
1

Facilitating Secure Ad hoc Service Discovery in Public Environments *

Feng Zhu1 Matt Mutka1 Lionel Ni1,2

1Department of Computer Science and Engineering,
 Michigan State University,

East Lansing, Michigan, USA

2Department of Computer Science,
Hong Kong University of Science and Technology,

Kowloon, Hong Kong, China

{zhufeng, mutka, ni}@cse.msu.edu

Abstract

Securely accessing unfamiliar services in public
environments using ad hoc wireless networks is
challenging. We present a proxy-based approach that
uses other existing network channels to set up a secure
and trust relationship between communication parties to
facilitate ad hoc wireless communications. Based on a
service discovery protocol, our models achieve secure,
trusted, anonymous, efficient, and economical
communications between unfamiliar parties. Our
protocols are formally verified using BAN logic.

1. Introduction
Accessing unfamiliar services in public environments

is becoming more realistic as we move towards
ubiquitous computing environments. PDAs, cell phones,
laptops are becoming commodities. Using these mobile
devices to access public services enables computing
everywhere. Let’s look at the following scenario.

Bob is in an airport and he has an hour before his
flight leaves. He turns on his PDA and finds that there is
a wireless LAN available. However he does not
subscribe to the service provider of the wireless LAN. Is
there a simple and secure way for Bob to use the wireless
LAN to surf the Web and read email, which is cheaper
and faster than using a 3G connection? After Bob
makes the connection, he receives an email that includes
an attached document. Then, he uses his PDA to search
for nearby printers to print the document, so he can read
it during his flight.

There are two basic security problems when
accessing unfamiliar services as in the above scenario.
How is a trust relationship set up between two parties?
How is a secure ad hoc wireless communication set up?
One common vision for future computing is that
everything is connected to the Internet. Public services
such as wireless access points or printers are very likely
to have Internet connections since the Internet
connections enable these devices to be managed
remotely. Meanwhile, many mobile devices may have
more than one network channel, for example, 3G,

IEEE802.11x, and/or Bluetooth. These channels not
only enable devices to be connected to the Internet, but
also enable them to communicate to other devices in the
vicinity via ad hoc mode. Ad hoc mode is more efficient
for many communications, such as what we have
discussed in the above scenario. By using Internet
channels, we may facilitate ad hoc communications in
order to achieve inexpensive, fast, and secure
communications. Unlike existing solution attempts,
which seek to use pure ad hoc environments, we shift
from pure secure ad hoc communication problems to
secure ad hoc communications with assistance from
other network connections. Our models are also
designed to defend against many attacks, including
attacks from malicious services. Moreover, based on
service discovery protocols, our framework provides
better usability.

In Section 2, we discuss work related to secure
communications in pervasive environments, service
discovery protocols, and proxy-based communications.
Next in Section 3, we present our design of two secure
and trusted models. In Section 4, we use BAN logic to
verify our communication models formally. Last in
Section 5, we conclude and discuss our future work.

2. Related Work
The Resurrecting Duckling security policy [1]

provided a new way for authentication in ubiquitous
computing environments. By mimicking the behavior of
mother ducks and ducklings, the policy set up a master-
slave relation between devices. The master-slave
relation limited peer devices to talk to each other.
Therefore, Stajano proposed additional research [2] to
enable peer communications. The basic idea was that
master devices might define policies, which allowed
other devices to set up temporary master-slave relations
to control the slave devices. The authors are also the
first who proposed the idea of using physical contact to
exchange a secret before two devices set up secure
wireless communications.

Balfanz, et al. at Xerox Palo Alto Research Center,
extended the Resurrecting Duckling security policy [3].
Their work tried to solve the authentication problem for
securely using services without using a public key
infrastructure and universal naming convention for
printers via side channels. The authentication protocols

———————————————————
* This paper was supported in part by NSF Grants No. CCR-
0098017, EIA-9911074, MSU IRGP Program and the Microsoft
Research Foundation.

