
GAPS: a Genetic Programming System

Michael D. Krames and Du Zhang

Department of Computer Science
Ca l i fomia State University

Sacramento, CA 9581 9-602 I
U. S. A.

Abstract
Genetic programming tackles the issue of how to

automatically create a working computer program for a
given problem from some initial problem statement. The
goal is accomplished in genetic programming by
genetically breeding a population of computer programs
in terms of the principles of Darwinian natural selection
of the fittest and genetic operations. In this paper, we
describe a genetic programming system called GAPS.
GAPS has the following features: (1) I t implements the
prototypical generational algorithm for genetic
programming with three improvements (the honor roll,
improved termination criteria and the tree techniques for
fitness evaluation). (2) I t includes an extensible language
tailored to the needs of genetic programming. And (3) it is
a complete, standalone system that allows for genetic
programming tasks to be carried out without requiring
other tools such as compilers. Preliminary results with
GAPS have been satisfactory.

1. Introduction
Evolutionary computation refers to the use of

evolutionary algorithms to solve difficult computational
problems [3]. Two major approaches exist in the field of
evolutionary computation: genetic algorithms (GA) and
genetic programming (GP) [4,5,6,7]. One important
difference between GA and GP lies in the representational
formalisms for hypotheses: GA uses bit strings whereas
GP uses computer programs. GP deals with the issue of
how to automatically create a working computer program
for a given problem from some initial problem statement.
The goal of GP is accomplished by genetically breeding a
population of computer programs in terms of the
principles of Darwinian natural selection of the fittest and
genetic operations [1,2,7-10,12-161,

In this paper, we describe a complete, standalone
system for GP called GAPS [1 1 3 . Preliminary results with
GAPS have been satisfactory. GAPS has the following
features:
(1) It implements the prototypical generational algorithm

for GP with three improvements: the use of the honor

roll for the top scorers throughout the entire
evolution process, improved termination criteria and
the tree techniques for fitness evaluation.

(2) It has an extensible language tailored to the needs of
genetic programming. The language can be used for
creating the structures that GAPS manipulates, and
for creating the “shell” programs to evaluate the
fitness of the computer programs generated. It is
extensible in that it allows new functions and
subroutines to be dynamically defined and used.

(3) It offers a complete, standalone development
environment that allows for genetic programming
tasks to be carried out without requiring other tools
such as compilers.

The rest of the paper is organized as follows. Section 2
gives a brief overview of the main tasks and issues in GP.
Discussion on GAPS is provided in Section 3.
Performance issue on GAPS is briefly described in
Section 4. Finally, Section 5 concludes the paper with
remarks on future work.

2. Genetic Programming
In GP, a computer program is often represented as a

tree (a program tree)’ where the internal nodes correspond
to a set of functions used in the program and the external
nodes (terminals) indicate variables and constants used as
the input to functions. For a given problem, GP starts with
an initial population p of randomly generated computer
programs. The evolution process of generating a final
computer program that solves the given problem is
defined in the following prototypical algorithm:

Define:
f : a fitness function that yields an evaluation score

for a computer program ,D E p;
5: a fitness threshold used as a terminating

condition;
6: the size of p;

the fraction of &I to be ireplaced by crossover at
each generation;

’ The term “tree” is used to refer to a LISP style program
throughout the remainder of t’he paper.

614

p: the mutation rate;
h: the limit used as an alternative terminating condition

and L?L indicates that limit is not reached2.
The algorithm GP is then given as follows:

Step 1: Initialize population: p t I9 randomly generated

Step 2: Compute f@) for all p E p;
Step 3: While ((max((f@) Ip E 63)) < 3) A (L A)) do
Produce a new generation of computer programs p’

Wf, 3, 6, r, p, v
computer programs (trees);

Select probabilistically (1 - Y)p members of p to
be included in p’. The probability Pr@) of selecting p
E p is defined as follows:

