
Indexing multilingual information on the web

YIP Chi Lap, Ben KAO
Department of Computer Science, The University of Hong Kong

fclyip,kaog@cs.hku.hk

Abstract

The web connects people speaking more than twenty
languages in more than one hundred countries. Search
engines, which provide users starting points to navigate
and retrieve resources on the web, should thus be able to
handle documents in many languages. Moreover, with in-
formation being added and changed every minute on the
web, search engines should discover new index terms time-
efficiently. This paper introduces an abstraction of viewing
multilingual documents and a statistical analysis method
so that search engines can index multilingual documents
in a generic, efficient, and effective manner with minimal
requirements of language-specific information.

1. Introduction

The “Information Superhighway” (Internet) enables a
computer user to be connected to virtually endless num-
ber of sites on the global network. The World-Wide-Web
uses the Internet to transmit hypermedia documents be-
tween computer users located around the world. According
to the Internet Society [1], there are more than 150 coun-
tries with Internet access. The Internet community is really
a multi-racial one with netizens speaking more than twenty
different languages.

In order to fully utilize the power of the Web as a gigan-
tic information source, it is essential to have a starting point,
and that is what search engines provide. Search engines
work by traversing the Web via the hyperlinks that connect
the Web pages, performing text analysis on the pages they
encounter, and indexing the pages based on the key terms
(or index terms) they contain. A user seeking information
from the Web would formulate his information goal with a
few index terms composing a query. A search engine, on
receiving a query, would match the query against its docu-
ment index. One can thus see that how successful a search
engine is depends on its ability of extracting index terms
from the documents. Traditional search engines, such as
WebCrawler, have little problem in index term extraction on

documents that are written in Latin-based languages such as
English. They assume that potential index terms are charac-
ter sequences delimited by punctuations and whitespaces. A
stoplist, containing words such as prepositions and connec-
tives, is used to remove those terms that are not effective in
differentiating the documents. However, extending search
engines to cover documents written in other languages, such
as Chinese and Japanese, is not trivial. For example, there
are no hard and fast rules of segmenting a piece of Chi-
nese document into meaningful terms without using sub-
stantial language-specific information. Successful Chinese
segmentation algorithms often rely heavily on a “good” dic-
tionary — an up-to-date set of terms. Unfortunately, such
dictionaries are hard to come by. This is especially true in a
dynamic environment such as the Web on which new index
terms (such as people’s names) are constantly created.

Dictionaries not only help segmentation and retrieval
of documents in Oriental languages, they are also useful
for phrase extraction in Latin-based documents. Thus, the
problem of maintaining atimelydictionary becomes impor-
tant. Given the myriad of documents that a search engine
processes, manual update of dictionaries can never meet the
timeliness requirement. Automatic index term extraction
and dictionary maintenance are thus essential.

The problems of term extraction and dictionary mainte-
nance are not new. There are quite a number of related stud-
ies on, say, the Chinese language. However, algorithms for
term extraction and dictionary maintenance usually require
much language-specific information, notably a language
and grammar model, and some language-specific heuris-
tics [4]. Implementing these algorithms in a Web search
engine is not very appropriate for two reasons. First, com-
putational linguistics approaches are very computationally
expensive, and thus may not be fast enough to handle the
large numbers of documents search engines process. Sec-
ond, if the indexing engine is to cover the Web world-wide,
we need to implement a language model for each possible
language — a daunting task given that each model is a com-
plex system in its own right. Moreover, not all languages are
well studied and have their linguistics models available.

The goal of this paper is to design a multilingual index-

ing engine that is suitable for use in a Web environment.
Such an indexing engine must satisfy four requirements:

1 it usesminimal language-specific information, so that
the implementer (who only speaks in one or a few lan-
guages) does not need to study and collect the different
features of all the languages;

2 it is generic, so that extending the index engine to cover
a new language is straightforward;

3 it is time-efficient, so that the index engine can handle
large numbers of documents on the Web;

4 it is effective, so that the index terms extracted faith-
fully represent the concepts or topics relevant to the doc-
uments.

Incidentally, the problem of handling multilingual infor-
mation and finding index terms not only appears in search
engines but also in other areas of information retrieval, such
as digital libraries. Being a networked information system
with contributions worldwide, a digital library has to handle
documents in multiple languages. Since cataloging is a very
important aspect in libraries traditional or digital, success-
ful handling of multilingual documents is very essential for
digital libraries as well.

