
From System Comprehension to Program Comprehension

Christos Tjortjis, Nicolas Gold, Paul Layzell

Department of Computation, UMIST

Email: {christos, Nicolas.Gold

pjl}@co.umist.ac.uk

Keith Bennett

Department of Computer Science

University of Durham

Email: keith.bennett@durham.ac.uk

Abstract

Program and system comprehension are vital parts of

the software maintenance process. We discuss the need

for both perspectives and describe two methods that may

be integrated to provide a smooth transition in

understanding from the system level to the program level.

Results from a qualitative survey of expert industrial

software maintainers, their information needs and

requirements when comprehending software are initially

presented. We then review existing software tools which

facilitate system level and program comprehension.

 Two successful methods from the fields of data

mining and concept assignment are discussed, each

addressing some of these requirements. We also describe

how these methods can be coupled to produce a broader

software comprehension method which partly satisfies all

the requirements. Future directions including the closer

integration of the techniques are also identified.

1. Introduction

Software maintenance accounts for the largest cost in

the software lifecycle [22]. Within the process of

software maintenance, program and system

comprehension play a crucial and costly role [19].

Maintainers must understand not only the localised part of

a program that they need to change, but also the context

within which the change takes place – system

understanding. Many support methods and tools in the

field of program comprehension (the term is often applied

to both program and system level comprehension) are

focussed at one or the other. In this paper, we show how

such methods may be coupled together to produce a more

complete support environment for the software

maintainer. This allows for switching between system and

program views and partly satisfies all the requirements of

industrial scale software comprehension.

The remaining of the paper is organised as follows:

Section 2 presents the requirements of industrial software

maintainers identified by a survey conducted in the U.K.

Section 3 reviews existing software comprehension tools.

Sections 4 and 5 present two methods for system and

program level comprehension respectively. Section 6

discusses the extent to which these methods meet these

requirements. Section 7 proposes ways for combining the

methods so as to satisfy the complete set of requirements.

Section 8 presents directions for further work.

2. Software maintenance requirements

Domain knowledge and expertise are crucial for

software maintenance, the type of required knowledge

changing over the lifetime of software. However it is

recognised that there are no explicit guidelines given a

program understanding task, nor are there good criteria to

decide how to represent knowledge derived by and used

for it [1]. A fundamental research challenge therefore was

to understand the key industrial needs, objectives and

assumptions in the program comprehension process and

to provide the most appropriate support for the task at

hand the time it is needed.

To determine the needs of software maintainers,

understand their broad strategies, particularly the initial

steps in program comprehension, and thereby provide

better tool support, a qualitative survey of expert software

maintainers was undertaken [26]. The survey confirmed

that there is no high-quality substitute for experience

when it comes to understanding a system, as existing

methods and tools are not effective enough and

documentation tends to be unreliable.

The main Software Maintenance practices and

requirements identified by this survey were the following:

1. High level overviews, abstractions, localised system

diagrams, module interrelationships and also means to

estimate the impact of changes are required to be

derived in an automated manner in order to accelerate

and enhance program comprehension.

2. It was reported that program mental models, i.e. high

level abstractions of subsystems with related

functionality and interrelationships, are implicit in

maintainers’ work, but are hardly ever recorded for

future use. The need for visualising, recording and

cross-referencing these models in order to share

experiences, improve communication and resolve

misunderstandings was clearly identified.

3. Identification of a starting point for subsequent

tracing through programs significantly accelerates the

comprehension process. This normally occurs through

consultation with experts and by use of maintainer’s

own experience but alternative means are essential.

4. Information exchange among team members is

sparse, informal and is hardly ever recorded. There is a

clear requirement for a means to provide standardised,

reliable and communicable information regarding a

system as an equivalent to knowledge available only to

developers or experienced maintainers.

5. Maintenance is mainly documented in source code

comments, except from extensive changes which are

also reflected on user manuals. The implication is that

comments in mature systems get accumulated over time

and tend to reflect subsequent changes rather than the

original implementation ideas. Capturing knowledge

regarding past modifications by extracting information

from comments and relating this to known functionality

of code emerges to be of great importance.

