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Abstract? 
Several load balancing schemes are recently proposed for 

distributed object computing systems, which are widely 
envisioned to be the desired distributed software development 
paradigm due to the higher modularity and the capability of 
handling machine and operating system heterogeneity. 
However, while the rationales and mechanisms employed are 
dramatically different, the relative strengths and weaknesses of 
these approaches are unknown, making it  difficult for a 
practitioner to choose an appropriate approach for the problem 
at hand. In this paper, we describe in detail three representative 
approaches, which are all practicable, and present a 
quantitative comparison using our experimental distributed 
object computing platform. Among these three approaches, 
namely, JavaSpaces based, request redirection based, and 
fuzzy decision based, we find that the fuzzy decision based 
algorithm outperforms the other two considerably. 
Keywords: distributed object computing, load balancing, 
Java, JavaSpaces, Jini, fuzzy decision. 

1 Introduction 
With the great advancement of hardware technologies, 

powerful distributed computing systems are becoming 
ubiquitous. Indeed, with commodity hardware components, a 
high performance network of PCs can be set up to execute 
applications developed using new software structuring 
paradigms, such as object based systems and object brokerage 
protocols, which have also advanced tremendously parallel to 
the development of hardware technologies. Such new 
distributed software development paradigms, while have the 
advantages of modularity and capable of handling platform 
heterogeneity, were conceived as impractical in mere five to 
ten years ago because many complex operations such as object 
serialization and data marshalling, were too time consuming to 
be efficiently run on the hardware platforms. Currently, many 
commercial software projects are using distributed object 
based approaches such as CORBA (common object request 
broker architecture), DCOM, and Java RMI (remote method 
invocation). Using a distributed object based approach, an 
application is constructed as a group of interacting objects. 
These objects are distributed over multiple machines which 

system, there are multiple objects (possibly on heterogeneous 
platforms) that provide the same service. This is done to 
achieve a higher availability and scalability. Even the lookup 
service object may have several instances in the network. 
Under light load conditions (i.e., few number of remote service 
invocations or object passing), the system can perform 
reasonably well. However, as the system scale up to a moderate 
size (e.g., 10 machines), the number of requests generated in 
the system can be of a very large volume and be very bursty. As 
a result, some machines might be overloaded while other 
machines are idle or lightly loaded. In order to improve the 
performance, specifically the client request response time of a 
distributed application, a load balancing technique can be 
introduced to distribute workload in a judicious manner among 
various machines [14], [ l  I], [20], [21]. 

Numerous approaches are suggested for performing load 
balancing in distributed computing systems [ 131, [ 151, [ 171, 
[18], [19]. In this paper, we describe in detail three 
representative approaches: (1) a JavaSpaces approach, (2) a 
request redirection approach, and (3) a fuzzy decision based 
approach. The JavaSpaces approach [ I ] ,  121, [3] ,  [lo], 1121, 
works by using an Java object space as a task pool, from which 
the servers get work for execution. Load balancing is thus 
achieved in an uncoordinated manner. In the request 
redirection approach, a threshold is set in each server such that 
when the number of outstanding requests exceed the threshold, 
the new requests are redirected to other servers in a round-robin 
manner. Due to space limitations, these two approaches are not 
elaborated here but details can be found in [15]. Proposed 
recently in [ 161, the fuzzy decision based approach works by 
using fuzzy decision variables to capture the inherent dynamic 
behaviors of the system states in order to make intelligent load 
balancing decisions. Our proposed system is based on Jini [4], 
[ 5 ] ,  [6]. More details about this novel approach is described in 
Section 2. Implemented on the same experimental object 
computing network comprising a number of Pentium 
workstations, all the approaches are evaluated extensively 
under a wide range of parameters. The experimental results. 
described in Section 3, indicate that the fuzzy based approach 
outperforms the other two approaches considerably. We 
conclude the uauer in Section 4. . .  
2 Fuzzy Logic Based Request Redirection interact with each other through well predefined protocols 

(e.g., RMI in Java). Usually, the interactions are queries or 
remote services invocation. Approach 

It is common that in such a distributed object computing In this section, we describe our recently proposed fuzzy 
logic based request redirection scheme [15], 1161. In this 
approach, a fuzzy logic controller is incorporated into the 
request redirection system discussed in the previous section. 
The role of the fuzzy logic controller is to control the request 
redirection decision of each server. Instead of manually set the 
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threshold value for each server, the fuzzy logic mechanism 
allows servers to make request transfer decision based on the 
server ranking assigned by the fuzzy logic controller. In the 
following, a brief introduction of using fuzzy logic controller is 
presented, followed by the description of our design model and 
implementation. 

