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Abstract

We study the effect of applying metamorphic testing
to alleviate the oracle problem for numerical programs.
We discuss a case study on the testing of a program
that solves an elliptic partial differential equation with
Dirichlet boundary conditions. We identify a metamorphic
relation for the equation and demonstrate the effectiveness
of metamorphic testing in identifying the error. The relation
identified in the paper should also be applicable to other
numerical methods that yield better approximations on the
refinement of grid points or step sizes.
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1. Introduction

Numerical programs are vital to our daily lives.
They have been used not only in various theoretical
disciplines, but also engineering and medical practices
including mission-critical and safety-critical applications.
Unfortunately, despite the importance of the quality of
numerical packages, we are far from doing a good job [17].

Like other testing contexts, we usually assume that
we can verify the actual outputs of numerical software
against some expected results. We call the mechanism
of checking the correctness of the test output as a test
oracle [5, 15]. Developers of numerical software generally
adopt the following mechanisms as test oracles:

(a) Comparing with analytical solutions, simulation
results, tabulated values, or hand-calculations [15].
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(b) Verifying with standard mathematical libraries or
reference software packages [7].

Test oracles, however, may not be available in every
program. This is the so-called oracle problem. It is
especially the case for numerical software. Because
of truncation errors (due to truncating an infinite series
into a finite series), rounding errors (due to the
digital representation of floating-point numbers) and the
propagation of errors in the computing process, numerical
computation introduces unwarranted errors that will affect
the final results. Thus, we cannot find exact solutions
to numerical problems. Instead, we can aim at bounding
the errors of numerical solutions so that they satisfy given
precision requirements. With the efforts of mathematicians,
by applying special techniques, we can assure the
precision of some numerical functions, such as elementary
functions [13]. It is, however, very difficult to analyze the
errors in complex numerical computation [19, 20].

There are reputable mathematical libraries, such as
IMSL [1] and NAG [2], which have matured through
intensive testing and real-life applications. In fact, some
popular numerical libraries have been refined gradually
because of errors identified throughout the operational lives
of the programs. We can compare some of the results of our
numerical software with these libraries or similar reference
software, but how do we handle other results that may
involve special features not available in standard libraries?
By the same argument, tabulated values and analytical
solutions may not be available in every application.

In this paper, we would like to study the effect of
applying metamorphic testing [8, 10, 11] to alleviate the
oracle problem for numerical programs. We shall discuss
a case study on the testing of a program that solves an
elliptic partial differential equation with Dirichlet boundary
conditions. This type of partial differential equation is
useful in many practical applications such as the vibrations
of rods and beams, the motion of fluid waves, and the
transmission of sound and electrical signals.
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The rest of the paper is organized as follows: Section 2
gives a brief review of the testing of numerical software
in the absence of an oracle. It is followed by the main
section. We look into a numerical method that solves an
elliptic partial differential equation with Dirichlet boundary
conditions. We examine a program that implements the
method, inject a fault into the program, and try whether
special case testing can reveal the fault. Then we identify
a metamorphic relation for the equation and study the
effectiveness of metamorphic testing in identifying the
error. Section 4 concludes the paper.

2. Testing of Numerical Programs in the
Absence of an Oracle

Three approaches have been proposed [16] to provide
an alternative oracle for numerical programs when a
straightforward test oracle cannot be found. First, we can
use experimental results to check the programs. However,
even if we can detect some differences between the
numerical solutions and experimental results, it is difficult
to verify whether they are due to program bugs or errors
in the modeling of the physical phenomena. Secondly, we
can compare the results generated by different numerical
programs, but then it is difficult to differentiate between
the correct software and the faulty one. Thirdly, we can
run the software using different parameter settings and
verify the consistency of the results. However, different
environmental settings may actually produce different
results.

Instead of trying to find an alternate oracle, an
extensively used technique for testing numerical programs
is to verify whether they satisfy selected identity relations
of the functions being implemented. For example, given
a program that computes the sine function, we can verify
whether the implementation exhibits the relation sin2 x+
sin2 (π=2� x) = 1. This technique has been explained, for
instance, in Cody and Waite [13] and Weyuker [21].