Select probabilistically (YI9 /2) pairs of programs from
p according to Pr@) above. For each tree in a pair, a
crossover point is randomly chosen and two offspring
(trees) are produced from the pair in terms of the
crossover operation and are placed into p’.
Choose p percent of the trees from p’ with uniform
probability. For each, a mutation operation is
performed.
Update p with @‘ (p t p’).
ComDute f (p) for all p E ,@. . I - . . -

Step 4: Return the program tree p E p such that f@) is
the maximal. 0

There are a number of issues to be considered in a GP
system:
(1) Definitions of functions and terminals to be used in

the program trees generated.
(2) Definition of a fitness function for evaluating

program trees and the way those trees are evaluated.
(3) Generation of the initial population.
(4) Selection strategies for trees to be included in a next

generation population.
(5) How crossover and mutation operations are carried

out and how often these operations are performed.
(6) Criteria for terminating the evolution process and the

way to check if the terminating conditions are
satisfied.

(7) Return of the final results.

3. GAPS
The most important difference between GAPS and the

other systems we have examined is that GAPS is a

complete GP environment. The other systems might be
more correctly characterized as tool kits for creating
programs to solve a specific problem. In order to make use
of these systems, the user must have available the tools for
creating programs in whatever source language that the
system was written in, whether that be LISP, C , C++, or
any of the other languages used in genetic programming.

To work in a specific problem domain, the current
technique is:

Write modules that will input the parameters to the
problem, evaluate trees with regard to the problem
domain, and handle any sort of output required during
the run.
Compile these modules.
Link the modules with the supplied system modules.
Execute the resulting program.

With its integrated language, GAPS is wholly self-
contained. For a given problem, a problem specification
(PS) file3 is created that specifies the nature of the
problem at hand as well as certain conditions for the
evolution process. To attack different problems, all that is
needed is to run the same GP engine with different PS
files.

3.1. The GAPS language
There are three types of statements, functions, and

commands in the language.
Meta Statements. These are used to direct the system in

how to execute the run, and what data structures (seed
trees, test sets, shell tree, miscellaneous parameters) to
create and use during the run. The setting of the control
parameters is handled through the meta statements.

Tree Functions. These are the actual executable
instructions. They are all fairly standard computer
instructions, and can be put together in a list structure to
represent trees. Each one takes as input a specified
number of values of specified or variable data types and
returns a value of a specific data type.

Shelf Commands. A GAPS shell is simply a special case
of the general tree. The shell is responsible for evaluating
the generated trees, feeding them any required inputs, and
returning a meaningful fitness measure back to the GAPS
system. Shell commands are similar to the tree functions,
but their use is generally restricted to the job of setting up
and evaluating the runs of individual trees. These
commands make the job of tree evaluation, data
initialization, etc., simpler. While the shell commands are
designed for use only by the shell program, they can be
used in generated trees by creating user-defined functions
that call these commands.

All of these statements/functions/commands are
contained in a text file (PS files). They can be generated
either interactively within GAPS, or independently from

The limit here may be defined in terms of either time or
resources consumed during the evolution process, or both. This is a text file with the file extension of .GAP.

615

GAPS, or a combination of both. All of the files that
GAPS uses are intentionally text files. This enables a user
to see exactly all of the relevant information on the run
that a file sets up. It also makes it possible for the output
file from a run to be edited and fed back into GAPS for a
modified run or to be able to suspend a run and then pick
up where the run had left off.

3.2. Fitness function and tree evaluation
The fitness function describes the criterion for ranking

trees. It also serves as the basis for probabilistically
selecting trees for inclusion in the next generation
population. It can be defined based on the user provided
test sets for the target program. These test sets would
consist of the input data for the program and the expected
corresponding output4. Thus the fitness of a tree f@) for p
E ,$I boils down to the accuracy of p over the test sets.

To evaluate the fitness of trees in the current
population, GAPS uses its own language to define an
evaluation program. There are a number of advantages.
First, the system is complete unto itself and does not
require additional tools such as interpreters or language
systems in order to work in new domains. Second, special
purpose tools for performing fitness evaluations can be
built into the language, making it simpler to do the
evaluation.

