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Abstract— Scatternet management remains to be one of
the most crucial research issues for Bluetooth networks, de-
spite that Bluetooth devices have proliferated in the com-
mercial market. In this paper, we describe our proposed
integrated scheme for effective scatternet management. Qur
proposed scheme contains four main mechanisms to address
the different facets of the problem, namely Compensation-
Based Time-Slot Assignment (CTSA), Traffic Differenti-
ation Queueing (TDQ), Adaptive Master-Slave Switching
(AMSS), and an Enhanced AODY algorithm for ad hoc rout-
ing. We have built a comprehensive Bluetooth simulator and
performed extensive simulations to evaluate the proposed
TARTSS. We find that our proposed scheme can perform
well under a wide variety of practical circumstances, and
provides efficient and high performance intra-piconet and
inter-piconet communications.

Keywords: Bluetooth, scatternet, ad hoc networks, routing,
time-slot scheduling, pervasive.

I. INTRODUCTION

Wireless networks have proliferated during the last
decade and have become an essential part of our daily
lives. Wireless networks can be classified into infrastruc-
tured and infrastructureless networks. Infrastructured net-
works refer to those networks with fixed and wired gate-
ways or access points. The most common form of infras-
tructured networks is manifested by a cellular network that
is used in the mobile phone system. In such a system, base-
stations act as bridges to connect the mobile terminals to-
gether. Infrastructureless mobile networks, which are also
known as ad hoc networks, refer to those networks that
have no fixed routers or access points. Their main char-
acteristic is that all of the nodes are peers, and are capa-
ble to move around in the network and connected among
each other dynamically in an arbitrary manner. Nodes in
this network function as routers as well as to discover and
maintain routes to other nodes in the network. Typical ex-
amples of usage are in meetings and conferences where
people wish to share information quickly without the need
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to set up an infrastructure beforehand. Since early 1970’s,
much research has been done on developing efficient pro-
tocols for ad hoc mobile networks [6]. Our study is fo-
cused on traffic management in ad hoc networks! based on
a popular short-range wireless technology—Bluetooth [3].

A single Bluetooth network is called a piconet, involv-
ing one master and several slaves. With the formation of a
network of Bluetooth piconets, called a scatternet in which
there are some bridge nodes, there is a need to develop an
ad hoc routing protocol to allow efficient route setup so
that nodes in different piconets can communicate. For ex-
ample, imagine a home user walks into the kitchen, which
is 15 m away from his/her bedroom, but he/she wants to
switch off the TV in the bedroom. It would then be de-
sirable to have a route swiftly set up between the user’s
Bluetooth device (e.g., a PDA with remote control capa-
bility) and the TV so that the command can be sent to the
TV from the PDA.

The specification of scatternet formation/management
has not yet been defined and thus, there is a pressing need
to address the details of developing an ad hoc routing pro-
tocol in Bluetooth. Many ad hoc routing protocols have
been proposed, but they all assume a wideband network
and large packet size environment such as in IEEE 802.11.
They do not pinpoint the characteristics of Bluetooth. In
[2], a routing method is proposed for Bluetooth network;
however, it does not address the details of developing an ad
hoc routing protocol in Bluetooth. Also, since it is devel-
oped based on the routing method of DSR, there is a draw-
back that it requires an unbounded packet size for creating
and storing the route information. Furthermore, its vector
notation for Bluetooth nodes cannot address the problem
of link failures, and this may result in false route forma-
tion. Bluetooth network has much more constraints and
resources limitations than many other wireless network.
Hence, an efficient and practical ad hoc routing protocol
should be developed. There are some other recent work on
issues related to scatternet traffic management [1], [2], [4],

! A Bluetooth network is still ad hoc in that the master-slave relation-
ship is not fixed because a slave can become a master by performing a
master-slave switching [3].
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[5] but these efforts are largely focused on rather restricted
facets of the whole problem.