2

were based on public key cryptography or the Guy
Fawkes protocol [4]. Our work solves similar problems,
such as accessing public computing resources securely.
Instead of using IrDA or physical contact as a side
channel, we use other existing network connections for
secure key exchanges. The Resurrecting Duckling
security policy and Balfanz’s work did not solve the
problem of determining whether to trust an unfamiliar
service within public environments? In other words, an
unfamiliar service might be a malicious service. Our
approach provides a means to protect against attacks
from the services.

A proxy-based approach is one way to assist mobile
applications. Our previous work proposed a proxy-based
service discovery in infrastructure environments to
offload tedious work from mobile services and provide
privacy for them [5]. Burnside, et al. had another proxy-
based solution for secure service discovery to enable low
processing power devices in infrastructure environments
to discover each other [6]. Langheinrich designed a
proxy-based privacy-aware system [7]. This work also
suggests proxy-based approaches to facilitate
communication in ad hoc environments. Although the
names of these approaches sound similar, to the best of
our knowledge, none of the existing work solves the
problems that we introduced in section 1.

UPnP was designed for unmanaged networking
environments [8]. UPnP is a device oriented two-party
(client-service) service discovery protocol. In UPnP,
either clients learn from services’ periodical
announcements or clients actively query for services
(announcement-query approach). Nidd studied and
proposed another service discovery protocol for single-
hop ad hoc environments, known as DEAPspace [9]. In
contrast to other existing service discovery protocols that
use the announcement-query based approach,
DEAPspace uses a cache-broadcast approach. Each
node caches service information, and then each node
broadcasts its knowledge of other services and its own
services in turn. The nodes learn from others. Service
lookup is accomplished by searching the local cache.
For other two-party service discovery protocols, such as
Salutation [10], Service Location Protocol (SLP) Version
2 [11], and Bluetooth Service Discovery Protocol [12],
the discovery mechanisms are similar to UPnP. A
detailed comparison was provided in [13].

3. System Design
In this section, we first discuss many possible threats

and attacks, which we take into consideration when we
design our models. Then we show our service discovery
protocol. Later, we illustrate our two communication
models and the security protocols.

3.1. Threats and Attacks

Securely accessing unfamiliar services in public
environments is more challenging than conventional
service accesses. Public services may not have and
maintain user information and users do not have
accounts for service accesses. Unfamiliar services might

be dishonest or even malicious. Furthermore, users
might take “free rides” or even “break” the services.

We consider the threats of disclosure, integrity, and
denial of service (DOS) [14]. It is easy for services to
detect DOS. If someone jams the wireless channel, the
attack may be reported through other network links. If a
user abuses a resource, there is no need to do anything as
long as there is a service charge for a service access. In
order to protect against eavesdroppers, we use
cryptographic technology to encrypt messages.
However, it becomes trickier if there are fake services,
which allure users and collect users’ information, but do
not actually provide services. Even normal services may
record user information.

For active attacks, we consider the man-in-the-middle
attack and the message replay attack. Furthermore, we
consider situations when unfamiliar services or service
providers may initiate attacks on users. Meanwhile we
also consider cases when malicious users attack services.
We describe more details of how we protect against
threats and attacks when we discuss our models.

3.2. Secure Ad hoc Service Discovery

We only consider service discovery in single hop ad
hoc networks in this paper. As discussed in Section 2,
the announcement-query and cache-broadcast
approaches represent two methods for service discovery
within ad hoc environments. When there is more than
one service provider in a public environment, it is more
reasonable to use the announcement-query approach
since there is no incentive for services to broadcast
service information for other service providers.
However, it is more efficient for services, which are from
the same service provider, to broadcast in turn and share
the load of broadcast. For services from the same service
provider (sibling services), they cache each other’s
service information and take turns to broadcast their
knowledge of available services. As long as a sibling
service broadcasts a service announcement message,
which contains correct information of its service, the
service will not broadcast again itself. We recommend
that the rate of the service announcement should be kept
at a low frequency; otherwise services from different
service providers might compete against each other and
jam the wireless channel by sending out service
announcements.

Instead of learning the available services by listening
to service announcements, a client may send query
messages. Comparing the attributes in the query with its
own service attributes, only the matched services reply to
the client. A client may also search for all the available
services in the vicinity by sending a wildcard query. If
more than one service from the same service provider
matched the query, then the service, which last
announced, replies with a message that contains the set
of matched services. Then a client or user picks a
service to use.

