
A Quantitative Comparison of Load Balancing Approaches in Distributed
Object Computing Systems

LAP-SUN CHEUNG AND Yu-KWONG KWOK
Department of Electrical and Electronic Engineering

The University of Hong Kong, Pokfulam Road, Hong Kong

Email: (lscheung, ykwok}@eee.hku.hk

Abstract?
Several load balancing schemes are recently proposed for

distributed object computing systems, which are widely
envisioned to be the desired distributed software development
paradigm due to the higher modularity and the capability of
handling machine and operating system heterogeneity.
However, while the rationales and mechanisms employed are
dramatically different, the relative strengths and weaknesses of
these approaches are unknown, making it difficult for a
practitioner to choose an appropriate approach for the problem
at hand. In this paper, we describe in detail three representative
approaches, which are all practicable, and present a
quantitative comparison using our experimental distributed
object computing platform. Among these three approaches,
namely, JavaSpaces based, request redirection based, and
fuzzy decision based, we find that the fuzzy decision based
algorithm outperforms the other two considerably.
Keywords: distributed object computing, load balancing,
Java, JavaSpaces, Jini, fuzzy decision.

1 Introduction
With the great advancement of hardware technologies,

powerful distributed computing systems are becoming
ubiquitous. Indeed, with commodity hardware components, a
high performance network of PCs can be set up to execute
applications developed using new software structuring
paradigms, such as object based systems and object brokerage
protocols, which have also advanced tremendously parallel to
the development of hardware technologies. Such new
distributed software development paradigms, while have the
advantages of modularity and capable of handling platform
heterogeneity, were conceived as impractical in mere five to
ten years ago because many complex operations such as object
serialization and data marshalling, were too time consuming to
be efficiently run on the hardware platforms. Currently, many
commercial software projects are using distributed object
based approaches such as CORBA (common object request
broker architecture), DCOM, and Java RMI (remote method
invocation). Using a distributed object based approach, an
application is constructed as a group of interacting objects.
These objects are distributed over multiple machines which

system, there are multiple objects (possibly on heterogeneous
platforms) that provide the same service. This is done to
achieve a higher availability and scalability. Even the lookup
service object may have several instances in the network.
Under light load conditions (i.e., few number of remote service
invocations or object passing), the system can perform
reasonably well. However, as the system scale up to a moderate
size (e.g., 10 machines), the number of requests generated in
the system can be of a very large volume and be very bursty. As
a result, some machines might be overloaded while other
machines are idle or lightly loaded. In order to improve the
performance, specifically the client request response time of a
distributed application, a load balancing technique can be
introduced to distribute workload in a judicious manner among
various machines [14], [l I], [20], [21].

Numerous approaches are suggested for performing load
balancing in distributed computing systems [131, [151, [171,
[18], [19]. In this paper, we describe in detail three
representative approaches: (1) a JavaSpaces approach, (2) a
request redirection approach, and (3) a fuzzy decision based
approach. The JavaSpaces approach [I] , 121, [3] , [lo], 1121,
works by using an Java object space as a task pool, from which
the servers get work for execution. Load balancing is thus
achieved in an uncoordinated manner. In the request
redirection approach, a threshold is set in each server such that
when the number of outstanding requests exceed the threshold,
the new requests are redirected to other servers in a round-robin
manner. Due to space limitations, these two approaches are not
elaborated here but details can be found in [15]. Proposed
recently in [161, the fuzzy decision based approach works by
using fuzzy decision variables to capture the inherent dynamic
behaviors of the system states in order to make intelligent load
balancing decisions. Our proposed system is based on Jini [4],
[5] , [6]. More details about this novel approach is described in
Section 2. Implemented on the same experimental object
computing network comprising a number of Pentium
workstations, all the approaches are evaluated extensively
under a wide range of parameters. The experimental results.
described in Section 3, indicate that the fuzzy based approach
outperforms the other two approaches considerably. We
conclude the uauer in Section 4. . .
2 Fuzzy Logic Based Request Redirection interact with each other through well predefined protocols

(e.g., RMI in Java). Usually, the interactions are queries or
remote services invocation. Approach

It is common that in such a distributed object computing In this section, we describe our recently proposed fuzzy
logic based request redirection scheme [15], 1161. In this
approach, a fuzzy logic controller is incorporated into the
request redirection system discussed in the previous section.
The role of the fuzzy logic controller is to control the request
redirection decision of each server. Instead of manually set the

t This research was jointly supported by the Hong Kong
Research Grants Council under contract numbers HKU 7124/
99E and HKU 7024/00E, and by a HKU URC research grant
under contract number 1020341 3.