Data diversity is a related technique developed by
Ammann and Knight [4]. It is targeted to overcome the
problems associated with N-version programming, and has
therefore been developed from the perspective of fault
tolerance rather than fault detection. As a consequence,
properties used in data diversity are intrinsically limited to
identity relations.

Another technique of program checkers was developed
by Adleman et al. [3] and Blum and Kannan [6]. It checks
whether an implemented program satisfies the specified
function with a probability level defined by the user.

More recently, a testing method called metamorphic
testing was put forward by Chen et al. [8, 10]. The
underlying philosophy is that, even though a successful
test case does not reveal any failure, it may still provide

testers with useful information. Follow-up test cases can be
used to verify certain necessary properties of the program,
no matter whether a testing oracle exists or not. If
the necessary properties do not hold, the program must
be incorrect. Thus, metamorphic testing renders a new
approach based on a series of test cases and necessary
properties of the program under test. In [11], Chen et
al. further illustrated the usefulness of metamorphic testing
by integrating it with fault-based testing.

Let f : X� > Y be a function with domain X and co-
domain Y . Suppose f satisfies some property R f that can
be expressed as a relation between a series of elements x1,
x2, : : : , xn 2 X , where n > 1, and the corresponding series
of elements f (x1), f (x2), : : : , f (xn) 2 Y . This relation R f

will be called a metamorphic relation of f . Take the tangent
function as an example. For any two inputs x1 and x2 such
that x2 = π+ x1, we must have tan x2 = tan x1. We can
express this as a metamorphic relation:

Rtan : x2 = π+ x1 ! tan x2 = tan x1:

Any program that implements f must satisfy all the
metamorphic relations R f defined for f . They are necessary
conditions for the correctness of the program. For instance,
to verify a metamorphic relation Rtan above, we need two
executions. The first input is any real number x1 and the
second is the number x2 = π+ x1.

There are several differences between metamorphic
testing and other methods that propose to test programs
against selected properties of implemented functions.

(a) Metamorphic properties are not only identity relations
but can also be expressed in other forms such
as inequalities. This paper exactly describes an
application of inequality relations to the testing of
partial differential equations. Such inequalities are not
covered by the other techniques, except a couple of
error bound examples in [21].

(b) Data diversity is a fault-tolerance technique designed
to process the original test cases in alternate ways
using the same program. Hence, only the re-expressed
forms of the original test cases will be considered.
On the other hand, metamorphic testing is a fault-
detection technique. Even though follow-up test cases
are employed, they are not limited to re-expressed
forms of the original test cases.

(c) Program checkers aim at providing a probabilistic
oracle, in order to estimate whether the corresponding
output is likely to be correct. The generation of
additional test cases is only a by-product of the
system. Metamorphic testing, however, is designed as
a property-based test case selection strategy rather than
for providing some form of alternative oracle.
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Readers may also refer to [12] for more discussions.
We note that it will not be necessary to have a test oracle

when applying metamorphic testing. This can help alleviate
the oracle problem in many situations, such as the partial
differential equations that we are about to discuss.

3. Testing of Programs on Partial
Differential Equations

A great deal of effort and mathematical sophistication
were required to solve partial differential equations
analytically in a limited number of applications. The
introduction of digital computers facilitated us to solve
these equations by means of numerical computation [9].
Hence, it attracted much research into the numerical
methods for generating solutions more effectively and
efficiently. How do we test the programs that implement
these numerical methods? In the absence of analytical
and tabulated solutions, programs on partial differential
equations are also subject to the oracle problem as described
in Section 1.

