.
Component events represent a high-level view of the
components' behaviour as relevant for composition with
other components, and abstracting from details about the
inner control flow structure; the occurrence of an event
can hence involve any sort of (finite) computation inside
the component.

In order to support the description of their assembly
and interaction in a PIL language, the components' inter-
faces are described in an interface description language.
The following fragment describes a component calculat-
ing the average of a set of numerical values. On port
data, the component can either receive a value to store or
a request to remove one of the stored items. On port av-
erage, it can produce the average of the currently stored
numbers.

component average
{ 

port data {
initial_state: holds(0)
transitions

from holds(i) when item_inserted(?real item)
to holds(i+1);

from holds(i) where i>0 when item_removed()
to holds(i-1);

}
port average {

initial_state: ready
transitions

from ready when average_produced(!real average)
to ready;

}
}

Transitions are described as follows. Clauses from
and when specify the state of the port's machine before
the transition and the event that triggers the transition
respectively, while clause to specifies the state after the
transition. For example, the first transition of port data
states that when the port is in state holds(0) and an event
item_inserted occurs, the resulting state is holds(1). The
additional where clause can be used to modify either
the from or when clause with preconditions. We use a
CSP-style for denoting whether the value of parameters
in component events is established by the component
(denoted with “!”) or by its environment (“?”), i.e.,
whether parameters are output or input.

3.2: Connectors

A connector describes a pattern of cooperation be-
tween two or more components, including protocols for
communication and synchronization; it implements a
protocol specified as a state machine. The protocol is
based on component events each labelled by a role, and
prescribes a pattern of events in which a set of cooperat-
ing entities can engage, each playing some role. Roles
are instantiated by components' ports in actual systems
(ports are said to be bound to roles).

The connector specified in the following fragment
describes an interaction between an entity producing val-
ues (“sensor”), an entity providing a buffer to store sets



of such values, an entity calculating the average (of the
buffered values), and an entity displaying values to the
user. The syntax is very close to that used to specify
components, the main difference being that transitions
are named.

connector SensorAverageVisualize
{

roles: sensor, display, buffer, average_calc;
initial_state: ready
transitions:

Store (real item):
from ready when sensor.produced (?real item),

buffer.item_insterted (!real item) to ready;
Remove:

from ready when buffer.item_removed()
to ready;

Disp_Avg:
from ready when

average.average_produced(?real average),
display.value_displayed(!real average)
to ready;

Disp_Val (real item):
from ready  when sensor.produced (?real

item), display.value_displayed (!real item)
to ready;

}

The described protocol is actually stateless and non-
deterministic. It specifies that (at any time) values pro-
duced by a sensor can be buffered (transition Store), that
items can be removed from the buffer (transition Re-
move), and that both averages from the average calcula-
tor and values directly coming from the sensor can be
displayed (transitions Disp_Avg and Disp_Val).

As the example illustrates, connector transitions can
involve a sequence of multiple component events at
multiple roles; they can be regarded as higher level
events termed cooperation events. The values of parame-
ters in actual events is still dictated by some participant
component (that which actually output the value accord-
ing to its port's definition). For example, the value 1.0
of item in cooperation event Store(1.0) is a value which
has been produced by the sensor.

3.3: The Program-in-the-Large

In our work on DAPIL, we have devised two com-
plementary aspects in the description of software archi-
tectures: topology and strategy [2]. The system's topolo-
gy defines which components comprise the system and
how they are connected to one another. The system's
strategy defines the global control structure of the sys-
tem. For example, the strategy states whether the sys-
tem must run as a pure concurrent system, a real-time
system (with a specified plan), concurrent with priori-
ties, and so on.

According to these definitions, the program-in-the-
large is composed of two specifications. The topology
specification lists the components, the connectors be-
tween them, and the bindings between ports and roles, as
demonstrated in the following fragment. It describes the
topology of a system comprising a component produc-
ing numerical data as collected from an external sensor, a
component calculating the average, and a display compo-

nent presenting values to the user. The three compo-
nents are connected by a connector of the type presented
in section 2.2.

topology SensorAverageVisualizeSystem {
components

ac: average;
s: sensor;
d: display;

connectors
c: SensorAverageVisualize;

bindings
c.sensor boundTo s.data_out;
c.buffer boundTo ac.data;
c.average_calc boundTo ac.average;
c.display boundTo d.data_in;

}

Observe that component ac declared in the topology
is of type average (described in section 3.1). Since such
component can both store values and calculate averages
(on distinct ports), here it is employed in both roles by
binding port average to role average_calc and port data to
role buffer.