3.3. Initial population generation
Once the size of the initial population is defined, the

main task is to create enough trees to fill out the
population. If any “seed” trees are specified in the PS file,
these are used first, and are simply created directly from
the descriptions supplied in the PS file. When there are no
more seed trees, trees are created randomly, using the
terminals and functions specified in the PS file as being
permissible. After each tree is created, it is added to the
initial population and then evaluated.

GAPS implements several standard methods for
creating the initial population of program trees. The full
method creates only fully populated trees. That is, every
branch will end at the same level. Until this “maximum
depth” is reached, only functions are chosen to be added
to the tree. At the maximum depth, only terminals are
chosen. The grow method creates trees that might be, but
are not required to be fully populated. No restrictions are
placed on the selection of functions versus terminals other
than possibly enforcing a minimum depth, and for
enforcing a maximum depth. The ramped half-and-half
method combines the full and grow methods in a 506’0
split and adds the concept of a ramp. If the ramp is, for

Other variables, such as degree of tolerance (how far off an
answer can be and still be considered correct), the number of
correct answers that will be considered sufficient for accepting a
solution, can also be used in defining the fitness function.

instance, 3..5, equal proportions of trees will use
maximum depths of 3,4, and 5.

3.4. Selection strategies
GAPS offers a number of selection strategies for use by

the users. The first strategy is called Fitness Proportionate
Selection (sometimes referred to as Roulette Wheel
Selection). Trees are selected randomly, with the
probability of p E ,$I being sellected proportional to p ’ s
fitness f@) divided by the total fitness of the population.
The second strategy is referred to as Tournament Selection
in which a selection of some fixed number of candidates is
taken randomly from the population and the individual
with the highest fitness score within this random group is
chosen. This process is repeated until the required
number of individuals have been selected. The third
strategy is Greedy Over-Selection which partitions the
population into two groups, a relatively small group of
“elite” scorers (typically the top 15% of the population)
and the remainder of the population. Proportionate
selection alternates between these two groups, with the
proportion for the elite group ranging from 50% to 100%
of the time.

3.5. Genetic operations
The two main genetic operators in GAPS are crossover

and mutation. In the crossover operation, a pair of parent
trees having different sizes is probabilistically selected
from the current population based on fitness. A crossover
point is then determined in the two trees randomly.
Finally, subtrees rooted at the crossover points of the
parents are swapped, generating two offspring. Crossover
operation is the predominant operation that is often
performed at a high probability (85% to 90%).

In the mutation operation, a single parent tree is
probabilistically selected from the current population
based on fitness. A mutation point is then randomly
determined. Finally the subtree rooted at the mutation
point is replaced by a new sutitree that is created using the
same random tree generation process as in the initial
population. Mutation rate is much smaller (< 5%).

In addition to crossover and mutation, there are some
other operations that have been found to be useful in
GAPS [1 11.

3.6. Terminating condition
In a genetic programming system, a set number of

generations is generally used as the condition for
terminating the evolution process. GAPS uses a more
flexible system. As long as iimprovements continue to be
made, the run continues. This prevents either the
premature termination of avenues of search that continues
to pay off, or continuing to search dead-ends when no
further progress seems likely. A maximum number of
unproductive generations is the primary criterion used to

616

halt a run in GAPS rather than a limit on the total number
of generations. This eliminates a reliance on a priori
assumptions regarding the run and instead uses the results
themselves to guide the run.

Specifically, as each new tree is created in GAPS, it is
evaluated. During each generation in which no
improvement in the top score occurs, a counter is
incremented. When this counter reaches a user-defined
threshold, the run is signaled to shut down. Before
termination occurs, two things could happen. First, a
temporary boost in the mutation rate could be triggered, in
the hopes of shaking things up enough to get progress
going again. Second, the scoring strategy could be altered,
favoring smaller trees. This latter effect is useful for
getting more generalized solutions to the given problem
and for weeding out “deadwood” - branches that do not
actually contribute to the problem solution.