We shall focus our discussion on a practical problem in
thermodynamics, namely the distribution of temperatures
on a square plate. We assume that the plate is insulated,
that is, there will be no heat transfer to or from the
environment. The temperatures at the boundary of the plate
are given. Along each edge of the plate, the temperature is
homogeneous. Given enough time, the heat potential of the
plate will reach stability. We wish to find the temperature at
each point on the plate. The problem can be modeled by a
Laplace equation

∂2T
∂x2 +

∂2T
∂y2 = 0:

with Dirichlet boundary conditions.
Laplace equations can be used not only to represent

this case, but also to model many practical applications
such as fluid flows as well as gravitational and electrostatic
potentials [18]. The testing technique described in this
paper is applicable as long as the numerical method for
solving the equation converges.

In order to calculate the temperature T at any point
P, central-difference technique is used to approximate the
second derivatives:

∂2T
∂x2 (P)�

T (PL)�2T(P)+T(PR)

h2

∂2T
∂y2 (P)�

T (PA)�2T(P)+T(PB)

h2

where PA and PB are the points at a fixed distance h above
and below P, and PL and PR are the points at the same
distance h to the left and right of P.

The plate will be divided uniformly in the form of mesh
grids, namely

G1: 3�3 mesh grid,
G2: 7�7 mesh grid,
G3: 15�15 mesh grid,
G4: 31�31 mesh grid,
G5: 63�63 mesh grid,

and so on. Figure 1 shows G1 to G4. The step size for Gi is
hi, such that

h1 = 2h2 = 4h3 = 8h4 = 16h5:

As the densities of the mesh grids increase from G1

to G5, the accuracy of the solution will increase and the
anticipated error will decrease accordingly [14, 19]. If the
step size h is uniform, similarly to the case in Figure 1, the
anticipated error is in the order of h2; otherwise, it is in the
order of h [19].

3.1. Sample Program on Partial Differential
Equation

The program we test is adapted from [14]. It uses
the “alternating direction implicit” method to solve the
partial differential equation mentioned above. Given the
boundary conditions and a step size, the adapted program
can compute the temperatures at the grid points until the
changes in temperatures between two consecutive iterations
are smaller than the stopping criterion. We shall refer to this
program as PDE .

In order to illustrate the effectiveness of metamorphic
testing, we would like to inject an error into the PDE
program. The following is a correct statement in the
program:

if ( f abs(uMat[i][ j]� vMat[ j][i])> larg)

larg = f abs(uMat[i][ j]� vMat[ j][i]);

These variable names were used in the original published
program in [14]. The variables uMat and vMat represent
temperature matrices for two consecutive iterations. The
use of [i][ j] and [ j][i] in these matrices explains the name
of the popular “alternating direction implicit” method. If
the temperatures at the points are calculated by rows and
then by columns in one iteration, they will be calculated
by columns and then by rows in the next iteration. Thus,
f abs(uMat[i][ j] � vMat[ j][i]) =

�
�uMat[i][ j] � vMat[ j][i]

�
�

is the change in temperature between two consecutive
iterations at a specific point. The variable larg is the
maximum change in temperature between two iterations
for all points. If the change in temperature

�
�uMat[i][ j]�

vMat[ j][i]
�
� at a certain point exceeds larg, then larg
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G1: 3�3 Mesh Grid G2: 7�7 Mesh Grid G3: 15�15 Mesh Grid G4: 31�31 Mesh Grid

Figure 1. Improving Precision by Refining the Mesh Grids

should take up this value. Otherwise, larg should remain
unaffected.

Suppose we inject an error by amending vMat to uMat
in the first line, thus:

if ( f abs(uMat[i][ j]�uMat [ j][i]) > larg)

larg = f abs(uMat[i][ j]� vMat[ j][i]);

This fault is difficult to detect because both the correct
and faulty versions of the PDE program yield exactly the
same results when mesh grids G1 and G2 are being tested,
and yield a fairly close result when mesh grid G3 is being
tested.

We would like to examine what actually happened. In
the faulty program, when we reached the 44th iteration for
the mesh grid G1, we obtained the following. Note that only
parts of the results are shown.