Apart from the routing protocol, another concern for
Bluetooth is its scheduling algorithm. Bluetooth uses a
centralized polling scheme to distribute services among
the nodes in the network by allocating time-slots through
masters. This centralized polling scheme controls the traf-
fic and throughput of the network as it controls the amount
of uplink traffic. With the formation of scatternet and
availability of ad hoc routing, communications between
distant devices become possible. As a result, a more care-
fully designed scheduling algorithm is needed.

In this paper, we propose an integrated ad hoc routing
and time-slot scheduling scheme (IARTSS), which is com-
posed of four novel resource management mechanisms:

o Compensation-Based Time-Slot Assignment (CTSA)

o Traffic Differentiation Queueing (TDQ)

o Adaptive Master-Slave Switching (AMSS)

+ Enhanced AODV (Ad Hoc On-Demand Distance Vec-
tor) [7] for Ad Hoc Routing

Due to space limitations, in this paper we omit the de-
tailed and formal descriptions of the above four mecha-
nisms, which can be found in the thesis [8]. Instead, we
provide a summary of their characteristics below.

Compensation-Based Time-Slot Assignment (CTSA) is
a scheduling algorithm tailor-made for Bluetooth. With
the formation of scatternet, some nodes have to take up the
role of routers or bridges to interconnect different piconets
together. As Bluetooth uses a frequency hopping scheme,
a node cannot listen to two piconets simultaneously. As
a result, it can only synchronize and participate in one pi-
conet at a time. This implies that these bridge nodes have
to multiplex their time among different piconets. However,
as Bluetooth adopts a centralized polling scheme for time-
slots allocations, these nodes have to compete for time-
slots with all the other nodes when they switch back to
another piconet. Consequently, the resources acquired by
these nodes from the piconet are fewer. In a scatternet en-
vironment, traffic routing across the network can be abun-
dant. The bridge nodes play an important role in routing
packets across different piconets and they become the bot-
tlenecks of the system. Most of the existing scheduling
algorithms allocate time-slots according to the loads of the
queues, and if we apply these algorithms to Bluetooth di-
rectly, we may have ignored the bridging and uplink traf-
fic problems. CTSA is a carefully designed scheduling
scheme for Bluetooth. It exploits the properties of the ab-
sence of bridge nodes to calculate the time-slots allocation
for each nodes more effectively.

Traffic Differentiation Queueing (TDQ) is a technique
to separate different traffic to different queues in Blue-

tooth’s link layer. Traffic is differentiated as “self traffic”
and “forward traffic” in this scheme and they are put into
two different queues. Those being generated by the Blue-
tooth host itself are classified as “self traffic” while those
being forwarded to it are classified as “forward traffic”.
The Bluetooth link layer serves these queues based on an
adaptive service ratio. This scheme helps routing packets
across scatternet more efficiently and can significantly im-
prove the throughput and delay.

Adaptive Master-Slave Switching (AMSS) is a hold
time calculation scheme between bridge nodes, which de-
cides the duration for a node to stay in a piconet. As bridge
nodes in Bluetooth network need to multiplex their time
to different piconets in a scatternet, the time spent on a
piconet greatly affects the overall system performances.
Hence, an adaptive calculation of the hold time is re-
quired. AMSS addresses this problem and uses an adaptive
method based on queue lengths and utilization ratio to de-
termine the hold time for a piconet. This scheme allocates
time between piconets in a more effective way.

Enhanced AODV for Ad Hoc Routing is a routing pro-
tocol developed to facilitate ad hoc routing in Bluetooth
network. AODV is used because it is one of the most rep-
resentative ad hoc routing protocols and it performs well
in most of the wireless network environment. In our en-
hanced AODV routing protocol, we have modified AODV
for Bluetooth so that it becomes suitable for Bluetooth’s
narrow bandwidth and small packet size features.