To design an indexing system that can achieve the four
requirements, we first identify four issues and difficulties
in handling multilingual information in Section 2. They
are document language identification, document segmenta-
tion, dictionary maintenance and new index term identifi-
cation. After establishing in Section 3 that we only need
to determine the coded character set of a document rather
than its language to do indexing, a view of documents us-
ing an abstraction is introduced in Section 4. Then, a purely
statistical, language-independent method using suffix trees
for finding new index terms is described in Section 5. Fol-
lowing that, examples of applications of the abstraction and
analysis stages will be introduced in Section 6. As a proof
of concept, we have done some experiments and imple-
mented a search engine, which are reported in Section 7.
Finally, we summarize our study and describe our related
future work in Section 8.

2. Handling multilingual information

Existing search engines and directory services on the
Web, such as WebCrawler, Infoseek or Excite are mostly
designed without the multilingual issues in mind. Queries
in languages such as Chinese or Japanese would often so-
licit nonsense results. Some others, such as AltaVista, do
differentiate between documents of different languages and
allow queries for documents of a specific language. How-
ever, it seems that the correct index terms cannot always be
identified. For example, to search for documents in Chi-
nese language about the H5N1 poultry virus (“bird flu”)

incident in Hong Kong, we submitted two queries to Al-
taVista’s advanced search form on 12 January 1998. The
first one uses the keyword “H5N1” and the second one a
common and perhaps the only Chinese term for bird flu
“ ”, widely used in Hong Kong Chinese newspapers.
We are confident that both terms are rather new on the Web
and have only rarely, if ever, appeared in the Web before
May 1997. Both searches were limited to Chinese Web
documents only. For the H5N1 query, 19 document links
were returned, among which 14 of them were relevant. In-
deed, most of them are relevant news reports from Chinese
newspaper sites and contain both the terms “H5N1” and
“ ”. However, when the Chinese keyword “ ” was
used alone, we got 119 hits, but about 110 of the links have
nothing to do with the H5N1 virus or the bird flu.

So, what are the difficulties in handling multilingual doc-
uments? Here, we identify four important ones:

Document language identificationSearch engines that
process documents using language-specific information
need to identify the language a document is using before
it can proceed. A failure in the language identification
would greatly affect the indexing correctness.

Document segmentationA document is separated into
segments of text that contain index terms. As discussed
in the introduction, this is usually not a problem for
Latin-based languages such as English or French that use
spaces to delimit words. However, for languages such as
Chinese and Japanese where no delimiters are used, seg-
mentation is a nontrivial problem.

Maintenance of index term dictionaries For dictionary-
based indexing methods, index terms and stoplists need
to be maintained. New terms have to be added and out-
dated terms deleted in a regular basis to keep up with the
changes of the documents.

New index term identification Manual or automatic
methods should be used to find out new index terms
such as the names of people or new abbreviations.

In the following sections, we discuss how the problems
above can be tackled in a Web environment.

3. Document language vs. coded character set

For structured documents such as those written using
SGML or HTML, it is often easy to determine their lan-
guages by just looking at itslang attribute. However, for
unstructured documents, language determination is often
difficult. Yet, from the view of a document indexing pro-
gram, what is important is not the language, but the charac-
ter set the document is encoded in. Since every document is
but a stream of bits, the coded character set determines how
those bits represent characters. For example, if a document
is in ASCII, we know that each byte represents a character

and that the byte range 00 to 20 hex corresponds to control
characters. If it is in Big5, we know that a character can ei-
ther be one or two bytes long, depending on the value of the
first byte. In short, the coded character set determines what
is a character, or what constitutes a basic unit from which
a term is composed, whatever the language the document is
in.

There are two major implications that some indexing can
be done once the coded character set is known. First, we
can index documents even if we do not know the exact lan-
guage it is written in. Some information about the language
can often be inferred from the coded character set used. For
example, if the coded character set ISO 8859-1 (often called
“Latin-1”) is used, although we do not know which lan-
guage among the 34 countries listed in the standard [2] the
document is written, we can assume that whitespace charac-
ters are used to separate words in the document. This piece
of information alone is enough to help segmenting docu-
ments for finding index terms.

