
A Unified Process Support Framework for Global Software Development

Jin Sa and Elena Maslova
Faculty of Computing, Engineering and Mathematical Sciences

University of the West of England
Bristol BS16 1QY

UK
{jin.sa, elena.maslova}@uwe.ac.uk

Abstract

There is an increasing trend in global software
development, where different parts of a software product
are being developed in different organisations. The
process aspect of such a distributed development
environment is particularly important in order to ensure
communication and coordination between the teams in
different organisations. However different organisations
may use different notations in modelling their software
development processes. This paper addresses the issue on
how to integrate models defined using different notations.
The paper presents the initial results from a prototype of
a unified process support framework that allows teams to
define their process models using different notations. The
framework integrates the models into a unified
representation to facilitate communication and
coordination.

1. Introduction

Software development processes have been studied
for many years. There has been a recognition that
studying and modelling the process aspects of a software
development helps to improve the quality of the product.
Much work has been done in this area, for example there
are many conferences in the area of software processes
[1,10,11]. However most of the work in this field
concentrates on traditional software development
processes in the sense that the software is developed
within one organisation using one development method,
and the process model used to support the development
process is defined using one notation.

With the rapid growth of the Internet, software
development is changing. In recent years, there is an
increased globalisation of software development. A
software system may be jointly developed by different
organisations (or teams) with cultural differences on

software engineering practices. We believe that the
process aspect is very important in global software
development because of the needs for communication and
coordination between the development teams. However, it
is very likely that the preferred notations of different
teams for describing their parts of the process model
might be different. This phenomenon raises the challenge
of how to facilitate the communication and coordination
between different players in the process of the global
software development without forcing organisations to
change their preferred practices.

Many process support and CSCW systems have been
developed to support distributed software development.
While most of the work is concerned with supporting
shared access and coordination, very little work has
addressed the issue of allowing different organisations to
use different modelling notations. The aim of our work is
to produce a unified process support framework. The
framework allows users to create process models.
Different parts of a model can be defined in different
notations allowing different teams using their preferred
notations to define their parts of the model. The
framework facilitates the communication and
coordination of the different parts of the model by
translating them to a unified model.

This paper describes the basic ideas of the unified
process support framework. An initial prototype of such a
framework, called SPASE, has been developed. Details of
SPASE are described in [8]. In this paper we use SPASE
to illustrate the concepts of the unified process support
framework. The rest of the paper is organised as follows:
section 2 explains the basic concepts in the unified
process support framework; section 3 describes a
prototype of the unified process support framework with
an example; section 4 looks at some related work; and
finally section 5 draws the conclusion and outlines the
future work.

Figure 1. The architecture of the unified process support framework

2. Concepts of the unified process support
framework

There are essentially three parts in the unified
process support framework: model integrator, model
enactment engine, and model external viewer as shown
in Figure 1.

The unified process support framework (hereafter
referred to as ‘the framework’) interfaces with a number
of process model editors. These process model editors
are external to the framework. An example of a process
model editor is Rational Rose when it is used to create
process models defined in some UML notations. The
model integrator itself consists of three parts: a meta-
definition, a number of model translators and an internal
representation. Model translator takes models defined
using external process model editors and translates them
into the unified internal representation. The meta-
definition defines process concepts such as role, activity
and interaction. Each model translator contains a
mapping between the concepts in a notation supported by
a particular process model editor, e.g. UML class
diagram, to concepts in the meta-definition. The model
integrator interfaces with the external process model
editors such as Rational Rose. For example, if we want
to define part of a model using UML class diagram, we
can use Rational Rose to create the required class
diagram. The model translator for UML class diagram
contains a mapping of concepts defined in UML class
diagram and concepts defined in the meta-definition. The
model translator generates the internal representation
based on the mapping. The model enactment engine
executes the internal representation and interfaces with
the model external viewer. The model external viewer is

an interface for displaying the status of the process
model.

3. A prototype of the unified process support
framework – SPASE

The SPASE project was a feasibility study to
demonstrate a possible architecture of the framework.

SPASE only includes a subset of concepts in process
modelling. The SPASE architecture maps directly onto
the concepts described in the framework in section 2.
SPASE is able to interface with two external process
model editors: UML class diagram editor (Rational
Rose) and a simple Role Activity Diagram (RAD) [9]
editor. A full description of SPASE can be found in [8].
In this section, we briefly explain the features of SPASE
with a simple scenario.