2.1 Fuzzy Logic Controller 

To tackle the load balancing problem, conventional control 
theory can be applied to restore system equilibrium. For 
instance, a sudden increase in client requests can be modeled as 
external force which attempts to destabilize the network and 
the end-hosts. The scability of the network can be maintained 
by using feedback control which performs suitable adjusting 
actions to minimize the effect of the external force. In order to 
design a load balancing algorithm based on conventional 
control theory, one h:is to develop a mathematical model of the 
system to be controllcd and determine the characteristics of the 
model by applying various analytical techniques. Indeed, with 
the incorporation of some simplifying assumptions, model with 
linear relationships between a few variables can be easily set 
up. However, to handle a complex system such as a high speed 
computer network where a lot of uncertain parameters exist, a 
model with complex and nonlinear relationships between a lot 
of variables have to be devised. This limitation makes i t  very 
difficult, if not intracl.able, to apply conventional control theory 
to balance load in computer network. To overcome this 
problem, fuzzy logic control theory [7] can be applied instead 
of the conventional one. 

Fuzzy logic control attempts to capture intuition in the 
form of IF-THEN rules, and conclusions are drawn from these 
rules [7]. Based on both intuitive and expert knowledge, system 
parameters can be modeled as linguistic variables and their 
corresponding membership functions can be designed. Thus, 
nonlinear system with great complexity and uncertainty can be 
effectively controlle$d based on fuzzy rules without dealing 
with complex, uncertain, and error-prone mathematical models 

The architecture of the fuzzy logic controller includes five 
components: Fuzzifier, Rule Base, Membership functions, 
Fuzzy Inference Engine, and Defuzzifier. The fuzzifier is the 
input interface which maps a numeric input to a fuzzy set so 
that it can be matched with the premises of the fuzzy rules 
defined in the application-specific rule base. The rule base 
contains a set of fuzzy if - then rules which define the actions 
of the controller in terms of linguistic variables and 
membership functioris of linguistic terms. The fuzzy inference 
engine applies the inference mechanism to the set of rules in the 
fuzzy rule base to produce a fuzzy set output. This involves 
matching the input l’uzzy set with the premises of the rules, 
activation of the rules to deduce the conclusion of each rule that 
is fired, and combination of all activated conclusions using 
fuzzy set union to generate fuzzy set output. The defuzzifier is 
an output mapping which converts fuzzy set output to a crisp 
output. Base on the crisp output, the fuzzy logic controller can 
drive the system undcr control. 

The fuzzy rule base contains a set of linguistic rules. These 
linguistic rules are expressed using linguistic values and 
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linguistic variables. Different linguistic values can be assigned 
to a linguistic variable. For instance, high or l o w  can be 
used in the variable server-load. These linguistic values 
are modeled as fuzzy sets. Based on the linguistic values, their 
corresponding membership functions can be expressed based 
on application requirements. 

2.2 Design and Implementation of Fuzzy Logic 
Based Request Redirection Approach 

In the our proposed approach, fuzzy logic is used to help in 
decision making for request redirection. Fuzzy logic is 
implemented inside a fuzzy logic controller of which the main 
function is in processing all server load information and 
assigning different ranks to servers. Each server can based on 
its own server rank and other servers’ ranks to decide where it 
should transfer a remote call to. As the name implies, fuzzy 
logic controller has to make use of fuzzy information so as to 
perform logic control. Several linguistic variables, server load, 
server load mean deviation, and server rank, are used in the 
fuzzy logic algorithm and are defined as follows. 
2.2.1 Server Load 

We define server load, denoted as SL, with the fuzzy set 
definition: { l o w  (L) , medium (M) , high (H) }. 
Accurate estimate of load is notoriously difficult to obtain [8], 
[9]. We employ an indirect approach in determining SL. 
Instead of directly measuring each process execution time, we 
measure the execution time of a benchmark program which 
consists of several benchmark kernel loops. The benchmark 
program runs perpetually without stopping in the system as a 
background process. By observing the running times of the 
benchmark program, we can infer the instantaneous load level 
in the system. 