257
0-7695-1372-7101 $10.00 0 2001 IEEE

threshold value for each server, the fuzzy logic mechanism
allows servers to make request transfer decision based on the
server ranking assigned by the fuzzy logic controller. In the
following, a brief introduction of using fuzzy logic controller is
presented, followed by the description of our design model and
implementation.

2.1 Fuzzy Logic Controller

To tackle the load balancing problem, conventional control
theory can be applied to restore system equilibrium. For
instance, a sudden increase in client requests can be modeled as
external force which attempts to destabilize the network and
the end-hosts. The scability of the network can be maintained
by using feedback control which performs suitable adjusting
actions to minimize the effect of the external force. In order to
design a load balancing algorithm based on conventional
control theory, one h:is to develop a mathematical model of the
system to be controllcd and determine the characteristics of the
model by applying various analytical techniques. Indeed, with
the incorporation of some simplifying assumptions, model with
linear relationships between a few variables can be easily set
up. However, to handle a complex system such as a high speed
computer network where a lot of uncertain parameters exist, a
model with complex and nonlinear relationships between a lot
of variables have to be devised. This limitation makes i t very
difficult, if not intracl.able, to apply conventional control theory
to balance load in computer network. To overcome this
problem, fuzzy logic control theory [7] can be applied instead
of the conventional one.

Fuzzy logic control attempts to capture intuition in the
form of IF-THEN rules, and conclusions are drawn from these
rules [7]. Based on both intuitive and expert knowledge, system
parameters can be modeled as linguistic variables and their
corresponding membership functions can be designed. Thus,
nonlinear system with great complexity and uncertainty can be
effectively controlle$d based on fuzzy rules without dealing
with complex, uncertain, and error-prone mathematical models

The architecture of the fuzzy logic controller includes five
components: Fuzzifier, Rule Base, Membership functions,
Fuzzy Inference Engine, and Defuzzifier. The fuzzifier is the
input interface which maps a numeric input to a fuzzy set so
that it can be matched with the premises of the fuzzy rules
defined in the application-specific rule base. The rule base
contains a set of fuzzy if - then rules which define the actions
of the controller in terms of linguistic variables and
membership functioris of linguistic terms. The fuzzy inference
engine applies the inference mechanism to the set of rules in the
fuzzy rule base to produce a fuzzy set output. This involves
matching the input l’uzzy set with the premises of the rules,
activation of the rules to deduce the conclusion of each rule that
is fired, and combination of all activated conclusions using
fuzzy set union to generate fuzzy set output. The defuzzifier is
an output mapping which converts fuzzy set output to a crisp
output. Base on the crisp output, the fuzzy logic controller can
drive the system undcr control.

The fuzzy rule base contains a set of linguistic rules. These
linguistic rules are expressed using linguistic values and

r71.

linguistic variables. Different linguistic values can be assigned
to a linguistic variable. For instance, high or l o w can be
used in the variable server-load. These linguistic values
are modeled as fuzzy sets. Based on the linguistic values, their
corresponding membership functions can be expressed based
on application requirements.

2.2 Design and Implementation of Fuzzy Logic
Based Request Redirection Approach

In the our proposed approach, fuzzy logic is used to help in
decision making for request redirection. Fuzzy logic is
implemented inside a fuzzy logic controller of which the main
function is in processing all server load information and
assigning different ranks to servers. Each server can based on
its own server rank and other servers’ ranks to decide where it
should transfer a remote call to. As the name implies, fuzzy
logic controller has to make use of fuzzy information so as to
perform logic control. Several linguistic variables, server load,
server load mean deviation, and server rank, are used in the
fuzzy logic algorithm and are defined as follows.
2.2.1 Server Load

We define server load, denoted as SL, with the fuzzy set
definition: { l o w (L) , medium (M) , high (H) }.
Accurate estimate of load is notoriously difficult to obtain [8],
[9]. We employ an indirect approach in determining SL.
Instead of directly measuring each process execution time, we
measure the execution time of a benchmark program which
consists of several benchmark kernel loops. The benchmark
program runs perpetually without stopping in the system as a
background process. By observing the running times of the
benchmark program, we can infer the instantaneous load level
in the system.

