
Title A Framework for top-down cost estimation of
software development

Author(s) Yamaura, Tsuneo; Kikuno, Tohru

Citation
Proceedings - IEEE Computer Society's
International Computer Software and Applications
Conference. 1999, p. 322-323

Version Type VoR

URL https://hdl.handle.net/11094/14071

rights

c1999 IEEE. Personal use of this material is
permitted. However, permission to
reprint/republish this material for advertising
or promotional purposes or for creating new
collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted
component of this work in other works must be
obtained from the IEEE..

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

A Framework for Top-down Cost Estimation of Software Development

Tsuneo Yamaura, Tohru Kikuno
Department of Informatics and Mathematical Sciences,

Graduate School of Engineering Science, Osaka University
1-3 Machikaneyama, Toyonaka, 560-853 1 Japan

yamaur t @ soft .hi tachi .Co. ip

Abstract
The Function Point Method, estimation by analogy, and
algorithmic modeling are three of the most commonly
applied methods used to estimate the costs and worker
hours needed for a software development project.
methods, however, require a deep and wide expertise in
particular areas and may still result in unacceptable
discrepancies between the estimated costs and the actual
costs. This paper presents a framework for a top-down
cost estimation method (TCE). The method is based on
the assumption that different types of sojhvare have
different intrinsic complexities.
method will produce easier, faster, and more accurate
estimations in the early stages of a software project.

These

We expect that this

1. Introduction
Cost estimation by analogy is one of the methods most
widely used to calculate the costs and worker hours
required for a software development project.
steps are quite simple: pick a previous project that
developed a similar product, estimate the software size (in
KLOC) and also the worker hours, and finally calculate
the cost using the heuristic.
The estimation-by-analogy approach requires experience
in developing particular software (usually experience at
the project manager level), and yet this approach can still
produce excessive gaps between the estimated costs and
the actual costs.
Bottom-up estimations are exemplified by the Function
Point Method [ALB83] (hereafter called FPM). Such
bottom-up estimations are supposed to be among the more
promising estimation methods because FPM considers
details of the functional aspects of the software, as listed
below, and has a mathematical and scientific atmosphere.

The basic

Number of FF's = f4(sum of functions)
Estimated cost = fS(FPs, environment)

FPM, however, requires time to learn and also requires a
deep and wide expertise in developing the target software.
Even for an expert, counting function points is quite
time-consuming. One of the tricky features of FPM is
that the target system must be complete and should not
include open ends, which means that a client/server
system can be measured, but not the client part alone.

2. Basic Steps for Top-down Cost Estimation
This paper proposes TCE (Top-down Cost Estimation)
that estimates the costs and worker hours required for the
target software by the following basic steps:
(1) Search a software functional classification table for
the same type of software with matching functions, such
as a word processor, and identify the standard cost for that
type of software.

0-7695-0368-3/99 $10.00 0 1999 IEEE

ki kuno@ics.es.osaka-u.ac.ip

(2) Adjust the standard cost by considering the
developer's business strategy such as "the top priority is
maintaining the shipping date" rather than "the top
priority is maintaining quality."
(3) Re-adjust the above adjusted standard cost by
considering the development environment (such as the
ability of the programmers or the availability of hardware
and software tools).

3. Assumptions in TCE
TCE has two fundamental assumptions:
(1) Each type of software has its own intrinsic
characteristics: such as functional complexity,
performance requirements, and sophistication level of the
user interface.
(2) The software development costs and worker hours are
both affected by software characteristics, corporate
strategy, and the available development environment.

3.1 First Assumption: Each software program has
intrinsic characteristics
The estimation-by-analogy model, the algorithmic
modeling such as COCOMO, and the FP method assume
that 10 KLOC developed for an online program, for
example, will require the similar cost and worker hours to
build the 10 KLOC of a batch program. TCE, however,
assumes that each type of software has its own complexity
and difficulty in design and implementation.