Each service’s state is a soft state. In other words,
each service has a life span and will be invalid after its
lifespan. To continue providing its service, a service
announces its new lifespan before the service expires.

3

3.3. Communication models

While a mobile client wants to use an unfamiliar
service, it is difficult to exchange a key securely in ad
hoc environments via a wireless radio frequency channel.
Eavesdroppers may learn keys. Likewise, it is difficult
to prevent the man-in-the-middle attack. As we
discussed in Section 2, physical contact or using
location-limited channels are two approaches to
exchange a key securely. However, the usability
decreases, because users need to learn to use these
approaches and different devices may have different
interfaces. We suggest using a proxy-based approach,
which not only facilitates authentication, but simplifies
usage as well.

There are four parties in our communication models:
mobile clients, user proxies, services, and service
providers as shown in Figure 1. We assume that services
have wireless ad hoc communication channels, via which
mobile clients in the vicinity may access the services.
They also have Internet connections, so service providers
may manage the services remotely. A user’s mobile
device may have more than a wireless LAN capability,
for example the device also has a 3G connection. To
access an unfamiliar service, we have two models – one
uses 3G channels and one does not. We show the two
models in Figure 1 and discuss them in detail shortly.

Both models use user proxies to assist mobile users.
The user proxy is a program running on a machine,
which is connected to the Internet. The machine could
be a home PC or a server from a service provider running
thousands of proxies for users. The user proxy is
designed to fulfill the following functions, which are
difficult to achieve in pure ad hoc environments. First,
there is a need to verify that a service is the service that it
claims to be. Our approach is based on public key
cryptography and Public Key Infrastructure (PKI).
Detailed PKI information may be found in [15], which

we do not discuss here. In our models, service providers
have public key certificates, but services do not have
them. The user’s proxy checks whether the service
provider’s certificate is valid and used for the right
purpose. In addition, the service providers assure the
mobile clients and the users’ proxies that their services
are honest. By using certificates, we defend against the
chosen protocol attack [16]. Second, the user’s proxy is
used as a safe guard. Every service request from a
mobile client goes through its proxy. In case a mobile
device is lost, the user may disable the mobile device to
access any services via the proxy. Likewise, if a mobile
device’s encryption key, which is shared between the
mobile client and the user’s proxy, is compromised and
used for services by a hacker, we may discover it by
examining the log on the proxy. Thus, a key revocation
is simple. Third, more complicated service negotiations
such as TrustBuilder may be deployed [17].

A service provider manages services and handles
service authorization. Since all the mobile clients use the
services temporarily, service authorization is lease-based
and only valid for a certain time period. The service
provider sends a ticket to the mobile client and a copy to
the service. Therefore, services only need to handle a
few service access levels. As long as a client’s ticket
matches the service’s copy, access is granted. The
service providers imply its assurance of their services
when issuing the tickets. In this way, users have more
confidence to use unfamiliar services and the service
providers have a simple way to stop tempered services
and revoke compromised keys shared with the services.

To simplify the discussion of the two models, we
suppose that a client has discovered a desired service to
access. Next, we discuss the different procedures of the
two models to set up secure ad hoc communication
channels.

• Model 1: accessing an unfamiliar service without
a 3G connection.

Internet

Ad hoc network
Ad hoc network Model 1 Model 2

Service provider

Internet

User's proxy

Service

Internet

1

4

2

3

5

7

Mobile client

Service provider

Internet

3G

Service

Internet

1

2

4

5

3

Mobile client

6

User's proxy

6

Figure 1. Two secure communication models to set up secure ad hoc communications between clients

and services.