2.2.2 Server Load Mean Deviation
In order to determine whether a server should redirect its

request to other servers or not. The deviation of each server
load (SLMD) from the mean server load is calculated. The
deviation is defined as follows where i is the server number.

SLMDi = S L , - a

The mean value of server load is updated every time a
server load information arrives to the fuzzy logic controller.
Server Load Mean Deviation (SLMD) is defined as:
{negative(N), zero(Z), positive (P) 1.
2.2.3 Service Rank

We use service rank (SR) to classify services into six
different categories. The fuzzy set of SR is: {very l o w
(VL), low (L), medium low (ML), medium (M),
medium high (MH) , high (H) 1. The higher the rank
that a service gets, the more appropriate that it should redirect
request to other servers. After defining the above fuzzy
variables, a set of inference rules is defined.

By applying the fuzzy inference rules, a decision can be
generated based on both antecedents. That is, if SLMD is
positive and SL is high, then SR is high. Having these fuzzy
inference rules and membership graphs, the fuzzification and
defuzzification processes can be carried out as follows. First,
the input values of SLMD and SL are mapped to their

258

respective membership degree values on their membership
graphs. These degree values are compared and the minimum of
the two is then projected onto the membership function of their
consequence graph. The output graph, usually in the shape of a
trapezium [7], then represents the output of one inference rule.
After the output graph is generated, defuzzification of the fuzzy
output into a crisp or numeric value can be carried out. We used
the centroid method [7] to defuzzify the output. The overall
centroid of N overlapping areas A ; for i = 1, 2, ..., N is
given by:

N -
C X i A i

c A ;

2 - i = l
N

i = I

where A ; and X i are the overlapped area and centroid from the
triangles or trapeziums obtained in the i -th rule, respectively.
The centroid and area are calculated for each triangles or
trapeziums. This process is repeated for other inference rules
where the inputs are applied to obtain an area composed of
overlapped trapeziums. The defuzzification process generates a
centroid value which represents the rank of a service. The
higher the service rank, the more appropriate that the server
should redirect request. In other words, a server with lower
service rank is an appropriate candidate to receive extra
requests. To summarize, Figure 1 shows the setup of the fuzzy
logic request redirection approach.

The configuration of our approach is similar to the previous
approach except that there exists a fuzzy logic controller which

Client Machines

collects server load information from the load monitor of each
server machine. After the fuzzy inference process, service rank
information is multicasted by the fuzzy logic controller such
that servers can know each other service ranks. A server
redirects its incoming request if its service rank is the highest.
The server seeks a target server service with the lowest service
rank. The load monitors multicast their server load value in
every two seconds. If a UDP multicast packet is received by the
fuzzy logic controller, the fuzzy logic controller decodes the
packet, analyses the respective service rank, and multicasts
packets in every five seconds.

3 Performance Results
To quantitatively evaluate the three different approaches,

we have implemented a distributed object platform based on
Java and experiments were performed to analyze the client
response time and throughput of different load balancing
schemes. In order to simulate real client access patterns, a
request sequence was generated by using a random number
generator to place requests in a given time interval. The request
sequences consist of request bursts and intervals of silence.

3.1 HardwareBoftware Platform

We have set up the testing environment consisting of
several Pentium PCs. All the machines are connected by an
Ethernet hub with bandwidth of 10Mbps. The configuration of
six server machines are: (1) two SOOMHz CPU Intel Pentium
Ill workstations, (2) two 667MHz CPU Intel Pentium Ill
workstations, and (3) two 450MHz CPU Intel Pentium I11
workstations. All machines are equipped with 128MB

Sewer Machines

- Exchange informatio

Figure 1 : Fuzzy logic request redirection.

259

memory. We have another two machines, which are 600MHz
CPU Intel Pentium 111 workstations with 128MB memory,
holding lookup services and fuzzy logic load balancing service.
The client machines we used are all 200MHz CPU Pentium
with 64MB memory. All machines are running Red Hat Linux
7.0 as their operating systems. Java Development Kit version
1.3 and Jini Technology Starter Kit 1.1 are used to develop all
system components. A stateless service, Fibonacci function, is
chosen as our benchmark program to simulate consumption of
CPU clock cycle in the server machines. Fibonacci function
provides a suitable workload for our load balancing tests since
each operation can run for a relatively long time.