6. The types of maintenance influence the approach

taken. Corrections involve attempting first to locate the

point where the fix needs to be applied. Enhancements

require a ‘detail-first’ strategy, where a high-level

understanding of the system’s functionality and

modules interrelationships is pursued before the change

is made. Preventative maintenance was deemed rarely

to occur and was considered to be an integral part of

software development. The above highlight that

maintainers are often required to switch between

System Level and Program Comprehension.

7. Partial comprehension is pursued and achieved in

most cases, which has to be balanced against the risk of

failure in completing a maintenance task. It was

reported that the time available for comprehension was

limited because of commercial pressures and deadlines.

It was generally agreed that the most useful pieces of

information to facilitate code comprehension are:

a. An easy to navigate, multi-layered subsystem

abstraction and modules interrelationships providing an

overview of the system and possible impact of changes.

b. Knowledge derived from past maintenance which can

mainly be retrieved from comments.

3. Comprehension support

There are many types of tools available to help with

software comprehension, emphasising different aspects of

systems and modules, and usually creating new

representations for them [10]. Biggerstaff et al.

differentiate between naïve and intelligent agents (tools)

for providing such representations [3]. Naïve agents

generally perform deductive or algorithmic analysis of

program properties or structure, e.g. program slicers [23]

or dominance tree analysers [5]. Intelligent agents assign

descriptions of computational intent to source code.

Biggerstaff et al. [3] claim that research on intelligent

agents can be divided into 3 distinct approaches:

1) Highly domain specific, model driven, rule-based

question answering systems that depend on a manually

populated database describing the software system.

This approach is typified by the Lassie system [8].

2) Plan driven, algorithmic program understanders or

recognisers. Two examples of this type are the

Programmer’s Apprentice [20], and GRASPR [27].

3) Model driven, plausible reasoning understanders.

Examples of this type include DM-TAO [3], [4],

IRENE [17], and HB-CA [10], [12].

One exception to this categorisation is Hartman’s

work [14] that falls between approaches 2 and 3.

Systems using approaches 1 and 2 are good at

completely deriving concepts within small-scale programs

but cannot deal with large-scale programs due to

overwhelming computational growth. Approach 3

systems can easily handle large-scale programs since their

computational growth appears to be linear in the length of

the program under analysis. They suffer from

approximate and imprecise results [3].

Figure 1 is based on the summary of the program

understanding landscape in [3] as extended in [10]. The

original has been updated to include additional work on

program understanding, with the number of each oval

providing a key to the citations below. Citations have

also been added to the original figure.

4. A method for system level comprehension

Data mining involves applying data analysis and

discovery algorithms to data collections that produce a

particular enumeration of patterns over the data [9].

Several techniques can give insight into vast amounts of

data and extract useful, previously hidden knowledge.

Clustering is such a technique for partitioning a data set

into mutually exclusive groups (clusters). Members of a

cluster are similar to one another and dissimilar from

members of other groups, according to some metric.

Similarity is decided by measuring the distance of records

with respect to all available variables [15].

Data Mining Code Clustering (DMCC) [25] is an

approach, devised to address the need for automated

methods providing a quick, rough grasp of a software

system, to enable practitioners, who are not familiar with

it, to commence maintenance with a level of confidence

as if they had this familiarity.

DMCC primarily aims at providing a broad contextual

picture of a system, rather than a detailed model [25].

This provides a roadmap by which maintainers can

quickly navigate around the code, scoping the change

 Deductive/

Algorithmic

Methods

 Plausible

Reasoning/

Heuristic

Methods

Specialised

Application Domains

 Model-Driven

Methods

Domain

Specificity

General Application

Domains

Computer

Science Knowledge

Fundamental

Knowledge

Model-Free

Methods
 Formal Rigorous Semi-

Formal

Systematic Ad Hoc

 Formality

Key to citations

Oval Author(s) System Citation(s) Oval Author(s) System Citation(s)

1 Karakostas IRENE [17] 4 Ning

Kozaczynski

Concept

Recogniser

[18]