3.1. A scenario

We have two teams working together: the design
team and the review team. The design team has the
following activities: 1. produce a design; 2. send it to the
review team; 3. receive comments from the review team;
4. repeat from 1 if necessary. The review team has the
following activities: 1. receive the design from the
design team; 2. review it; 3. send comments to the design
team; 4. repeat from 1 if necessary.

3.2. Meta-definition

The SPASE meta-definition is very simple. It only
contains the following concepts: process, node (or

Process model
editor

Meta-definition

Internal
representation

Model
integrator

Model enactment
engine

Model external
viewer

Model translator

action), condition for action, links to traverse to other
actions, and communication.

3.3. Model definitions and model translators

The SPASE model translator has two plug-in
components. One interfaces with Rational Rose, the
other interfaces with a simple RAD editor. Consider the
scenario described above, the process of the design team
is defined using (a subset of) class diagrams; the process
of the review team is defined using (a subset of) RADs.

For example, in the model for the design team, the
action ‘produce a design’ is modelled as a specialised
node class; ‘send it to the review team’ is modelled as a
specialised communication class; and the link between
the two is modelled as a specialised link class. See
Figure 2.

The plug-in components use the mappings shown in
table 1 and table 2 to translate UML class diagrams and
the RADs diagrams to the internal representation.

Meta-definition UML class diagram
Process A class diagram
Node A specialised class
Link A specialised class

Condition A specialised class
Communication A specialised class

Table 1. Mappings between the meta-
definition and UML class diagram

Meta-definition RAD
Process Role

Node Activity
Link State line

Condition Event
Communication Interaction

Table 2. Mappings between the meta-
definition and RAD

Figure 2. The design team’s process modelled using Rational Rose as an external model editor

Figure 3. External view of the enactment – snapshot 1: produce a design

Figure 4. External view of the enactment – snapshot 2: send design to review team

3.4. Internal representation and integration of
sub-processes

The output of the model translators is an integrated
model defined in the internal representation containing
both the design team and the review team. Consider the
scenario described above again, following are the steps
they would take in order to integrate their sub-processes:
Design team’s sub-process is modelled in UML using
Rational Rose

1 The UML model of the design team sub-process
is then loaded into SPASE which translates it
into internal representation.

2 Review team’s sub-process is modelled in RAD
using a RAD editor.

3 The RAD model of the review team is then
loaded into SPASE that translates it into
internal representation.

We now have two separate internal representations
for the design team sub-process and the review team sub-
process respectively. The next step is to integrate them
by connecting the communications between the two sub-
processes. To establish the connection between them, the
process participants select one participant to take the
responsibility. Assuming in this case, the design team is
responsible for making the connections between the two
sub-processes, SPASE changes the two sub-processes

Current Node Next Node(s)

Current Node Next Node(s)

from its internal representation to the UML
representation.

1 Both sub-processes are translated into UML so
that the design team can view/edit them to
establish the required connections between the
design team and the review team.

2 The integrated UML model is then loaded into
SPASE that translates it into internal
representation.

3 Both teams can follow the integrated model
through the external view.

3.5. Enactment engine

The integrated internal representation can be
executed by the SPASE enactment engine. Processes are
persistent within the SPASE environment. Because of
the technology and architecture (includes Enterprise Java
Beans) used to develop SPASE, SPASE also supports
distributed process enactment.

Consider our scenario again, let the design team be
located in Peking and the review team be located in
Moscow. Assume that the main SPASE server (which
includes the enactment engine and the process model
administrator) runs in UK. The teams in Peking and
Moscow can interact with the process model
administrator and the process during the enactment phase
through SPASE external viewers that run locally on their
machines. See Figures 3 and 4.

3.6. External viewer

The SPASE external viewer interacts with the
internal representation and the enactment engine to
display the current status so that the process participants
can interact with their parts of the process model. The
external viewer user interface contains information about
the previous action, the currently enactable actions and
their conditions. See Figures 3 and 4. The multi-tiered
architecture in SPASE allows the external viewers to be
portable. Therefore process participants can have the
viewers locally on their machines.

4. Related work

A number of approached have addressed some
issues associated with global software development.

Work described in [4,5] address problems with
distributed software development coordination. However
it does not support multiple process modelling notations.

The processes described in P2E [2] and HDEV [3]
allow users to dynamically change to different methods
for dealing with different tasks. Although the
frameworks in both approaches allow the use of different
software development methods within one project, the

process model for each project still needs to be defined
in one notation.