2.2.2 Server Load Mean Deviation 
In order to determine whether a server should redirect its 

request to other servers or not. The deviation of each server 
load (SLMD) from the mean server load is calculated. The 
deviation is defined as follows where i is the server number. 

SLMDi = S L , - a  

The mean value of server load is updated every time a 
server load information arrives to the fuzzy logic controller. 
Server Load Mean Deviation (SLMD) is defined as: 
{negative(N), zero(Z), positive ( P )  1. 
2.2.3 Service Rank 

We use service rank (SR) to classify services into six 
different categories. The fuzzy set of SR is: {very l o w  
(VL), low (L), medium low (ML), medium (M), 
medium high (MH) , high (H) 1. The higher the rank 
that a service gets, the more appropriate that it should redirect 
request to other servers. After defining the above fuzzy 
variables, a set of inference rules is defined. 

By applying the fuzzy inference rules, a decision can be 
generated based on both antecedents. That is, if SLMD is 
positive and SL is high, then SR is high. Having these fuzzy 
inference rules and membership graphs, the fuzzification and 
defuzzification processes can be carried out as follows. First, 
the input values of SLMD and SL are mapped to their 
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respective membership degree values on their membership 
graphs. These degree values are compared and the minimum of 
the two is then projected onto the membership function of their 
consequence graph. The output graph, usually in the shape of a 
trapezium [7], then represents the output of one inference rule. 
After the output graph is generated, defuzzification of the fuzzy 
output into a crisp or numeric value can be carried out. We used 
the centroid method [7] to defuzzify the output. The overall 
centroid of N overlapping areas A ;  for i = 1,  2,  ..., N is 
given by: 

N -  
C X i A i  

c A ;  

2 - i = l  
N 

i =  I 

where A ;  and X i  are the overlapped area and centroid from the 
triangles or trapeziums obtained in the i -th rule, respectively. 
The centroid and area are calculated for each triangles or 
trapeziums. This process is repeated for other inference rules 
where the inputs are applied to obtain an area composed of 
overlapped trapeziums. The defuzzification process generates a 
centroid value which represents the rank of a service. The 
higher the service rank, the more appropriate that the server 
should redirect request. In other words, a server with lower 
service rank is an appropriate candidate to receive extra 
requests. To summarize, Figure 1 shows the setup of the fuzzy 
logic request redirection approach. 

The configuration of our approach is similar to the previous 
approach except that there exists a fuzzy logic controller which 

Client Machines 

collects server load information from the load monitor of each 
server machine. After the fuzzy inference process, service rank 
information is multicasted by the fuzzy logic controller such 
that servers can know each other service ranks. A server 
redirects its incoming request if its service rank is the highest. 
The server seeks a target server service with the lowest service 
rank. The load monitors multicast their server load value in 
every two seconds. If a UDP multicast packet is received by the 
fuzzy logic controller, the fuzzy logic controller decodes the 
packet, analyses the respective service rank, and multicasts 
packets in every five seconds. 

3 Performance Results 
To quantitatively evaluate the three different approaches, 

we have implemented a distributed object platform based on 
Java and experiments were performed to analyze the client 
response time and throughput of different load balancing 
schemes. In order to simulate real client access patterns, a 
request sequence was generated by using a random number 
generator to place requests in a given time interval. The request 
sequences consist of request bursts and intervals of silence. 