The strategy specification describes the system's
global control structure in terms of a plan governing the
occurrence of cooperation events. Of course, events must
be allowed by components' and connectors' protocols at
the time of their occurrence, so that the strategy can be
regarded as a restriction of the nondeterminism of the
protocol obtained as a product of the components' and
connectors' protocols. The intent is that such a restric-
tion be made on the basis of system-wide concerns such
as: interdependencies between computations of compo-
nents which are not directly connected; timing con-
straints; performance optimization; availability of sys-
tem resources (e.g., CPUs), and more. The following
fragment illustrates a sample syntax for the strategy,
very close to that adopted for components and connec-
tors.

 strategy SensorAverageVisualizeSystem {
const

STEP = 1000
THRESH = 110.0

initial_state
stored(0)

transitions
from stored(i) where i<STEP  when c.Store(item)

where item<THRESH to stored(i+1);
from stored(i) where i=STEP  when c.Disp_Avg()

to to_remove(STEP);
from to_remove(i) where i>1 when c.Remove()

to to_remove(i-1);
from to_remove(1) when c.Remove() to stored(0);
from stored(i) when c.Disp_Val(item)

where item>THRESH to stored(i);
from to_remove(i) when c.Disp_Val(item) 
where item>THRESH to to_remove(i);

}

As the reader may see, cooperation events are re-
ferred to connectors, e.g., c.Store(item) represents  event
Store(item) occurring in the connector c declared in the
topology. The strategy restricts the nondeterminism of
the connector's protocol as follows. First, a step is spec-
ified in the strategy which indicates how many values
must be read before an average is displayed (transitions



1-2). When it has been displayed, the buffer is emptied
(transitions 3-4), and a new cycle begins. Finally, a val-
ue read from the sensor is directly displayed without be-
ing buffered and averaged if and only if it exceeds a spec-
ified threshold (for example, this could be an alarm).

4: Component and system model

As stated above, our approach differs from that of
ADLs in that we address the execution of architectural
descriptions (programs in the large). We term computa-
tion-in-the-large the execution of the program-in-the-
large and computation-in-the-small the execution of the
individual components' programs [2]. The computation-
in-the-large is a sequence of cooperation events as dictat-
ed by the strategy. As stated in section 3, each coopera-
tion event consists of several components events which,
in turn, can correspond to arbitrarily complex activities
in the small. Hence, the computation-in-the-large can be
regarded as an abstraction of the computation-in-the-
small. Nevertheless, this is not achieved by having the
program-in-the-large's semantics implemented in the
components' programs-in-the-small; rather, a dedicated
virtual machine executes the program-in-the-large, driv-
ing activities within components by triggering compo-
nent events. This way, the definition of the system ar-
chitecture is explicit and separated from the components'
inner workings. In the component and system model,
this idea is articulated in several points, listed below.

Components are architecture-transparent. This re-
quirement on components amounts to two constraints
on their implementation. The first is that the code of a
component cannot directly reference entities which are
outside the component's interface; the environment is
visible to the component's code only through (paramet-
ric) events occurring on ports. The second constraint is
that components must be reactive entities. More precise-
ly, they have no control on the occurrence of the events
they are willing to participate in.

Components are driven by connectors. From the
point of view of components, control resides in connec-
tors; this reflects the fact that component events are
grouped into cooperation events. Whenever a coopera-
tion event is triggered, the involved connector triggers
the corresponding component events.

The PIL virtual machine "executes" the topology
and strategy. The PIL virtual machine is conceptually
composed of two entities, termed topology actuator and
strategy actuator. The topology actuator "executes" the
topology by working as a mediator [14] between compo-
nents' ports and connector roles (and vice versa), convey-
ing stimuli between them based on the topology's bind-
ings. The strategy actuator executes the strategy by trig-
gering cooperation events in connectors based according
to the strategy's rules. Observe that since connectors are
driven by the strategy actuator and, in turn, drive compo-
nents, they actually constitute the interface between the
computation in the large (described by the strategy) and

the computation in the small (described by the compo-
nents' PIS code corresponding to events).

Although at this stage we do not pose constraints
on the actual implementation of the PIL virtual ma-
chine, supporting architectural reflection (to be discussed
below) suggests that the strategy and topology actuators
be implemented as interpreters of the topology and strat-
egy specifications.