2 Biggerstaff et al. DM-TAO [3], [4] 4 Johnson PROUST [16]

2 Gold HB-CAS [10], [11], [12] 4 Chin, Quilici DECODE [6]

3 Rich, Waters Programmer’s

Apprentice

[20] 4 Harandi, Ning PAT [13]

3 Woods et al. PU-CSP [28] 5 Biggerstaff et al. DESIRE [2], [3], [4]

4 Hartman UNPROG [14] 5 Siff, Reps FCA Tools [21]

4 Wills GRASPR [27] 5 Canfora et al. Various Methods [6]

Figure 1: The program understanding landscape [10] after [3]

request and solution space. This enables more detailed

analysis of targeted code to be undertaken.

DMCC portrays a program as a number of entities

grouped in clusters representing subsystems, based on

their similarity. Clusters indicate functions structure and

interrelationships among them, in a way that the impact of

changes can be predicted. A prototype tool for clustering

C/C++ source code was developed, using functions as

entities. Attributes include the use and types of variables /

parameters and the types of returned values. Additional

information about interrelationships among attributes is

also used. Custom-made similarity metrics based on the

association coefficient paradigm, were introduced and an

agglomerative hierarchical clustering algorithm using the

complete linkage method was employed.

BIOS
Decompilers

Brachman

DM-TAO
HB-CAS

Rich
Waters
Woods et al.

Hartman
Wills
Ning
Johnson
Letovsky
Chin
Quilici
Harandi

Canfora et al
Siff/Reps
DESIRE
Naïve Tools

Bachman
Data Anal.

Restructurers
Prettyprinters

Rev. Extractors
Analysers

IRENE
1

2

3

4

5

The tool was evaluated using data extracted from

C/C++ systems of various sizes. Experimental results

indicate that a high-level system abstraction as a number

of subsystems can be achieved by clustering program

functions into groups. Interrelationships amongst

components were identified in a similar manner. The

accuracy of the results was evaluated by comparing the

produced subsystem abstractions with experts’ mental

models. The abstractions were accurate, capturing the

subsystems consistently with the mental model. Pair-wise

values of precision and recall ranged between (50%, 40%)

and (87%, 100%), i.e. highest precision achieved was

87% and highest recall 100% [24].

Grouping program components into subsystems

reduces the perceived complexity thus facilitating

maintenance. Corrective and adaptive maintenance is

supported by the automatic derivation of a meaningful

decomposition of source code into several subsystems, by

identifying the interfaces between subsystems and

determining the role each plays in performing a service

[25]. This can further help to modify existing code in a

manner consistent with the original structure and

understand the overall impact of such modifications. Any

changes, especially those related to parameter usage

within the body of a function, suggest the maintainer

should consider the possibility of other “similar”

functions being affected. This supports fast code

modification risk assessment, before even performing

regression tests which in practise are time consuming and

often neglected. Maintainers should even be enabled to

replace code sections of code without affecting

functionality.

DMCC can also be used for perfective maintenance,

when improving system cohesion and coherence by

increasing modularity. This happens in two ways. Firstly,

functions can be relocated within modules where they

“naturally” belong. Secondly, processing within functions

could be adjusted to better reflect the functionality that is

supposed to be encapsulated within.

5. A method for program level

comprehension

Concept assignment is a process aimed at assisting

the maintainer in program comprehension by indicating

where operations (e.g. Read) or entities (e.g. File) exist

within the code. It involves identifying the location,

scope, and instance of concepts within code. The type of

concept assignment we are concerned with in this paper is

termed plausible-reasoning owing to its use of multiple

information sources (including informal clues such as

comments) to assess the likelihood of the occurrence of a

concept in the code. This approach differs from the

common alternative of deriving the concepts from the

semantics of the programming language (see section 3).

The advantage of plausible-reasoning systems is their

scalability over any size of program.

The Hypothesis-Based Concept Assignment (HB-

CA) method [10], [11], [12] is a plausible-reasoning

technique for identifying abstractions and concepts in

COBOL code. Concepts are proposed by a maintainer

and stored in a library as simple text strings. They are

classified as either actions (i.e. they do something) or

objects (they are something on which actions take place).