Second, a system does not have to keep a lot of language-
specific information to do indexing. It is very useful in a
multilingual environment, since it would be rather difficult,
if not impossible, to collect information, such as grammar
and word dictionaries, about all the languages in the world.
Also, since language-specific information is not used, at-
tributes such as language directionality (left-to-right as in
English or right-to-left as in Arabic) would not affect the
indexing process. Of course, it would be useful if we have
the dictionaries and grammars, but they are not mandatory
and we can do without them.

4. An abstraction

Coded character sets determine how we interpret the bits
of a document seen as a sequence characters. This is noth-
ing new. However, a document can also be treated as a
sequence of other things — subword units (such as ‘ter’,
‘un’, ‘th’), words, syntactic units (noun phrases, adjectives),
words derived from word stems (both “smile” and “smiling”
have the same word stem), stanzas, sections, runs of alpha-
bets and nonalphabets, runs of digits and nondigits, and oth-
ers. More abstractly, we can treat a document as a sequence
of symbols. A symbol represents one of the “things” we
mentioned above. Depending on what we choose the sym-
bols to be, different sequences of symbols can be associated
with the same document. Let us illustrate the idea with an
example.

Figure 1(a) shows a quotation by Thomas Hewitt Key1.
Suppose we have an English word dictionary and assign a
symbol to every word in the quotation that is found in the

1Thomas Hewitt Key (1799-1875), a Professor of Mathematics who
left University of Virginia in 1827.

(a) What is mind?No matter.What is matter?Never mind.
(b) What is mind?No matter.What is matter?Never mind.
(c) � �
 � � � � � �

(d) What is mind?No matter.What is matter?Never mind.
(e) ! ! ! ! ! ! ! ! ! !
(f) What is mind?No matter.What is matter?Never mind.
(g) � �
 � � � � � �

Figure 1. Sentence as sequence of symbols

dictionary, we obtain the 10-symbol sequence correspond-
ing to the framed words in Figure 1(b). This sequence
can be represented by the sequence of Greek letters in Fig-
ure 1(c), with� representing “What”,� representing “is”,
and so on. Note that in this case, language-dependent in-
formation, that is, a dictionary of the English language, is
needed. Moreover, the dictionary has to be complete. That
is, it must have recorded all the possible index terms. Other-
wise, some terms cannot be successfully matched and will
be missed from the index.

Now suppose we do not have a complete dictionary. We
have to use features of the coded character sets to do the
segmentation. Since the type of character, such as whether
it is an alphabet or not, is often one such attribute, we can
treat a run of alphabets as one kind of symbol () and a run
of nonalphabets another (!). This way, we obtain the seg-
mentation shown in Figure 1(d). The corresponding sym-
bol sequence is shown in Figure 1(e). Although the sym-
bol sequences are different, the symbol boundaries coincide
with that in Figure 1(b). To find segments of text contain-
ing possible index terms, we can first remove all the!’s,
which corresponds to the nonalphabet runs, from the sym-
bol string. Then, the corresponding text for the remaining
10 ’s, shown in Figure 1(f), are used for indexing. Af-
ter the! removal, we can reassign the symbols so that they
identify with the text the ’s represent. For example, since
the text of the first , “What”, does not identify with that of
the second, “is”, they are assigned different symbols� and
�. And since the text of the first and the sixth ’s are identi-
cal, they are assigned the same symbol�. After this symbol
reassignment, we obtain the symbol sequence shown in Fig-
ure 1(g), which happens to be identical to that in Figure 1(c).
Of course, such an ideal segmentation is not always achiev-
able, especially for languages such as Chinese and Japanese
where no delimiter is used to separate terms. However, by
just considering a document’s coded character set, one is
able to segment it into basic units for index term extraction.
Thus, this procedure isgenericin the sense that documents
in new or unknown languages can easily be accommodated.
Dictionaries are not always required, and aminimal amount
of language-specific informationis used.

5. Finding index terms

As we have discussed in the introduction, a dictionary
of index terms is very useful in document segmentation and
key phrase extraction. This is especially so for languages
such as Chinese and Japanese, whose term boundaries are
not delimited by special characters such as whitespaces.
Unfortunately, a static dictionary can never be complete due
to the highly dynamic nature of the Web. New information
and index terms are constantly created. (Who would have
thought that “tamagotch” is a valid term of something that
people are interested before the toy is invented?) It is thus
very important that a search engine be able to recognize or
to deduce new index terms from the documents it processes.
Timely recognition is essential for search engines to keep
their key term indices abreast with the current state of the
Web.