We have investigated the possible problems of Blue-
tooth scatternet, and evaluated the performances of some
existing scheduling algorithms in Bluetooth network in
this research. As indicated by the simulation results shown
in Section II, we find that our proposed IARTSS outper-
forms the evaluated scheduling algorithms and is more
suitable in the Bluetooth scatternet environment.

II. PERFORMANCE RESULTS
A. Overview

We have implemented three existing scheduling algo-
rithms and the IARTSS scheme in our Bluetooth simulator.
We have also conducted extensive simulations under vari-
ous traffic loads and measured the throughput, the end-to-
end packet latency, and the delivery rate for all the schedul-
ing algorithms. The results show that IARTSS works well
in Bluetooth networks. In this section, we first discuss the
simulation environment in detail, followed by a presenta-
tion of the results and our interpretations.

As mentioned earlier, most of the existing schedul-
ing algorithms are designed for point-to-point or point-
to-multipoint uni-directional traffic and are unsuitable for
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Bluetooth’s centralized polling networking environment.
Thus, in order to evaluate the existing scheduling algo-
rithms across the Bluetooth network, we have modified
well-known Deficit Round Robin (DRR) [9] in two dif-
ferent enhanced versions so that the DRR approach can be
used in a Bluetooth network. Apart from the two modified
deficit round robin scheduling algorithms, the straightfor-
ward round robin (RR) scheduling algorithm is also used
for baseline comparison. These algorithms are the only ap-
proaches currently being used in practical Bluetooth sys-
tems. The two versions of deficit round robin algorithms
are described in detailed in [8].

B. Simulation Environment and Parameters

In our performance study, Bluetooth networks with a
variable number of nodes are examined. The Bluetooth
topology created is a Bluetooth network with a maximum
of three masters and two relays, and thus, restricting the
number of piconets to be a maximum of three in our sim-
ulation environment. Unlike the scatternet topology as-
sumed in [10], where most of the links are parallel and
connected like a linked list. Our simulation environment
simulates the worse case situation where up to seven links
exist in a piconet and a master has to allocate its time-slots
among the maximum number of slaves. In addition to us-
ing different topologies, we also varied different load and
scatternet traffic across the network and study their effects
in the implemented algorithms.

We investigated the performance of scatternet traffic in
two major dimensions, the number of hops and the scat-
ternet size. The number of hops varies from single hop
within a piconet to a maximum of 6 hops across the whole
scatternet. The size of the scatternet varies from 5 nodes
to 20 nodes to simulate the effects of a single piconet to
multiple piconets. Their effects on the throughput, the de-
lay and the delivery rate on piconet and scatternet sessions
are studied thoroughly.

C. Performance Metrics

We evaluated our proposed IARTSS with three main
metrics: (1) the average end-to-end latency, (2) the aver-
age throughput, and (3) the delivery rate. The end-to-end
latency is measured by the time required for a packet to
be created at a source node until it is received and pro-
cessed by its destination. Its average value is calculated by
the total end-to-end latency divided by the total number of
packets received. The average throughput is calculated by
the received number of bits divided by the packet’s end-to-
end latency. The delivery rate is defined as the total num-
ber received in the network divided by the total number of
packets created in the network.

Bluetooth supports various data packet types, with dif-
ferent payload sizes and transmission time-slot require-
ments. Thus, in our performance study, we have used two
major types of data packet for testing and they are the DM3
and the DM5, respectively.

As Bluetooth networks have not been widely used yet,
the traffic patterns are still unknown. Therefore, in this
performance study, we use two major types of hypothetical
traffic sources to represent some common traffic patterns in
wireless network and they are the Constant Bit Rate (CBR)
traffic source and the Exponential (EXP) traffic source, re-
spectively. We used 8 kbps CBR traffic source that trans-
mits 160 bits in 20 ms time interval to represent applica-
tions that send small sized packets regularly. These appli-
cations vary from simple Bluetooth enabled mice control
to voice transmissions. The EXP traffic represents appli-
cations with sudden burst of heavy packets. These appli-
cations include various file transfer applications such as E-
mail applications and FTP. In this performance study, we
use EXP source of 56 kbps to represent the rate of a mo-
dem. It should be noted that higher bit rates are not suit-
able for a Bluetooth network because the theoretical peak
rate (rarely achievable in practice) for a unidirectional link
in the simplest piconet environment (i.e., having only one
master and one slave) is only 732 kbps.