3.2 Second Assumption: Functions, strategy, and
environment affect the cost
Three major components that affect both the software
development cost and required effort are:
(1) software characteristics (e.g., functional complexity,

performance requirements)

(2) corporate strategic characteristics (e.g., "ship now,
repair later" or "debug now, ship later")

(3) development environment characteristics (e.g.,
available hardware and software tools)

The second assumption in TCE is that the standard
development costs and worker hours are closely related to,
and directly affected by, the software characteristics.
This paper assumes that the standard costs and worker
hours are 100% proportional to the software
characteristics, and the estimated costs and worker hours
can be calculated from the standard cost, strategy, and
environment as formulated below:
- Standard cost = Fl(characteristics)

322

- Estimated cost = F2(standard cost, strategy,
environment)

3.2.1 Software Characteristics

The software characteristics are absolute values associated
with each type of software (i.e., software characteristics
vary with the type of software), and these values are not
affected by, for example, a programmer's ability, target
quality level, or hardware and software configurations
provided to develop the software. Software
characteristics include:

(1) Functional complexity (i.e., how difficult it is to
design and implement the target software).
(2) Performance requirements (e.g., the memory and disk
constraints, number of concurrently operable processes,
response ti me).
(3) Sophistication level of the user interface (e.g., line-
mode interaction, full-screen GUI).

3.2.2 Corporate Strategic Characteristics
Each software development company has its own
strategies when developing target software. The
strategies vary the emphasis placed on any of the time of
shipment, available budget, engineering (and business)
decisions on the quality level, and targeted market

Of the above four, the most crucial strategy is the
shipment timing. In general terms, the two contrasting
strategies are:
(1) the highest priority is to ship the product as early as
possible to gain market share
(2) the highest priority is high quality to get rid of the
vicious circle of poorer quality software demands more
worker hours and higher maintenance costs after the
software is released, and the resulting lower budgets and
fewer human resources lead to another poor-quality
project.

3.2.3 Development Environmental Characteristics
These are the characteristics of the resources that a project
can (or sometimes "must") employ to develop the target
software. The development environment includes:

(1) Human resources (e.g., number of engineers assigned,
ability of programmers)

(2) Hardware resources (e.g., machines, disk spaces,
network bandwidth)
(3) Software resources (e.g., available tools, quality of
reused software)

(4) Development strategy (e.g., waterfall model, RAD,
spiral model, prototyping)

4. Building a TCE

Implementing and evaluating an operable TCE system
must go through four phases. The four phases are
briefly explained below, and we finish with a tentative
example of how a usable standard cost table might appear.

Phase 1 (Construct a software taxonomy table)

In phase 1, we make a "software taxonomy table" that
covers all software products. Of course, there are various
ways to classify software. The following list could be
used as the basis for developing such a taxonomy:

(1) Operating systems: job management, data
management, task management, device drivers
(2) System utilities: security, file management, library
management

(3) Network Internet, clientkerver system, dataware,
groupware, network management, distributed object
environment, network protocols, infrastructures

(4) Language processors: COBOL, C/C++, FORTRAN,
JAVA, documentation languages (e.g., SGML),
interpreters

(5) Database: tree structure, network structure, relational
database, distributed databases
(6) PC-related package software: word processor,
spreadsheet
(7) Applications: banking and securities system,
reservation system, financial system, inventory control
system, electronic commerce,

Phase 2 (Construct a standard cost table)
In phase 2, we provide the following information for each
type of software:
(a) Standard cost

(b) Weightings to correspond to emphasized goals such as
"performance is not a major consideration," or "critical."
(c) Weightings to correspond to emphasized GUI goals
such as "a simple GUI is enough,"
designed GUI is essential."

"a meticulously

Phase 3 (Develop adjusting procedures)
In phase 3, we provide weightings for reflecting corporate
strategic characteristics, and then provide weightings that
reflect the environmental characteristics.

Phase 4 (Perform experimental evaluation of the TCE)

In phase 4, we evaluate
of the TCE.

the predictability and sensitivity

5. Conclusion

In this paper, we described the basic idea for a top-down
method for estimating software costs.
we expect to be able to make relatively quick and easy
estimations in the early stages of software development,
without any deep or wide expertise. We described the
four phases required for building an operable TCE system.
We are currently implementing and analyzing a TCE
prototype based on actual project data.

With this method

Bibliography

[ALB83]: Albrecht, A., Gaffney, J.Jr., "Software Function,
Source Lines of Code, and Development Effort Prediction:
A Software Science Validation," IEEE Transactions on
Software Engineering. vo1.9, No.11, pp.639-648, 1983.

323