Seeing a document as a string of symbols, we can dis-
cover index terms by analyzing the symbol strings statisti-
cally. Since a symbol can correspond to different text enti-
ties, an index term here can correspond not only to words
but also phrases and other text sequences. This analysis is
genericin the sense that all is required is a choice of what a
symbol corresponds to. To do the analysisefficiently, we in-
troduce a data structure for finding substring frequencies —
the suffix tree [5].

Given a string, its suffix tree is a level-compressed dic-
tionary trie of all the suffixes of that string. For example,
the suffixes of the string “banana” are “banana”, “anana”,
“nana”, “ana”, “na”, “a”, and the null string. Its suffix tree
is shown in Figure 2(a).

Observing that the prefix of a suffix of a string is a sub-
string, we can see that each node of a suffix tree corresponds
to one or more substring of the string it is built from. For
example, the unshaded node in Figure 2(a) corresponds to
the substrings “an” and “ana”, and are prefixes of the suffix
“anana” of the string “banana”.

A suffix tree can be built inO(n) time, wheren is the
length of the string. It utilizesO(n) space and there are of-
fline [3] and online [6] algorithms for its construction. Since
all the substrings of a string are represented in its corre-
sponding suffix tree, it can be nicely used to collect the oc-
currence frequencies of symbol subsequences in our symbol
sequence analysis stage. Indeed, the number of leaves of a
subtree rooted by a node is the occurrence frequency of the
strings represented by that node. As an example, the subtree
of the node corresponding to “a” in Figure 2(a) has three
leaf nodes. Thus, “a” is the prefix of three suffixes of “ba-
nana”. In other words, the substring “a” appears three times
in the string “banana”. As another example, the node cor-
responding to the substring “nana” is a leaf itself. Thus, it
appears only once in “banana”. Similarly, since the subtree
under the node corresponding to the substring “an” (both

“an” and “ana” correspond to the unshaded node) has two
leaves, so “an” appears twice in “banana”. Note that when
two nodes represent the same substring, as we have now for
“ana” (both the unshaded node and its right child), only the
parent should be considered. Some authors eliminate this
special case by appending a unique end-of-string symbol to
the original string the suffix tree is built from.

Now, we see that suffix trees can be used to analyze for
patterns from a symbol sequence. Combined with the sym-
bol abstraction technique, it would then give us a power-
ful framework for extracting index terms. We not only can
extract commonly-occurring character sequences but also
word sequences, phrases, or grammatical structures by as-
signing different meanings to the symbols. Let us look at
a phrase extraction example. Suppose a suffix tree for the
symbol sequence “��
������
”, which comes from the
text shown in Figure 1(a), is built. Using the tree, we know
that “��” appears twice in the string. Thus, the text corre-
sponding to “��”, namely “What” and “What is”, appear
twice in the original text. Similarly, the node “�
” is a leaf
in the tree, and thus “Never” and “Never mind” appear only
once. Because each symbol in this example represents an
English word, the analysis of symbol sequence occurrence
statistics actually corresponds to the analysis of word se-
quences of the original document. Given the many different
ways a document can be converted into a symbol sequence,
analysis of the symbol sequences statistics is a powerful
way for finding new index terms.

6. Applications

The use of the symbol abstraction together with the anal-
ysis using suffix tree is useful for document indexing and
phrase extraction in a multilingual environment. We present
a few application examples in this section.

6.1. Finding common character sequences

In documents of an unknown language, common char-
acter sequences often designate index terms, stop words or
delimiters of other entities. Efficient identification of com-
mon character sequences of a piece of text helps its segmen-
tation. Here is an algorithm for finding common character
sequences:

1 Identify each character in the document with a symbol.
2 Build a suffix tree for the symbol string.

Using the algorithm in [6], this takes time linear to the
length of the symbol string.

3 Find the number of leaves under every node of the tree.
4 Select a threshold, traverse the tree, and collect those

nodes (except the root node) that has more leaf nodes
under it than the threshold.

Threshold selection can be done using heuristics. For
example, if we are processing a document coded in char-
acter sets for Latin-based languages, we can set it to be
a thousandth of the file length since that roughly corre-
sponds to words of 5 to 7 characters long appearing in
about 1/150 of all the words in the document.
Subtrees can be pruned when we traverse to a node
whose number of leaf nodes under it is less than the
threshold, since the number of leaf nodes under a child
node can never be greater than that under the parent.