5:  Dynamic architectures and
architectural reflection

Although dynamic architectures (i.e., architectures
which change at run-time, for example by the addition or
removal or components) have been neglected in current
research in Software Architecture [9], it is a fact that all
architectures are dynamic: for example, every system at
least goes through a bootstrap and a shutdown. In our
approach, dynamic modifications of a system's architec-
ture are addressed in a clean conceptual way by borrow-
ing some concepts from computational reflection [7] and
applying them at the PIL level, yielding architectural re-
flection (AR) [2]. We define an architecturally reflective
as one that maintains a collection of data structure which
represent (reify) its software architecture and are causally
connected to the system’s architecture, i.e., any modifi-
cation to such structures results in the concrete system’s
architecture being modified, and vice versa. Dynamic
modifications of the architecture are charged to architec-
tural meta-entities which manipulate the architecture
through the manipulation of the data structures reifying
it. DAPIL cleanly accommodates AR due to the separa-
tion between architectural (PIL) concerns, charged to the
topology and strategy actuators, and PIS concerns. More
specifically, if the actuators are implemented as inter-
preters of the PIL program (or a representation thereof),
AR can be realized by having architectural meta-entities
operate on such program, which is implicitly a causally
connected representation of the system’s architecture. In
other implementation schemes, meta-entities may con-
trol and modify the behavior of the actuators just as tra-
ditional meta-entities modify the behavior of objects in
computational reflection. In any case, DAPIL has the ad-
vantage that reflecting on the software architecture of a
system amounts to reflecting on the behavior of a local-
ized subsystem (that comprising the two actuators),
rather than on the components’ internals (as would be
the case if the architecture was implicit).

6: General advantages of DAPIL

Two basic advantages come from making architec-
tures explicit through DAPIL. First, it enhances compo-
nent reuse since components do not embed architectural
assumptions. Second, a (trustworthy) description of ar-
chitecture of a system into a program-in-the-large pro-
vides benefits for all software lifecycle activities which
relate to, or otherwise can benefit from a knowledge of,
the architecture itself. Many such activities exist, be-



longing to the system's development, run-time manage-
ment, and evolution.

Development. DAPIL can aid system development
in several ways, thanks to the possibility of designing
and developing the program-in-the-large independent of,
and before, the components themselves so that it can be
used, for example, to simulate the system's overall com-
putation before developing or integrating components.
Moreover, reusing programs-in-the-large is a way to ex-
tend software reuse from code to (architectural) design.

Run-time system management. In the DAPIL ap-
proach, run-time system management facilities are ad-
dressed at PIL level. In particular, dynamic reconfigura-
tion is addressed by dynamic modifications of the pro-
gram-in-the-large, as discussed in section 5.

Evolution. Evolution of a software system often in-
cludes architecture redesign, e.g., including new kinds of
components, modifying the overall control structure, or
integrating the system into a larger one, i.e., recasting
its architecture as a sub-architecture. In the DAPIL ap-
proach, architecture redesign involves a (localized, high-
level) modification of the program-in-the-large rather
than complex and error-prone modification of the archi-
tectural information dispersed in the components' code as
PIS constructs.

7: Conclusions and future work

This paper presents a new approach to the develop-
ment of systems from coarse-grained components. In the
proposed approach, the software architecture of a compo-
nent-based system is described by a program-in-the-large
which is executed at run-time. In particular, the notion
of strategy captures a high-level view of the system's ex-
ecution flow as relevant at the architectural level, the
flow of execution in the large. We argue that the pro-
posed approach provides several benefits following from
the explicitation of architectural design in a separated
higher-level program.

We are currently working on the development of a
proof-of-concept Java-based PIL environment. On a
more conceptual level, we are investigating several is-
sues which can be seen as extensions to the PIL level of
well understood concepts from PIS. Most notably, we
are addressing the problem of defining a sound type sys-
tem for PIL-level entities. Some examples of typing is-
sues for DAPIL are the following:

Port/role compatibility. Safe PIL requires that con-
nector roles be bound only to compatible component
ports. Several related notions of compatibility have been
proposed in the literature; most simply amount to dead-
lock-freeness of the composition (e.g., [1]). We would
like to devise a deeper notion of compatibility capturing
the concept of semantics-preserving interoperability.

Port/role (sub)type. A notion of subtyping should
be defined between port and role types so that one can
derive port/role compatibility for subtypes, e.g., if a
port type is compatible with a role type it is also com-

patible with all of its subtypes, and so are all of its su-
pertypes.

Component/connector (sub)type. Components and
connectors' types should be based on port/role types and
express the fact that whenever an instance of a compo-
nent (connector) type can be placed in a certain position
of an architecture, so can instances of any subtype.

Closure. Closure rules should be devised specifying
under which circumstances a component/connector can
be substituted with a (sub)architecture or, in other
words, under which circumstances an architecture can be
regarded as an instance of a component/connector type.
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