To evaluate the system performance of Bluetooth scat-
ternet, we studied the three mentioned metrics to piconet
traffic sessions and scatternet traffic sessions in each sim-
ulation. We varied different traffic load in the studies of
effects of number of hops, and they are the heavy traffic,
the medium traffic, and the light traffic. The heavy traffic
consists of a total of 8 CBR sources and 8 EXP sources.
The medium traffic consists of a total of 4 CBR sources
and 4 EXP sources while the light traffic consists of a to-
tal of 2 CBR sources and 2 EXP sources. In each cases,
there is 1 CBR and 1 EXP sources that transmit across the
scatternet. The rest of the traffic are confined in piconet
sessions to simulate the influences of various background
traffic on scatternet traffic. The simulation environment
is justified because Bluetooth network is originally devel-
oped for short-ranged intra-piconet communications and
thus, most traffic load is contributed by intra-piconet trans-
missions.

In studying the effects of scatternet size, the total num-
ber of traffic sources equal to the total number of nodes,
where each node has either one of the traffic sources. Two
random nodes are chosen to perform the scatternet traffic,
while all the others have intra-piconet traffic only. In the
simulation evaluations, we also separate the CBR and EXP
traffic for comparisons in each case. We now move on to
introduce the detail parameters used in each simulations.
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As mentioned earlier, existing Bluetooth networks do
not support any routing protocol, we use the Enhanced
AODV for Ad Hoc Routing implemented as a routing pro-
tocol to test different existing scheduling algorithms in our
performance study.

In the RR scheduling algorithm, we tested the effects of
number of hops and scatternet size on the average delay,
throughput and delivery rate. This is a simple scheduling
algorithm which requires no information from the masters
and the slaves. Therefore, all the parameters used in the
algorithm are retained as such in the original Bluetooth
standard.

For DRR1 and DRR2, we varied different quantum (Q))
sizes for testing. This value is added to the deficit counters
of all active queues when the master has served one com-
plete round of the queues. It is set to the size of 1 payload,
2 payload and 3 payload respectively for the cases Q) = 1,
2, and 3. The size of the payload varies according to the
type of data packets used. For example, if data packet type
is DM3, with a payload of 1000 bits. In case ) = 1, it
represents a quantum size of 1000. In case = 2, it repre-
sents a quantum size of 2000 while in case ) = 3, it repre-
sents a quantum size of 3000. In these two algorithms, the
value of Maximum Quanta is set to be 5 times the payload.
In the proposed IARTSS, the constant which governs the
weighting between the elapsed time-slot factors and queu-
ing factors are set to be 1 and 2 for our experiments.

D. Results and Interpretations

The performance results comparing different ap-
proaches (IARTSS, DDR1, DRR2, RR) using the three
performance metrics (delay, delivery rate, throughput) un-
der heavy load condition are shown in Figure 1 for the
multi-hop scatternet traffic using DM3 packet type (results
for light and medium load conditions, as well as results for
DMS5 packet type can be found in [8]). Results for vary-
ing number of nodes in the network are shown in Figure 2.
The performance results for the background intra-piconet
traffic are shown in Figure 3.

The average end-to-end packet latency generally in-
creases significantly when the number of hops increases
to 3 while the throughput and the delivery rate drops dras-
tically. It is because when the number of hops increases to
3, packets are needed to route through a bridge node where
half of time is being shared by another piconet.