3.2 Load Distributed Results of JavaSpaces
Appraoch

In the JavaSpaces-based load distribution approach, in
order to exploit the power of JavaSpaces as much as possible,
we run a JavaSpaces service in a symmetric multiprocessors
(SMP) machine with four 450MHz CPU Intel Xeon Pentium
111 and 1 GB memory. The large memory capacity of the SMP
minimizes the chance of occurring JavaSpaces out of memory
exception. The configuration of other server and client
machines are kept the same. In our context, we define
execution length as the time difference between the time just
before the first client writes a request and the time immediately
after the last client takes a response.

As can be seen fr'om the load distribution of the JavaSpaces
approach shown in Figure 2(a) and Figure 3(a), the benchmark
readings of all server:; remain steady during the execution when
the number of clients is 20. The rate of adding the tasks into the
JavaSpaces service by the clients is faster than the rate of
retrieving the tasks from the JavaSpaces service by the servers.
A server can immediately pick up the next task after finishing
the previous one. There is no need for the server to wait before
taking up another task. Thus, the benchmark readings of all
servers remain steady as the servers are busy all the time.

As compared with other approaches such as Round-robin
and Random, the total execution time of the JavaSpaces
approach is relatively longer. The total execution time depends
on factors such as i:he number of clients, the time interval
between two requests, the program overheads, and the design
of system. The long execution time of the JavaSpaces approach
is due to two factors: (I) the cost of remote method invocation,
and (2) the single thread implementation of servers. I t is
obvious that there involves four remote method invocations for
a task to get done. A client has to wait at least four remote
invocation time before it can issue another request. Moreover,
since the servers are designed as single thread, they will only
pick up one task at a time. There is no parallel execution of
tasks within a machine. Servers have to get tasks from the space
one by one as compared with other approaches in which remote
server objects are rnultithreaded and accept several remote
method invocation 'requests from clients at the same time.
Thus, the overall execution time of JavaSpaces approaches is
lengthened. One possible way to shorten the execution time is
to start several worker processes in a more powerful machine
so that i t can take more than one task at the same time.

3.3 Load Distribution Results of Request
Redirection Approach

In the request redirection approach, requests are distributed
in a round robin fashion and are redirected to other server if the
load index (the number of concurrent requests) exceeds a
threshold value predefined and there exists an available
receiver. Figure 2(b) and Figure 3(b) show the server load
distribution using request redirection approach with 5 and 20
clients, respectively. It can be observed that the shape of the
benchmark readings of this approach is similar to the round-
robin approach. The notable difference is that the lowest
processing power machines (server 5 and server 6) now sustain
a lower load as compared with the pure round-robin algorithm
during the execution lifetime. It is because the request
redirection mechanism transfers part of the workload from
server 5 and server 6 to server 1 and server 2.

It can be seen that there is a significant improvement using
round-robin algorithm with request redirection mechanism
over traditional round-robin in heterogeneous computing
environment. Since requests can be redirected to the more
powerful servers if required. However, i t should be noted that
the success of this algorithm is not only due to the request
redirection mechanism but also the determination of threshold
value for each server under different client conditions. As
mentioned before, the threshold value of each server is
manually set based on the performance data obtained from the
round-robin approach. I t would be interested to explore other
means to control the redirection mechanism such that the
overall system can adapt itself to the environment flexibly.

3.4 Load Distributed Results of Fuzzy Logic Based
Request Redirection Approach

In fuzzy logic based request redirection approach, requests
are distributed in a round robin fashion and are redirected based
on service rank. Figure 2(c) and Figure 3(c) show the server
load distribution using fuzzy logic based request redirection
approach with 5 and 20 clients, respectively.