Each concept has one or more indicators (also text

strings) that, when found in code, may indicate the

presence of the particular concept. Indicators are

assigned to different classes: identifier (variable /

procedure names), keyword, and comment (single words

only, no phrases). Concepts can be joined by

specialisation (one object to another) or in composition

(one action with one object).

HB-CA is a three stage method comprising

Hypothesis Generation, Segmentation, and Concept

Binding. The library is used by the Hypothesis

Generation stage to analyse the code and produce

hypotheses for every concept whose indicators are found.

The resulting hypothesis list is passed to the

Segmentation stage which attempts to group hypotheses

into coherent segments, each focussed around single

concept. It uses the subroutine boundaries present in the

original source code. Where the code has no subroutines

or they are very large, a neural network is used to learn

the conceptual structure of the hypotheses being

considered and smaller segments defined based on this

analysis. The segments are passed to the final stage:

Concept Binding. This uses the weight of evidence for a

concept (in terms of number of hypotheses) to determine

which concept is dominant and thus present in the

segment. If several concepts have the same level of

evidence, a number of disambiguation rules are applied to

pick a winner. The output is shown by colouring portions

of the source code to match a coloured concept name

displayed next to the code.

6. Satisfying the needs of software

maintainers

As explained in section 2, despite existing methods

and tools for system level and program comprehension,

practitioners in the industry impose a set of requirements

yet to be satisfied. Section 4 and 5 respectively introduced

two methods, namely DMCC and HB-CA, facilitating

these types of comprehension. We present here the way

these methods individually address most of the above

requirements. Furthermore, we discuss how coupling of

the methods can satisfy the remaining requirements.

DMCC is an approach which successfully addresses

the first two requirements set by the industry. It produces

a high level overview of a system, where modules are

grouped together according to their similarity and their

interrelationships are highlighted. It also provides the

means to visualise and record a representation of a

system, resembling a mental model which can be used to

confirm perceptions, communicate these models and

cross-reference them across a team. DMCC also provides

maintainers with the required multi-layered subsystem

abstraction which captures module interrelationships and

can indicate the possible impacts of modifications.

HB-CA successfully addresses requirements 2, 3, 4,

and 5. The need to share mental models is facilitated to

some extent by the use and extension of the knowledge

base by several maintainers. HB-CA provides a

particularly good method for identifying the starting point

for maintenance by providing the maintainer with a

program representation in conceptual terms that they have

nominated. The starting point can be expressed in terms

closer to the problem. The shared knowledge base

enables the recording of knowledge highlighted in

requirement 4. Although the knowledge base structure is

not elaborate, it does provide a mechanism by which

maintainers can store parts of their system and program

understanding for others to use. One of the main sources

of knowledge for the HB-CA analysis is inline comments,

used to determine which concepts are implemented in a

particular section of code. It can be seen as a knowledge

capturing method as desired in requirement 5.

The result of coupling DMCC and HB-CA addresses

the rest of the requirements set by industrial practitioners,

i.e. switching between System Level Comprehension and

Program Comprehension (requirement 6) and accelerating

and improving the quality of partial comprehension

(requirement 7). The way these further requirements are

met will be explained in the following section.

7. Combined method for better support

This section describes ways in which DMCC and

HB-CA could be combined to improve the support

offered to software maintainers.

DMCC gives an overview of the interrelations among

low-level modules (functions) found in program files.

Therefore:

 It can be used to assess modularity.

 It may be used for code ripple analysis and

risk/impact analysis.

 It could be used prior to remodularization.

HB-CA gives an overview of the concepts found in a

particular program file by mapping concepts (terms) to

their implementation in code. Therefore:

 It can be used for business rule/code ripple analysis

and risk/impact analysis.

 It can be used for module selection prior to change.

 It can be used to help with code reuse.