In GAPS, there are two user-defined parameters
MaxGens and ExtraGens, and two run-time variables
Ungroduct iveGens and SHRINK. The initial values
for UngroductiveGens and SHRINK are 0 and off,
respectively. Let stop be initially false, checking for the
termination condition is captured in the following
procedure.
w h i l e (not((max({f@) 1 p E $3)) >3)VStOg) do
(Ll: carry out the evolution process (based only on

fitness consideration);
i f (there is no improvement in current generation)
then(UngroductiveGens++;
i f (UngroductiveGens==MaxGens)
then (SHRINK = “on”;

else goto L1;
L2: carry out the evolution process (based on both

UnproductiveGens = 0;]

fitness and tree sizes consideration)
i f (there is improvement in current generation)
then (SHRINK = “off’;

UngroductiveGens = 0;)
else (UngroductiveGens =

UngroductiveGens + 1;
if (UngroductiveGens==ExtraGens)
then (stop = true;)
else goto L 2 ;)))

If the user elects to cancel a run, an option is presented
to save all of the trees from the final generation. This
allows the run to be resumed later where it left off.

3.7. Result return

In general, the final result of a GP run is considered to
be the top scoring individual from the final generation.
GAPS extends this with a structure called honor roll,
which contains the top scorers from all generations of the
run. The size of the honor roll is user-definable, with a
minimum size of one. Even with this minimum size, the

honor roll provides a better result return mechanism than
the standard method. Because in the standard method,
there is no guarantee that the best individual in a run will
be found in the final generation, but it is guaranteed that
the best individual from a run will be found at the top of
the honor roll.

The advantage of larger honor roll sizes is that in trying
to solve a particular problem, a human can often see
advantages to various individuals that were not the highest
scorers. The human can then manually combine features
of various high scoring individuals, or can use these high
scoring individuals as seeds for a new run. It can also be
beneficial to combine the honor rolls from multiple runs to
seed a new run, giving the benefit of traits evolved in
different evolutionary pathways in different runs.

The honor roll is printed in descending order of fitness
scores. Each member of the honor roll contains the
following information:

The numerical index of the tree. This provides
information on how long it took to evolve this
particular tree.
The fitness score of the tree.
The size of the tree.
The tree itself, in list notation.

GAPS produces a log file at the end of the run. The log
file can include various types of information. At a
minimum, it will include a copy of the PS file, progress
summaries for each generation, and a listing of the honor
roll at completion of the run. TO change the amount of
information provided, several “diagnostic levels” can be
specified in the PS file. The commands and their
associated information are:

Print-Trees: Amount of information to be printed for
each generated tree.
Print-Generations: Amount of summary information
for each completed generation.
Print-Deletions: Amount of information to be printed
regarding deleted trees.
Print-Tests: Level of tracing to be done during the
evaluation of each tree.

In all cases, a numeric parameter ranging from 0 for no
information, to 5 for maximum information, must be
provided.

The log file can be very useful for generating input files
for new runs. If a run was cut short, the population at that
time, or the honor roll at that time could be used as seed
trees when restarting the run later. Or the honor rolls from
several runs could be combined in a new run to get the
benefits of separate evolutionary pathways being
combined. And of course the log can be useful in
understanding just how a resulting tree was arrived at.

3.8. How GAPS operates
GAPS can be used in three different modes:

6 17

Interactive Mode. In the interactive mode, a PS file
can be either created using built-in editing functions,
or read from disk and then modified and saved to
disk. Files can be executed, generating populations of
trees that are then evolved in an effort to solve the
defined problem. An initial PS file to be opened can
be specified on the command line.
Pseudo-batch Mode. In pseudo-batch mode, the
editing functions are not used, and the PS files are
opened and executed from within the GAPS
environment.
True batch mode. In true batch mode, a file
containing the names of PS files to be run is specified
on the command line and the GAPS environment is
never accessed.

GAPS uses a fairly standard Windows interface, so that
anyone having experience with other Windows programs
should be able to use GAPS.