It can be seen that the server benchmark readings fluctuate
vigorously as compared with round-robin algorithm. It is
because when a server attains the highest service rank among
the servers, i t will initiate a load transfer when a new incoming
request arrives. The server load will then drop and it will
redirect request again when its service rank become the highest.
Thus, a heavily loaded machine can intelligently redirect its
load to the underloaded machine based on the service rank. A
more powerful machine can now accept more requests which is
sent from a less powerful machine. It is due to this redirection
mechanism which makes the amplitude of server load
fluctuation larger as compared with the previous approach in
which a server will maintain its server load around a predefined
threshold value. Since the performances of the two approaches
are similar, it should be noted that the fuzzy logic controller
approach is more flexible than the threshold based redirection
approach. I t is because the threshold value is set manually
based on performance data predetermined in round-robin
algorithm. If there is a sudden increase in client requests, the
threshold value has to be adjusted accordingly. In this
approach, the fuzzy logic controller will send updated service

0 m I m m i m m m m m u m a
r m w

(a) JavaSpaces Based
Approach

&

(b) Request Redirection (c) Fuzzy Decision Based
Request Redirection

Figure 2: Load distribution of the three approaches for 5 servers and 5 clients.

Server Load vs Time

3x

8x

n

{a

< (1

la:

1"

2X

1x

Server Load vs Time
--Sewer 1 [PIISoMritkj

Sewer 2 (Pill 5mMtk)
Sewer 3 (PI11 667Mtkj

-Sewer4 (PUl667Mit)
-SewerS[PUl450Mh?/
- - - SerrerG(PU145Milb)

1%

IX .

Irn .

.... Server Load vs Time

1 4 I

(a) JavaSpaces Based
Approach

(b) Request Redirection (c) Fuzzy Decision Based
Request Redirection

Figure 3: Load distribution of the three approaches for 6 servers and 20 clients.

rank information to servers no matter how the system load
varies. Therefore, the fuzzy logic controller approach can adapt
itself to the changing of environment.

3.5 Average Client Response Time and Throughput
The average client response times of six load balancing

algorithms (pure fuzzy [161, round-robin, random, request
redirection, fuzzy based request redirection, and JavaSpaces)
as a function of the number of servers are shown in Figure 4(a),
which illustrates that the fuzzy-based approach outperforms the
other algorithms consistently for different number of servers.
The average client response time of JavaSpaces-based and
random load balancing algorithm is comparatively higher than
other algorithms under all the cases because uneven
distribution of load exists in the random load balancing
algorithm and the single threaded worker structure in the
JavaSpaces approach. In random load balancing, a server with
less computing power causes a higher response time when i t is
suddenly overloaded. This effect deteriorates the overall
performance and causes the highest response time.

Figure 4(b) shows how the average throughput differs
between each load balancing strategy. In this measurement, 20
clients were used and each client generated 50 requests. Each
client request will generate a computational task using
Fibonacci function. The experiment is repeated 100 times for
different number of servers. As can be seen from Figure 4(b),
throughput increases as the number of servers increases. Again,
the throughput readings of random load balancing algorithm
and JavaSpaces are worse than the other four algorithms. In
random load balancing, it is due to the fact than an overloaded
computing machines will lengthen the completion time of a
task and thus, reducing the overall throughput. In JavaSpaces
approach, the poor throughput performance is also due to the
single threaded design of service object. If more workers are
started in a machine, the overall throughput will be improved.
For throughput-sensitive application, random load balancing
algorithm is not suitable. On the other hand, the throughput of
fuzzy-based approach performs the best among the six. The
reason is that our approach assigns more requests to the
machines with better performance based on fuzzy analysis.

26 1

Client Response Time vs Number of Clients (6 Sewers)

~ 14

.E 1 0 -

I 8 -

d 4

B

B
a12-

c

................................ ”

v
5 10 15 20

Number of Clients

t Fuzzy

~i Round-robin

Random

Request redirection

-x- Request redirection 1 c JavaSpaces
with fuzzy

This significantly reduces the completion time of a task. Since
the two request rcdirection approaches achieve similar
throughput performance results, one can choose a request
redirection algorithm based on its complexity and adaptability.

4 Conclusions
In this paper, we have described three contemporary load

balancing approaches for distributed object computing
systems. The first approach uses JavaSpaces service as a task
pool for servers to get tasks for execution. The second approach
uses a round-robin request redirection mechanism. The third
approach uses a fuzzy decision based approach to perform the
request redirection. We have implemented the three approaches
on a common experimental object computing system based on
lava using a number of Pentium PCs. The experimental results
indicated that the fuzzy based approaches are more robust and
flexible, and outperform other approaches considerably.