3.1 HardwareBoftware Platform 

We have set up the testing environment consisting of 
several Pentium PCs. All the machines are connected by an 
Ethernet hub with bandwidth of 10Mbps. The configuration of 
six server machines are: (1)  two SOOMHz CPU Intel Pentium 
Ill workstations, (2) two 667MHz CPU Intel Pentium Ill 
workstations, and (3) two 450MHz CPU Intel Pentium I11 
workstations. All machines are equipped with 128MB 

Sewer Machines 

- Exchange informatio 

Figure 1 : Fuzzy logic request redirection. 
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memory. We have another two machines, which are 600MHz 
CPU Intel Pentium 111 workstations with 128MB memory, 
holding lookup services and fuzzy logic load balancing service. 
The client machines we used are all 200MHz CPU Pentium 
with 64MB memory. All machines are running Red Hat Linux 
7.0 as their operating systems. Java Development Kit version 
1.3 and Jini Technology Starter Kit 1.1 are used to develop all 
system components. A stateless service, Fibonacci function, is 
chosen as our benchmark program to simulate consumption of 
CPU clock cycle in the server machines. Fibonacci function 
provides a suitable workload for our load balancing tests since 
each operation can run for a relatively long time. 

3.2 Load Distributed Results of JavaSpaces 
Appraoch 

In the JavaSpaces-based load distribution approach, in 
order to exploit the power of JavaSpaces as much as possible, 
we run a JavaSpaces service in a symmetric multiprocessors 
(SMP) machine with four 450MHz CPU Intel Xeon Pentium 
111 and 1 GB memory. The large memory capacity of the SMP 
minimizes the chance of occurring JavaSpaces out of memory 
exception. The configuration of other server and client 
machines are kept the same. In our context, we define 
execution length as the time difference between the time just 
before the first client writes a request and the time immediately 
after the last client takes a response. 

As can be seen fr'om the load distribution of the JavaSpaces 
approach shown in Figure 2(a) and Figure 3(a), the benchmark 
readings of all server:; remain steady during the execution when 
the number of clients is 20. The rate of adding the tasks into the 
JavaSpaces service by the clients is faster than the rate of 
retrieving the tasks from the JavaSpaces service by the servers. 
A server can immediately pick up the next task after finishing 
the previous one. There is no need for the server to wait before 
taking up another task. Thus, the benchmark readings of all 
servers remain steady as the servers are busy all the time. 

As compared with other approaches such as Round-robin 
and Random, the total execution time of the JavaSpaces 
approach is relatively longer. The total execution time depends 
on factors such as i:he number of clients, the time interval 
between two requests, the program overheads, and the design 
of system. The long execution time of the JavaSpaces approach 
is due to two factors: ( I )  the cost of remote method invocation, 
and (2) the single thread implementation of servers. I t  is 
obvious that there involves four remote method invocations for 
a task to get done. A client has to wait at least four remote 
invocation time before it can issue another request. Moreover, 
since the servers are designed as single thread, they will only 
pick up one task at a time. There is no parallel execution of 
tasks within a machine. Servers have to get tasks from the space 
one by one as compared with other approaches in which remote 
server objects are rnultithreaded and accept several remote 
method invocation 'requests from clients at the same time. 
Thus, the overall execution time of JavaSpaces approaches is 
lengthened. One possible way to shorten the execution time is 
to start several worker processes in a more powerful machine 
so that i t  can take more than one task at the same time. 

3.3 Load Distribution Results of Request 
Redirection Approach 

In the request redirection approach, requests are distributed 
in a round robin fashion and are redirected to other server if the 
load index (the number of concurrent requests) exceeds a 
threshold value predefined and there exists an available 
receiver. Figure 2(b) and Figure 3(b) show the server load 
distribution using request redirection approach with 5 and 20 
clients, respectively. It can be observed that the shape of the 
benchmark readings of this approach is similar to the round- 
robin approach. The notable difference is that the lowest 
processing power machines (server 5 and server 6) now sustain 
a lower load as compared with the pure round-robin algorithm 
during the execution lifetime. It is because the request 
redirection mechanism transfers part of the workload from 
server 5 and server 6 to server 1 and server 2. 

It can be seen that there is a significant improvement using 
round-robin algorithm with request redirection mechanism 
over traditional round-robin in heterogeneous computing 
environment. Since requests can be redirected to the more 
powerful servers if required. However, i t  should be noted that 
the success of this algorithm is not only due to the request 
redirection mechanism but also the determination of threshold 
value for each server under different client conditions. As 
mentioned before, the threshold value of each server is 
manually set based on the performance data obtained from the 
round-robin approach. I t  would be interested to explore other 
means to control the redirection mechanism such that the 
overall system can adapt itself to the environment flexibly. 