The basic sequence of events when running in the
GAPS environment is:
(1) Open a PS file if one has previously been created.
(2) Edit the file to customize it to the particular problem

at hand.
(3) Save the file with the changes.
(4) Run the GP engine with the file.

In the pull-down menu of Edit, a user may edit any of
the following items in either a PS file or the system
environment parameters for the run:
0 Test sets (to be used for fitness evaluation of

generated trees).
Seed trees (to be included as part of the initial
population for the evolution process).
User defined functions (to be used in generated trees).
Built-in functions (to be used in generated trees).
Shell tree (to define how to carry out the fitness
evaluation).
Target tree (to define what the target tree looks like).
Miscellaneous parameters (parameters for the
evolution run).

Any of the tree functions defined in the GAPS language
can be used as part of the target trees generated. Changing
the built-in functions used in the evolution run would
result in different trees being created.

When “Run” is selected from the GAPS main window,
a whole sequence of events occurs. It starts with
verification of the control parameter values that were
supplied in the PS file or via the editing functions. Once
this is done, several run-time variables are initialized. This
includes setting a pointer to the first test set if test sets are
being used, clearing out any existing trees, and zeroing out
the generation count. Then the actual work begins.

While the run is occurring, a dialog box is displayed to
keep the user apprised of the progress of the run. Included
in the dialog are:

The number of the current tree.

e

The number of the current generation.
The number of generations that have passed with no
improvement and the maximum number of
generations with no improvement allowed.
The average and best fitness so far.
The average and best number of “hits” so far.
Buttons to either pause the nun or end it immediately.

Watching the numbers in the dialog box can give you
an interesting view into the dynamics of evolution, the
best scores varying between short spurts of sudden
progress and relatively long periods of apparent
equilibrium.

Finally, when the run finishes, GAPS outputs the
following information in a window, in addition to creating
the log file:

Total number of generations created in the evolution
run.

0 Total number of trees generated.
The best fitness score.
The finish time.

4. Performance
GAPS is developed in the windows environment using

C++. It has been found to be ;in effective G P system for a
number of different categories of problems such as
sequence induction, symbolic regression, pattern
recognition, optimal control, automatic programming, and
many others. Due to space limit, we only briefly mention
the result of an example run for the sequence induction
problem as follows.

The log file contains various information as promised.
The lines before END-DATA are essentially a copy of the
PS file for the given problem. The entire run results in 490
trees being created in 14 generations. The honor roll
contains the top ten scorers from all generations. It was
not until the 469* tree that a perfect score was achieved
and the correct program was determined.

5. Conclusion
GAPS does indeed seemi to be a viable way to work

with the GP paradigm. The ability to change problem
domains quickly and easily through the GAPS language
seems to have been achieved. The GAPS language is a
complete one, including all the basic computer constructs
such as selection, iteration, sequential execution, and even
recursion. Extensions to the language can be added fairly
easily, either by an end user adding new keywords along
with the trees to implement those keywords, or by a
programmer adding functionality for new keywords to a
few well confined areas of the GAPS computer code. The
system is written in an object-oriented fashion to make
changes to the system relatively painless.

618

,-

The honor roll is a useful extension to GP. It has proven
invaluable in our work with GP. Likewise for the
termination strategy of using continuing progress as the
criteria rather than a set number of generations. This
eliminates a reliance on a priori assumptions regarding the
run and instead uses the results themselves to guide the
run.

Allowing trees as the means of evaluating other trees
does make it much easier to jump between different
problem domains, only requiring one executable program
to be used for solving any GP problem.