 It’s useful in software module comprehension

There are several ways in which DMCC could be

coupled with HB-CA to improve the completeness of

comprehension support:

a. DMCC could assist in CA knowledge base

generation. DMCC could be used to locate indicators

(perhaps within the data sections of programs) and

possibly concept-concept relationships. Concepts

produced by DMCC are of “higher order” than the ones

usually stored in the knowledge base. For example,

instead of having a read concept, DMCC can introduce

a sort concept which in fact consists of concepts of

“lower order” such as read, write etc. This hierarchical

approach extends the scope and enriches the usefulness

of CA.

b. Segmentation could be based on DMCC “clusters”

rather than regions of code formed between primary

segmentation points or as an alternative to using neural

network processing to find conceptual coherence. HB-

CA initially segments code at section boundaries and

then by use of Self-Organising Maps (SOMs) to reflect

the conceptual structure of the program as expressed in

terms of the knowledge base content. DMCC suggests

further groupings of routines or paragraphs, which are

more likely to contain “higher order” concepts and

relationships.

c. Enhanced code ripple analysis and module selection.

As both DMCC and CA may be used for code ripple

analysis and risk/impact analysis results can be cross-

validated when “overlapping” or combined when

addressing different issues.

d. Cross-validation of DMCC and CA findings. This

may happen if, instead of coupling the processes of the

two methods, we only allow their results to be coupled.

In other words, as DMCC produces high-level results

and HB-CA produces low-level ones, there is a valid

expectation that these can complement each other. This

can be achieved by highlighting different aspects of a

system or by providing two different angles for viewing

a single aspect, lying in the boundaries of the scope of

each method.

8. Conclusions and future work

System and program level comprehension is crucial

for industrial scale software maintenance. A set of

relevant requirements identified during a survey is only

partly met by existing methods and tools. In this paper we

have presented two methods that meet most of these

needs individually. We have also proposed several ways

in which they may be combined to greater effect and to

provide more substantial support. This combination

potentially addresses all the requirements.

There are a number of directions for further work in

this area:

1) Empirical validation of the combined approach. It

would be useful to expose the combined method to

maintainers in the real world to determine whether it

can actually meet the needs identified in the early part

of this paper.

2) Closer integration between the methods. The current

style of coupling between the methods is loose and

maintainers would benefit from a closer fit between

them, as it would give them the ability to switch

quickly between system views.

3) Framework Development. Many aspects of data

mining are adopted in program comprehension tools

and we plan to develop a framework to characterise and

classify such tools by the data mining methods they

adopt for data extraction and processing.

Acknowledgements

We gratefully acknowledge the support of EPSRC,

the Leverhulme Trust, and CSC for various aspects of this

work.

References

[1] F. Balmas, H. Wertz and J. Singer, "Understanding

Program Understanding", Proc. 8th Int'l Workshop

Program Comprehension (IWPC 00), IEEE Comp. Soc.

Press, 2000, pp. 256.

[2] T.J. Biggerstaff, "Design Recovery for Maintenance and

Reuse", IEEE Computer, Vol. 22, No. 7, July 1989, pp. 36-

49.

[3] T.J. Biggerstaff, B. Mitbander, D. Webster, "The Concept

Assignment Problem in Program Understanding",

Proceedings of the Fifteenth International Conference on

Software Engineering, Baltimore, Maryland, May 17-21,

1993, IEEE Computer Society Press, 1993, pp. 482-498.

[4] T.J. Biggerstaff, B.G. Mitbander, D.E. Webster, "Program

Understanding and the Concept Assignment Problem",

Communications of the ACM, Vol. 37, No. 5, May 1994,

pp. 72-82.

[5] E. Burd, M. Munro, "Evaluating the Use of Dominance

Trees for C and COBOL", Proceedings of the International

Conference on Software Maintenance, Oxford, England,

August 30-September 3, 1999, IEEE Computer Society

Press, 1999, ISBN 0769500161, pp. 401-410.

[6] G. Canfora, A. Cimitile, A. De Lucia, G.A. Di Lucca,

“Decomposing legacy systems into objects: an eclectic

approach”, Information and Software Technology, Vol. 43,

2001, pp 401-412.

[7] D.N. Chin, A. Quilici, "DECODE: A Cooperative Program

Understanding Environment", Journal of Software

Maintenance, Vol. 8, No. 1, 1996, pp. 3-34.