ProcessWeb [12] allows users to enact process
models via the Web. This addresses the distributed
issues, but it uses the same notation for all models.

In [6,7] customisation of process modelling
languages is tackled. It defines process metamodelling,
which allows process modelling languages to be
specified and implemented in a process support
environment. Therefore it allows users to change to a
different process modelling language if necessary. The
work however does not address the integration issue,
which is the concern of our work here.

5. Conclusion and future work

In this paper, we have illustrated by using SPASE
how the concepts in the unified process support
framework can be implemented. SPASE only serves the
purpose of a feasibility study. The process modelling
concepts included in it are very limited. However we
have demonstrated that it is possible to provide support
to teams with different practices in software
development.

Work in the unified process support framework is on
going in the following areas. The meta-definition needs
to be revisited. It is the notation to which all the external
process modelling notations are mapped. Therefore it
needs to have a much more comprehensive coverage of
process issues. Given that the meta-definition is an
internal representation, readability and simplicity are not
the main issue. We recognise that it is not possible to
include all process modelling concepts in the meta-
definition so that any process modelling notation can be
mapped and integrated. Our aim is to define a unified
framework so that many of the commonly used notations
can be integrated.

The design of the model integrator can be compared
with CORBA in the sense that it provides a backbone for
supporting many different notations. The challenge is to
make the part that interacts with the external process
modelling editors as small as possible so that it is
relatively easy to plug in a component for a specific
process modelling editor. We are currently investigating
a number of technologies. One of the issues that we are
exploring at the moment is to use XML to represent the
meta-language. This will de-couple the implementation
language of the translators for the external editors from
the implementation language of the unified framework.
Investigation into the work on process interoperability in
the area of workflow management will also be carried
out.

The external viewer for SPASE is very simple. It
only shows the previous activity and the next possible

activities. The design needs to be revisited to include a
bigger picture of the process.

The overall conclusion is that we believe it is
important to provide process support for global software
development. This paper has illustrated that such an
objective is achievable.

6. References

[1] EWSPT 2001, The 8th European Workshop on Software
Process Technology Witten, Germany, June 2001.

[2] Greenwood M., Robertson I., and Warboys B. C., A
Support Framework For Dynamic Organisations, In the
proceedings of the 7th Europoean Workshop on Software
Process Technology, LNCS 1780. Springer-Verlag, Kaprun
Austria, February 2000.

[3] Greenwood M., Warboys B.C. and Sa J., Cooperating
Evolving Compoentns – A Rigorous Approach to Evolving
Large Software Systems, In the Proceedings of 18th IEEE
International Conference of Software Engineering, Berlin,
Germany, March 1996.

[4] Grundy J., Hosking J. and Mugridge R., Serendipity:
Integrated Environment Support for Process Modelling,
Enactment and Work Coordination, Automated Software
Engineering, vol. 5, no. 1, 1998.

[5] Grundy J., Hosking J. and Mugridge R., Coordinating
Distributed Software Development Projects with Integrated
Process Modelling and Enactment Environments, In
Proceedings of WET ICE '98: IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Stanford, California, 1998.

[6] Koskinen M. 2000. Process Metamodelling – Conceptual
Foundations and Aplication. Jyvaskyla Studies in Computing 7.
University of Jyvaskyla. Jyvaskyla Uniersity Press. PhD.
Dissertation.

[7] Koskinen M. & Marttin P. 1998. Developing a
Customisable Process Modelling Environment: Lessons Learnt
and Future Prospects. In V. Gruhn (Ed.) Proceedings on the 6th

European Workshop on Software Process Technology,
EWSPT’98, LNCS 1487. Springer-Verlag, 13 – 27.

[8] Maslova E. Process Support Environment, MSc
Dissertation, University of the West of England, 2001.

[9] Ould M. A. Business Processes – Modelling and Analysis
for Re-engineering and Improvement. Wiley. 1995.

[10] ProFes 2001, Improving Software and Software Process,
Kaiserlautern, Germany, September 2001.

[11] ProSim/ISPW 2002, International Workshop on Software
Process Simulation and Modelling/ International Software
Process Workshop, Silver Creek Canyon, July, 2000.

[12] Warboys B. C., Kawalek P., Robertson I., and Greenwood
R. M., Business Information Systems: a Process Approach,
McGraw-Hill, Information Systems Series, 1999, ISBN 0-07-
709464-6.