Future work and enhancements to GAPS can be
pursued in the following directions:

Conversion routines for automatically creating
program code in C, C++, or Java from successful
trees. This would be extremely useful for making GP
a truly useful tool for creating solutions that can then
be immediately put into standard computer programs.
Multiple populations. Currently the groundwork is in
place for creating and working with multiple
populations in GAPS. Very little more work would be
required to allow this. However, some of the benefits
of multiple populations, such as independent
evolutionary pathways, already exist in GAPS
through the honor roll and the ability to mix
populations from various runs into a new run.
Competitive game playing. Here too, the groundwork
is in place to allow trees to compete against each
other to generate optimal competitive strategies.
When multiple populations have been implemented,
the GAPS language will easily support evaluating
trees from different populations for purposes of head-
to-head competition.
Faster tree evaluation. There has been much work
done in the field of optimizing tree evaluation, and
more work still to be done. Of course the faster that
trees can be evaluated, the more useful and the more
powerful GP becomes.
Multiple data types. GAPS can theoretically support
multiple data types. All that is really needed is code to
enforce that crossover only occurs at appropriate
locations so that closure is not compromised.
ADF. ADF’s, or automatically defined functions, are
a method for increasing the power of GP by providing
a mechanism for creating subroutines within a tree.
This would be another useful addition to GAPS.
Age-based death. One of the primary facets of
biological genetics that is not mirrored in GAPS (or
in other GP systems that we have seen) is age-based
death. With the honor roll preventing the total loss of
exceptional genetic specimens, this might be a useful
addition to the GP repertoire. It would be interesting
to see the effects this has on the speed of evolutionary
progress.

0

1.

2.

3.

4.

5.

6 .

7.

8.

9.

IO.

11.

12.

13.

14.

15.

16.

Evolutionary throwbacks from the honor roll. With
the honor roll, high scoring individuals could be
randomly put back into the population some time
after they had been removed. This would also be an
interesting area to study for its effects on evolutionary
progress.
More extensive inpudoutput facilities in the GAPS
language. One of its major shortcomings as a
complete language is the limited U0 capabilities.
Further work in this area, along with increases in the
speed of tree evaluation, would eliminate most of the
reasons for wanting to use the standard genetic
programming method of recompiling the entire
system for each new problem.

References
W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone,
Genetic Programming: An Introduction, Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 1998.
J. Cona, Developing a Genetic Programming System, AI
Expert, No.2, 1995.
K. A. De Jong, Evolutionary Computation for Discovery,
Communications of the ACM, Vo1.42, No.11, November

D. E. Goldberg, Genetic and Evolutionary Algorithms
Come of Age, Communications of the ACM, Vo1.37, No.3,
March 1994, pp.113-119.
J. H. Holland, Adaptation in Natural and ArtiJicial Systems,
University of Michigan Press, Ann Arbor, MI, 1975
(Second edition, MIT Press, Cambridge, MA, 1992).
J. H. Holland, Hidden Order: How Adaptation Builds
Complexity, Addison-Wesley Publishing Company,
Reading, MA, 1995.
J. R. Koza, Genetic Programming: On the Programming of
Computers by Natural Selection, MIT Press, Cambridge,
MA, 1992
J. R. Koza, Genetic Programming II: Automatic Discovery
ofReusabfe Programs, MIT Press, Cambridge, MA, 1994.
J. R. Koza et al, Genetic Programming III: Darwinian
Invenrion and Problem Solving, Morgan Kaufmann
Publishers, Inc., San Francisco, CA, 1999.
K. E. Kinnear, (ed.), Advances in Genetic Programming,
MIT Press, Cambridge, MA, 1994.
M. D. Kramer. GAPS: The Genetic Algorithm
Programming Systetn, MS degree thesis, Department of
Computer Science, Califomia State University, Sacramento,
May 1996.
C. G. Langton (ed.), Art@cial Life I I , Santa Fe Institute,
Addison-Wesley, 1991.
T. M. Mitchell, Machine Learning, WCBIMcGraw-Hill,
Boston, MA, 1997.
A. Singleton, Genetic Programming With C++, Byte, No.2,
1994.
L. Spector et al (ed.), Advances in Genetic Programming
Volume 3, MIT Press, Cambridge, MA, 1999.
Special essays on “Genetic programming”, IEEE Intelligent
Sysfems, Vol. 15, No.3, MayIJune 2000, pQ.74-84.

1999, pp.51-53.

619