[8] P. Devanbu, R.J. Brachman, P.G. Selfridge, B.W. Ballard,

"LaSSIE: A Knowledge-Based Software Information

System", Communications of the ACM, Vol. 34, No. 5,

May 1991, pp. 35-49.

[9] U. Fayyad, G. Piatetsky-Shapiro and P. Smyth, "From Data

Mining to Knowledge Discovery: an Overview", Advances

in Knowledge Discovery and Data Mining, AAAI Press,

1996, pp. 1-34.

[10] N.E. Gold, “Hypothesis-Based Concept Assignment to

Support Software Maintenance”, PhD. Thesis, Department

of Computer Science, University of Durham, 2000.

[11] N.E. Gold and K.H. Bennett, “A Flexible Method for

Segmentation in Concept Assignment”, Proc. Int’l

Workshop on Program Comprehension (IWPC 01), IEEE

Comp. Soc. Press, 2001.

[12] N.E. Gold, “Hypothesis-Based Concept Assignment to

Support Software Maintenance”, Proc. Int’l Conference on

Software Maintenance (ICSM 01), IEEE Comp. Soc. Press,

2001.

[13] M.T. Harandi, J.Q. Ning, "Knowledge-Based Program

Analysis", IEEE Software, Vol. 7, No. 1, January 1990, pp.

74-81.

[14] J. Hartman, "Automatic Control Understanding for Natural

Programs", Ph.D. Thesis, University of Texas at Austin,

May 1991.

[15] A. K. Jain and R. C. Dubes, Algorithms for Clustering

Data, Prentice-Hall, 1988.

[16] W.L. Johnson, Intention-Based Diagnosis of Novice

Programming Errors, Morgan Kaufmann Publishers Ltd,

1986, ISBN 0273087681.

[17] V. Karakostas, "Intelligent Search and Acquisition of

Business Knowledge from Programs", Software

Maintenance: Research and Practice, Vol. 4, 1992, pp. 1-

17.

[18] W. Kozaczynski, J.Q. Ning, "Automated Program

Understanding By Concept Recognition", Automated

Software Engineering, Vol. 1, No. 1, March 1994, pp. 61-

78.

[19] T.M. Pigoski, Practical Software Maintenance: Best

Practices for Managing your Software Investment, Wiley

Computer Publishing, 1996.

[20] C. Rich, R.C. Waters, The Programmer's Apprentice, ACM

Press (Frontier Series), 1990, ISBN 0201524252.

[21] M. Siff, T. Reps, “Identifying Modules via Concept

Analysis”, IEEE Transactions on Software Engineering,

Vol. 25, No. 6, November/December 1999.

[22] I. Sommerville, Software Engineering, 6th edition, Harlow,

Addison-Wesley, 2001.

[23] F. Tip, "A Survey of Program Slicing Techniques",

Technical Report CS-R9438, Centrum voor Wiskunde en

Informatica, Amsterdam, 1994.

[24] C. Tjortjis, “Using Data Mining for Program

Comprehension”, PhD. Thesis, Department of

Computation, UMIST, to appear 2002.

[25] C. Tjortjis and P.J. Layzell, "Using Data Mining to Assess

Software Reliability", Suppl. Proc. IEEE 12th Int’l

Symposium Software Reliability Engineering

(ISSRE2001), IEEE Comp. Soc. Press, 2001, pp. 221-223.

[26] C. Tjortjis and P.J. Layzell, "Expert Maintainers’ Strategies

and Needs when Understanding Software: A Qualitative

Empirical Study", Proc. IEEE 8th Asia-Pacific Software

Engineering Conf. (APSEC 2001), IEEE Comp. Soc. Press,

2001, pp. 281-287.

[27] L.M. Wills, "Automated Program Recognition by Graph

Parsing", PhD Thesis, AI Lab, Massachusetts Institute of

Technology, July 1992.

[28] S.G. Woods, A.E. Quilici, Q. Yang, Constraint-Based

Design Recovery for Software Reengineering: Theory and

Experiments, Kluwer Academic Publishers, 1998, ISBN

0792380673.