In the effects of scatternet size, the performance is gen-
erally better than in the effects of the number of hops. It
is because the source and destination pairs for scatternet
traffic are generated randomly, and thus, varying the aver-
age number of hops each time. For most of the algorithms,
the effects change more greatly when the number of nodes
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increase from 5 to 10 and from 15 to 20. It is because for
these cases, it involves setting up more piconets across the
scatternet, and therefore, increasing the number of bridge
nodes in the scatternet.

The throughput for EXP traffic are usually much higher
than those of CBR traffic. It is because EXP traffic has
more bits in a packet and can have more efficient use of
the payload of the data packets. Thus, the destination can
receive more bits in a single transmission and results in a
higher effective throughput.

DRRI has been investigated in 3 cases and they are the
cases of Q1, Q2 and Q3. It is found that Q2 has higher
piconet throughput than Q1, but Q1 has higher scatternet
throughput than Q2. It is because Q2 favours the down-
link traffic more than Q1 and hence makes piconet traffic
more favorable. For the case of Q3, it shows similar delay
and throughput as Q1 and Q2, but a better performance
in delivery rate. The reason is that Q3 further favours the
downlink traffic and allows traffic to get through during
the turn for the master to forward it.

DRR2 has also been investigated in 3 cases of Q1, Q2
and Q3. In DRR2, we found that Q1 works better than Q3,
and Q3 works better than Q2 in terms of all 3 measured
aspects. It is because DRR2 tends to discriminate the link
of the inactive and low traffic sessions more. This allows
higher traffic to send across the network and results in a
better overall system performance. However, it is unfair to
other links.

Two cases for IARTSS were studied in this performance
study. They are the & = 1 and o = 2 cases. The other val-
ues were not tested because larger values make the elapsed
time factor too large and consequently, the effect of queue
size would be incomparable to the effect of the elapsed
time. It is found that the case of @ = 2 has higher delay
than o = 1, but the throughput and the delivery rate are im-
proved. It is because when a higher weighting is given to
the elapsed time factor, it allows a master to allocate more
time-slots to the bridge nodes that switch back to its pi-
conet. As aresult, more packets are allowed to send across
the scatternet and it explains the reason why the through-
put and the delivery rate are improved. As the masters tend
to allocate more time-slots to the bridge nodes when they
return to their piconet, the factor of utilization in the calcu-
lation of hold time increases. The hold time calculated for
a piconet is therefore smaller, and this makes the hold time
for another piconet longer. As a result, the delay increases.

It is found that IARTSS generally works better than
the other algorithms in scatternet environment. It is be-
cause with the three novel mechanisms, we can have bet-
ter time-slots allocations and control of hold time to min-
imize the synchronization overhead without affecting the

delays greatly. DRR1 and DRR2 generally work badly be-
cause they tend to favour downlink traffic and discrimi-
nate the low traffic uplinks. Nevertheless, sometimes they
perform better because these discrimination effects allow
more downlink traffic to be served.

However, in heavy traffic piconet environment, IARTSS
may not work as well as the other algorithm. It is because
when the network traffic is in saturation, like in the case of
heavy traffic, IARTSS tends to favour the scatternet traf-
fic because of the effect of TDQ, where forward traffic is
given a higher priority. For example, in delay, we found
that when it is in heavy traffic environment, the result for
IARTSS in piconet may be doubled when compared with
other algorithms. However, it improves the scatternet traf-
fic delay by decreasing the delay to 25% of the other val-
ues. There is also a large improvement in delivery rate for
heavy traffic scatternet session. There is a 60% improve-
ment in scatternet sessions with only less than 10% sacri-
fice of delivery rate in piconet sessions. IARTSS allocates
time-slots in a more efficient way, and thus can improve
the performance under various practical scenarios.

The proposed IARTSS generally works well in heavy
traffic environments for both CBR and EXP traffic source
than other existing fair queuing and scheduling schemes.
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