3.4 Load Distributed Results of Fuzzy Logic Based 
Request Redirection Approach 

In fuzzy logic based request redirection approach, requests 
are distributed in a round robin fashion and are redirected based 
on service rank. Figure 2(c) and Figure 3(c) show the server 
load distribution using fuzzy logic based request redirection 
approach with 5 and 20 clients, respectively. 

It can be seen that the server benchmark readings fluctuate 
vigorously as compared with round-robin algorithm. It is 
because when a server attains the highest service rank among 
the servers, i t  will initiate a load transfer when a new incoming 
request arrives. The server load will then drop and it will 
redirect request again when its service rank become the highest. 
Thus, a heavily loaded machine can intelligently redirect its 
load to the underloaded machine based on the service rank. A 
more powerful machine can now accept more requests which is 
sent from a less powerful machine. It is due to this redirection 
mechanism which makes the amplitude of server load 
fluctuation larger as compared with the previous approach in 
which a server will maintain its server load around a predefined 
threshold value. Since the performances of the two approaches 
are similar, it should be noted that the fuzzy logic controller 
approach is more flexible than the threshold based redirection 
approach. I t  is because the threshold value is set manually 
based on performance data predetermined in round-robin 
algorithm. If there is a sudden increase in client requests, the 
threshold value has to be adjusted accordingly. In this 
approach, the fuzzy logic controller will send updated service 
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Figure 2: Load distribution of the three approaches for 5 servers and 5 clients. 
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Figure 3: Load distribution of the three approaches for 6 servers and 20 clients. 

rank information to servers no matter how the system load 
varies. Therefore, the fuzzy logic controller approach can adapt 
itself to the changing of environment. 

3.5 Average Client Response Time and Throughput 
The average client response times of six load balancing 

algorithms (pure fuzzy [ 161, round-robin, random, request 
redirection, fuzzy based request redirection, and JavaSpaces) 
as a function of the number of servers are shown in Figure 4(a), 
which illustrates that the fuzzy-based approach outperforms the 
other algorithms consistently for different number of servers. 
The average client response time of JavaSpaces-based and 
random load balancing algorithm is comparatively higher than 
other algorithms under all the cases because uneven 
distribution of load exists in the random load balancing 
algorithm and the single threaded worker structure in the 
JavaSpaces approach. In random load balancing, a server with 
less computing power causes a higher response time when i t  is 
suddenly overloaded. This effect deteriorates the overall 
performance and causes the highest response time. 

Figure 4(b) shows how the average throughput differs 
between each load balancing strategy. In this measurement, 20 
clients were used and each client generated 50 requests. Each 
client request will generate a computational task using 
Fibonacci function. The experiment is repeated 100 times for 
different number of servers. As can be seen from Figure 4(b), 
throughput increases as the number of servers increases. Again, 
the throughput readings of random load balancing algorithm 
and JavaSpaces are worse than the other four algorithms. In 
random load balancing, it is due to the fact than an overloaded 
computing machines will lengthen the completion time of a 
task and thus, reducing the overall throughput. In JavaSpaces 
approach, the poor throughput performance is also due to the 
single threaded design of service object. If more workers are 
started in a machine, the overall throughput will be improved. 
For throughput-sensitive application, random load balancing 
algorithm is not suitable. On the other hand, the throughput of 
fuzzy-based approach performs the best among the six. The 
reason is that our approach assigns more requests to the 
machines with better performance based on fuzzy analysis. 
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Client Response Time vs Number of Clients (6 Sewers) 
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This significantly reduces the completion time of a task. Since 
the two request rcdirection approaches achieve similar 
throughput performance results, one can choose a request 
redirection algorithm based on its complexity and adaptability. 

4 Conclusions 
In this paper, we have described three contemporary load 

balancing approaches for distributed object computing 
systems. The first approach uses JavaSpaces service as a task 
pool for servers to get tasks for execution. The second approach 
uses a round-robin request redirection mechanism. The third 
approach uses a fuzzy decision based approach to perform the 
request redirection. We have implemented the three approaches 
on a common experimental object computing system based on 
lava using a number of Pentium PCs. The experimental results 
indicated that the fuzzy based approaches are more robust and 
flexible, and outperform other approaches considerably. 
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