5 Eliminate nodes that correspond to symbol strings that
are prefixes or suffixes of another.
This can be done by sorting the symbol strings corre-
sponding to the collected nodes and examining the adja-
cent entries.

6.2. Finding new index terms

Now, suppose we have a partial dictionary of index terms
and a stop list and want to find new index terms. Obviously,
these terms cannot be any of the existing entries in the dic-
tionary or stop list, otherwise they would not be new. They
must correspond to document text that could not success-
fully match the dictionary and the stop list. Since both the
dictionary and the stop list are but lists of words, we can
make things conceptually simpler by considering them to
be in a single dictionary. What we need to do is to purge
all the dictionary-matching entries of the document text and
statistically analyze the remaining text fragments. Assum-
ing that new index terms appear moderately frequently in
those fragments, suffix tree again can be used for the fre-
quency counting analysis. Here is an algorithm:

1 TreeT = null tree
2 For each document,

2a Treat fragments of the document that match a dictio-
nary entry as the symbol! and non-matching segments
as the symbols

2b For each , T TreeMerge(T ,SuffixTree(TextOf()))
Standard tree merge algorithm can be used, taking care
that some of the leaf nodes represent a count of more
than one after the merge. Note that after the tree merge,
T is not a suffix tree in general. For example, Fig-
ure 2(a) and (b) show two suffix trees for the strings
“banana” and “catatonia”. Merging them results in the
level-compressed trie in Figure 2(c). Since the text for
the middle child node corresponding to the node “a” ap-
pear in both the “banana” and “catatonia” trees, it should
be counted twice in the merged tree, and is thus marked
by a “[2]” there. So, when finding the “number of leaf
nodes” the node “a” has in the merged trie, the answer
will be six rather than five.

3 Frequently appearing strings that does not match any dic-

tionary entries can be found by counting the number of
leaf nodes under every node of the trieT in the same
fashion as in steps 3 to 5 of Section 6.1

s

s s s

c s s s

s s

����
�
�
Q
QQ

�� AA
�
�
A
A

�� AA

banana

� na �

na �

na

naa

(a) “banana” suffix tree

s

s s

s s

s s

s s s ss

s������
�

��
A
A
HHHH

PPPPPP

XXXXXXX
�
�
A
A

�
�
A
A

�
�
A
A

catatonia

�

atonia onia

atonia

onia

onia

nia ia
a t

t

(b) “catatonia” suffix tree

t t

t

t

t

t t

t t

t t

t

t t

t

t

t t

t t

�
��
A
AA

�
��
A
AA

�
��
A
AA

@
@@

HHHHH

PPPPPPP

XXXXXXXXX
�

��
�
��
A
AA

@
@@
�
��
A
AA

���������

�����

na �

na
�

banana

atonia onia

catatonia

atonia oniaia

na �

onia ia
tna

at[2]

(c) Merged tree (not a suffix tree)

Figure 2. Merging suffix trees

7. Experiments and results

As a proof of concept and to test for the effectiveness of
our procedures, we carried out a series of experiments to see
how well our algorithms can find index terms or stop words
of an unknown language with minimal use of language-
specific information. First, a number of newspaper editori-
als in Chinese using Big5 code were obtained from the Web.
From the coded values of characters, we separate runs of
ideographic characters from nonideographic runs and treat
them as two kinds of symbols. Ideographic runs so sepa-
rated are usually Chinese phrases in our documents.

To see the effectiveness of statistical analysis using suffix
trees, we compared the number of meaningful index terms
found before and after the analysis. Before the suffix tree
analysis, we found the possible index terms by applying the
heuristics that very short ideographic runs, such as those not
more than four characters long, are possibly index terms.
We thus recorded, in Table 1, the number of ideographic
runs of any length, the number of ideographic runs not more
than four characters long, and the number of such meaning-
ful ideographic runs. By meaningful we mean those seg-
ments that make sense to an ordinary Chinese person and
can be used for indexing or in a stop list. This includes,
among other things, proper names, connectives, adjectives,
adverbs and phrases.