References
[I] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces:

Principles, Patterns, and Practice, Addison-Wesley,
1999.

[2] Hosta White Paper, Concept Technologies Ltd., 2000.
[3] IBM’s TSpaces, http : / /www . almaden . ibm. corn/

cs/TSpaces.
[4] Jini Connection Technology, Jini Technology Core

Platform Specification, http : / /www. sun. corn/
jini/specs,’jinil-lspec.htm1.

[5] Jini Connection Technology, JavaSpaces Service
Specification, http://www.sun.com/jini/
specs/ j inil-lspec. html.

[6] W. Keith, Core Jini, Prentice Hall, 1999.
[7] B. Kosko, Neural Networks and Fuzzy Systems: A

Dynamical Systems Approach to Machine Intelligence,
Prentice Hall, blew Jersey, 1992.

[8] T. Kunz, “The Influence of Different Workload
Descriptions on a Heuristic Load Balancing Scheme,”
IEEE Trans. S(?fhvare Engineering, vol. 17, no. 7, pp.

[9] P. Mehra and 13. Wah, “Synthetic Workload Generation
for Load-Balancing Experiments,” IEEE Parallel and
Distributed Technology, pp. 4-19, 1995.

[lo] Openspaces, http: //openspaces .exolab.org/

725-730, July 1 99 1.

Throughput vs Number of Servers (20 Clients)

3 4 5 6

Number of Sewers

I Figure 4: Average response times and throughput of the clients.

262

/tFuzzy -a- Round-robin I I Random I
Request redirection

-x- Request redirection

-e JavaSpaces
with fuzzy

[l 11 N. G. Shivaratri, P. Krueger, and M. Singhal, “Load
Distributing for Locally Distributed Systems,” Computer,
vol. 25, no. 12, pp. 33-44, Dec. 1992.

[I21 S. Ahuja, N. J. Caniero, and D. H. Gelernter, “Matching
Language and Hardware for Parallel Computation in the
Linda Machine,” IEEE Trans. Computers, vol. 37, no. 8,

[131 V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic Load
Balancing on Web-Server Systems,” Internet Computing,
MayIJune 1999, pp. 28-39.

[I41 T. L. Casavant and J. G. Kuhl, “A Taxonomy of
Scheduling in General-Purpose Distributed Computing
Systems,” IEEE Trans. Sofhvare Engineering, vol. 14, no.
2, pp. 141-154, Feb. 1988.

[15] L.-S. Cheung, Load Balancing in Distributed Object
Computing Systems, M.Phil. Thesis, Department of EEE,
The University of Hong Kong, May 2001.

[161 L.-S. Cheung and Y.-K. Kwok, “A Fuzzy Load Balancing
Service for Network Computing Based on Jini,” Proc.
EURO-PAR’2001, Manchester, United Kingdom, August
2001.

[17] C. W. Cheong and V. Ramachandran, “Genetic Based
Web Cluster Dynamic Load Balancing in Fuzzy
Environment,” Proc. 4th Intl Cor$ High Performance
Computing in the Asia-Pacific Region, vol. 2, pp. 714-
719,2000.

[18] P. Chulhye and J. G. Kuhl, “A Fuzzy-Based Distributed
Load Balancing Algorithm for Large Distributed
Systems,” Proc. 2nd Int ‘1. Sym. Autonomous
Decentralized Systems, pp. 266-273, Apr. 1995.

[I91 C.-J. Hou and K. G. Shin, “Implementation of
Decentralized Load Sharing in Networked Workstations
Using the Condor Package,” Journal of Parallel and
Distributed Computing, vol. 40, pp. 173-184, 1997.

[20] A. Leff and P. S. Yu, “A Performance Study of Robust
Distributed Load Sharing Strategies,” IEEE Trans.
Parallel and DistributedSystems, vol. 5 , no. 12, pp. 1286-
1301, Dec. 1994.

[21] J. Watts and S. Taylor, “A Practical Approach to Dynamic
Load Balancing,” IEEE Trans. Parallel and Distributed
Systems, vol. 9, no. 3, pp. 235-248, Mar. 1998.

pp. 921-929, Aug. 1988.

http://www.sun.com/jini
http://exolab.org