(a) uMat[2][3] = 136:964279
uMat[3][2] = 341:607147
vMat[3][2] = 136:964309
�
�uMat[2][3]�uMat[3][2]

�
�= 204:642868> larg

) larg =
�
�uMat[2][3]� vMat[3][2]

�
�= 0:000030

(b) uMat[3][1] = 304:285736
uMat[1][3] = 75:714302
vMat[1][3] = 304:285705
�
�uMat[3][1]�uMat[1][3]

�
�= 228:571434> larg

) larg =
�
�uMat[3][1]� vMat[1][3]

�
�= 0:000031

(c) uMat[3][2] = 341:607147
uMat[2][3] = 136:964279
vMat[2][3] = 341:607147
�
�uMat[3][2]�uMat[2][3]

�
�= 204:642868> larg

) larg =
�
�uMat[3][2]� vMat[2][3]

�
�= 0:000000

(d) uMat[3][3] = 272:142883
uMat[3][3] = 272:142883
vMat[3][3] = 272:142852
�
�uMat[3][3]�uMat[3][3]

�
�= 0:000000 = larg

) larg remains 0:000000

In step (c) above, because of the seeded error, the
program compared

�
�uMat[3][2]� uMat[2][3]

�
� with larg.

Since the (erroneous) change in temperature at this point
exceeded larg, the latter was replaced by

�
�uMat[3][2]�

vMat[2][3]
�
�, which was 0. Now that larg had become

zero, it was less than the stopping criterion, and hence the
iteration ended. The iteration for the correct version on
the mesh grid G1 happened to end when the number of
iterations was 44, so that results in both the correct and
faulty programs agreed. This was also the case for the mesh
grid G2.

In the mesh grid G3, larg became 0 when the faulty
version reached the 54th iteration, and hence the program
ended. Since G3 provided a better precision, however,
the correct program did not end at the same number of
iterations. As a result of more iterations, the computation
improved further, and hence the temperature results in the
correct program were slightly better than those of the faulty
version. In any case, both results were still fairly close
to each other because the correct program terminated soon
after 54 iterations.

3.2. Testing with Special Test Cases

In this section, we propose several special cases to test
the faulty program with a view to detecting the injected
error:

(i) The temperatures at all four edges are identical. In
this case, every point on the plate should have the
same temperature. Figure 2(a) illustrates this situation.
Given TL = TR = TT = TB, the temperature at any point
P on the plate should be equal to the temperature on
the boundary.

(ii) Given symmetric boundary conditions in a square
plate, we should obtain a symmetric temperature
distribution. Let us illustrate this situation by
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TT

TB = TT

TL = TT TR = TT

TT

TB = TT

TL TR

TT

TB = TT

TL TR = TL

P PP

P0P0

P00

(a) (b) (c)

Figure 2. Testing of Special Cases

Figure 2(b). If TT = TB, the points P and P0 are
symmetric with respect to the horizontal axis, so that
the temperature at P is identical to that at P0.

(iii) Suppose the boundary condition is symmetric not only
with respect to the horizontal axis but also with respect
to the vertical axis. Let P and P0 be points symmetric to
the horizontal axis, and P and P00 be points symmetric
to the vertical axis. Then, the temperatures at P,
P0, and P00 should be equal. This is illustrated by
Figure 2(c).

We have conducted tests covering all these special cases.
Unfortunately, they cannot reveal the error in the faulty
program.

3.3. Testing with the Metamorphic Method

We would like to discuss how to apply metamorphic
testing to the PDE program. Consider the mesh grids
(Gi)i=1; 2; ::: ; 5 we introduced earlier. Let TGi(P) be the
temperature at point P determined using the mesh grid Gi,
and T (P) be the solution of the partial differential equation
at P. Let Gi, G j, and Gk be any three mesh grids. According
to the reasoning in Section 1, which is based on [14, 19],

Gi � G j � Gk !
�
�TGk(P)�T (P)

�
��

�
�TGj (P)�T(P)

�
�

�
�
�TGi(P)�T(P)

�
�:

(1)

Unfortunately, in the absence of a test oracle, T (P) cannot
be found easily. To solve the problem, we would like to look
for another relation that does not involve T (P). We propose
a metamorphic relation

RPDE : Gi � G j � Gk !