After recording the short ideographic runs, we found the
set of index terms by building and merging suffix trees us-

Doc. date (mmdd1996) 0922 1022 1122 1222
Characters count 874 1185 1092 1116
no. of ideographic run 67 114 99 82

Ideographic runs,
len�4

C 5 26 18 8
M 3 21 13 6
P 60% 81% 72% 75%

Character sequences
appearing more than
thrice

C 6 17 8 7
M 5 17 7 5
P 83% 100% 88% 71%

C=count,M=meaningful,P = 100%�M=C

Table 1. Experimental result

ing the algorithm in Section 6.2. The suffix trees built cor-
respond to the character sequences of the ideographic runs
of any length. Strings of any length that occur at least three
times in the merged tree (three corresponds to about 1/350
of average file size) were then examined to see whether they
are meaningful or not. The result is shown in Table 1.

From this pilot study, we found that statistical analysis
using suffix trees is helpful in finding effective index terms
from the text segments. For example, for the editorial on
October 22, only 26 text segments out of the 114 were of
length no more than four, and 21 of them are meaningful.
However, after analyzing all the 114 segments by building
and merging suffix trees, 17 index terms were found and all
are meaningful. Although the number of index terms found
is less than that found by using heuristics, the accuracy is
much higher. Indeed, for the September 22 editorial, suffix
tree analysis can give more index terms than that found us-
ing heuristics. Statistical analysis using suffix tree has the
added advantage of not imposing any length limitation on
the index terms found. This is in sharp contrast to our short-
ideographic run heuristics where every index term cannot
exceed a certain length. The efficiency of the suffix tree,
together with the effectiveness of the terms found, makes
statistical analysis very useful.

We have also implemented an experimental search en-
gine (http://www.cs.hku.hk/˜catfind/) that in-
dices Chinese news editorials using symbol abstraction and
statistical analysis but not Chinese term dictionaries. Al-
though we are still collecting queries to evaluate its ef-
fectiveness, we found that it can discover index terms
that have never appeared before, such as people’s names
(,) and translated names of objects (
(tamagotch)).

8. Summary and future work

The Web spans across more than a hundred countries
with users speaking more than twenty languages. Success-
ful web search engines thus have to handle multilingual

information in agenericway such that documents in new
languages can beefficientlyaccommodated withminimal
language-specific information. Also, as the Web is dynamic
and constantly evolving, automatic methods for discovering
index termseffectivelyfrom documents in atimelymanner
are needed.

To achieve these goals, we introduced an important ab-
straction of viewing documents: they are but sequences of
symbols, which can represent characters, subword units,
words, or runs of alphabets and nonalphabets. Documents
so viewed can then be analyzed for frequently-occurring
patterns using a data structure called suffix tree. As seen
in Section 6, this analysis, combined with the abstraction, is
powerful and can be used to find frequent phrases, extract
new index terms, and help document segmentation even if
only the coded character sets the documents use is known.
Experimental work using Chinese language newspaper edi-
torials has confirmed that even simple frequency analysis of
commonly occurring symbol sequences are useful in find-
ing new index terms.

We have implemented an experimental search engine
(http://www.cs.hku.hk/˜catfind/) that indices
Chinese news editorials using the principle of symbol ab-
straction and statistical analysis, without the use of a Chi-
nese term dictionary. It is found to be able to discover
names of people or objects quite well.

Since in essence we are discovering patterns in docu-
ments, we believe that this symbol abstraction and statis-
tical analysis method has potential in other areas than mul-
tilingual information retrieval. One such application we are
currently investigating is on the recognition of chord pro-
gressions in musical pieces.

References

[1] Internet society,http://info.isoc.org/ . Homepage.
[2] International Organization for Standardization.ISO 8859-

1:1987: Information processing — 8-bit single-byte coded
graphic character sets — Part 1: Latin alphabet No. 1, 15
February 1987.

[3] E. M. McCreight. A space-economical suffix tree construc-
tion algorithm. Journal of the Association of Machinery,
23(2):262–272, Apr. 1976.

[4] M. Sintichakis and P. Constantopoulos. A method for mono-
lingual thesauri merging. In N. J. Belkin, A. D. Narasimhalu,
and P. Willett, editors,Proceedings of the 20th Annual Inter-
antional ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 129–138. The Associa-
tion for Computing Machinery, July 1997.

[5] G. A. Stephen.String Searching Algorithms. World Scientific,
1994. ISBN 981-02-1829-X.

[6] E. Ukkonen. Constructing suffix trees on-line in linear time.
In J. van Leeuwen, editor,Algorithms, Software, Architecture:
Information Processing 92, volume 1, pages 484–492. Else-
vier Science B.V., 1992.