TGi(P)�minfTGj (P); TGk(P)g or

TGi(P)�maxfTGj(P); TGk(P)g:

This can be proved as follows:

Assume the contrary. Without loss of generality,
suppose TGj (P)< TGi(P)< TGk(P).

Case (a): T (P)� TGi(P). We have

�
�TGk(P)�T (P)

�
� >

�
�TGi(P)�T(P)

�
�;

thus contracting relation (1).

Case (b): T (P)> TGi(P). In this situation,

�
�TGj (P)�T (P)

�
� >

�
�TGi(P)�T(P)

�
�;

which also contracts relation (1). �

RPDE will be the metamorphic relation that we would
like to test against the implemented program. If the program
does not exhibit this relation, we will have good reasons to
suspect a fault.

We check the temperatures in the same 9 points
(Pi)i=1; 2; ::: ; 9 using mesh grids G1, G2, : : : , and G5 such
that G1 � G2 � : : : � G5. Figure 3 illustrates the cases for
G1 to G4.

The complete result is shown in Table 1. An element
in the ith row and jth column of the table represents
the temperature TGj (Pi) at point Pi calculated using mesh
grid G j. Consider point P5. Although G3 � G4 � G5,
we have TG5(P5) < TG3(P5) < TG4(P5). This contradicts
the metamorphic relation RPDE derived from relation (1).
Similarly, at points P7, P8, and P9, we also have TG5(Pi) <
TG3(Pi)< TG4(Pi), i = 7; 8; 9, which also contradicts RPDE .
Hence, we should suspect a fault in the program.

We note that the failures resulting from the fault are very
subtle. They vary from a relative error of 0.2% at point
P7 to 0.7% at point P5. Even though the faulty statement
has been executed repeatedly within a loop for some time,
the incorrect computation does not give rise to an obvious
anomaly. They may not be detected even in the presence of
an approximate test oracle.
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P1P1 P2P2 P3P3

P4P4 P5P5 P6P6

P7P7 P8P8 P9P9

G1: 3�3 Mesh Grid G2: 7�7 Mesh Grid G3: 15�15 Mesh Grid G4: 31�31 Mesh Grid

Figure 3. Examples of Mesh Grids for the Square Plate

Metamorphic
Point TG1 TG2 TG3 TG4 TG5 Relation Violated?

P1 107.8571 106.7156 106.3443 106.2723 105.6029 No
P2 105.8929 104.7886 104.3757 104.2979 103.3571 No
P3 75.7143 74.1261 73.6241 73.5184 72.8407 No
P4 175.5357 174.0560 173.4716 173.3431 172.3887 No
P5 190.0000 190.0000 189.9252 189.9529 188.6572 Yes
P6 136.9643 134.4735 133.5401 133.3156 132.3367 No
P7 304.2857 305.8740 306.3011 306.4345 305.8165 Yes
P8 341.6071 346.6820 348.4010 348.9104 348.1195 Yes
P9 272.1429 273.2844 273.5808 273.6807 273.0543 Yes

Table 1. Results of Metamorphic Testing

4. Conclusion

Because of the lack of analytical solutions, most partial
differential equations are usually solved by numerical
methods. Owing to the various reasons as explained in
Section 1, there may not be a test oracle for such numerical
methods. Special test cases may help us reveal some
errors, but they cannot detect the subtle errors such as
that described in this paper. Instead, we identified a
metamorphic relation and conducted metamorphic testing.
We managed to identify the fault in the program.

We have demonstrated how the metamorphic testing can
help alleviate the oracle problem in the testing of numerical
software. Although we have only presented a simple
case study to illustrate the usefulness of our metamorphic
relation, the relation identified in the paper should also
be applicable to other numerical methods that yield better
approximations on the refinement of grid points or step
sizes. We shall study further applications in our future
research.
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