4

In this model, a mobile client only has the wireless ad
hoc communication channel. In order to communicate
with its proxy, the mobile client has to use the Internet
connection that the service has and sends a message to its
proxy via a service and a service provider. We outline
the interaction in Model 1 of Figure 1. First, a client
sends a service request message to a service (step 1).
Then the service generates its copy of the service request
and sends to the service provider along with the message
from the client (step 2). Next, the service provider
forwards the message to the user’s proxy. Along with
the message, the service provider also sends its
certificate (step 3). After verifying the service provider’s
certificate, the user’s proxy generates a session key for
the mobile client and the service. Afterwards, the proxy
puts the session key in two copies: one copy for the
mobile client, which also implies that the service
provider is sound and the service provider has assured
the service; another copy for the service provider within
its request for accessing the service. The first copy is
encrypted using the key shared between the mobile client
and its proxy. The other copy is encrypted using the
service provider’s public key, which is in the service
provider’s certificate (step 4). When receiving messages
from the user’s proxy, the service provider decrypts the
session key and re-encrypts it using the key shared
between the service and the service provider. Then, it
sends the session key and the access authorization to the
service (step 5). Last, the service forwards the session
key from the user’s proxy to the mobile client (step 6).
Now the mobile client and the service share a key for
secure communication (step 7). We show this protocol
in Figure 2 (a). (We use a notation similar to the BAN
logic notation [18].)

 Furthermore, when the mobile client sends a service
request to its proxy, the message is encrypted using a
key, which is shared between the mobile client and the
user’s proxy beforehand. This encrypted message
protects the user from dishonest services, which might
alter the service requests.

One possible attack is that a mobile client does not
actually access any services but takes a “free ride” and
sends packets to a machine on the Internet via step 1, 2,
and 3 of Model 1 in Figure 1. To guard against this
attack and protect services and service providers, service
providers check the address of the destination proxy to
prevent free rides.

The drawback of the model is that privacy
information of the user and user proxy may be sacrificed.
An eavesdropper or a service from a competitive service
provider may learn information about users, their
proxies, and other services from the interaction.
Meanwhile, an extra load is placed on the services and
the service providers to forward messages.

• Model 2: accessing an unfamiliar service with a
3G connection.

In this model, the client’s mobile device also has a
3G connection. Instead of communicating through the
service, the mobile client directly contacts its proxy via a
3G connection. This model provides a more efficient
way of communication than Model 1, while incurring the
price of the 3G-connection cost. However, the cost is
very low: only two messages are required for each
service access. Additionally, it is more difficult for
eavesdroppers to listen on the 3G and wireless ad hoc
channels at the same time (the 3G connection is
encrypted [16]).

In the service discovery process, a mobile client
learns a service provider’s certificates. Along with its
service request messages, the client also forwards the
certificates to its proxy (step 1 in Model 2 of Figure 1).
After verifying the certificates, the user’s proxy contacts
the service provider (step 2). If the access is granted, the
service provider sends an authorization message to the
service first (step 3) and then sends another message to
the user’s proxy (step 4). Last, the user’s proxy forwards
the session key, which is used between the mobile client
and the service (step 5). Thus, the mobile client is ready
to access the service (step 6). We show the interaction of
Model 2 in Figure 2 (b).

Notation: C is a mobile client; S is a service; P is a service provider; U is a user’s proxy. tX or tX# is a timestamp, which X attaches.
TX is the expiration time of the service for a client to access, which X attaches. CertEX is an encryption public key certificate of X.
CertVX is a verification public key certificate of X. KXY is a symmetric encryption key shared between X and Y. ()KXY is an
encryption using symmetric key K shared between X and Y. ()KX is an encryption using the public encryption key of X. ()KX

−1 is
X’s signature using its signing private key. GX is a granted privilege to X. AXY is the access code for X to access Y. M is a message.

Step From→To Message
1 C→S: C, tC2, U, (S, P, tC)KCU
2 S→P: S, (C, U, tS)KSP, (S, P, tC)KCU
3 P→U: P, CertEP, tP, (S, P, tC)KCU
4 U→P: (tP, KCS) KP, (KCS, tC) KCU, CertVU, (C,

S, P, tP, KCS) KU
−1

5 P→S: (KCS, tC) KCU, (C, GC, TP, tS, KCS) KSP
6 S→C: tS2, (KCS, tC) KCU, (tC2, GC, TP) KCS
7 C→S: C, (tS2, M) KCS

Step From→To Message
1 C→U: C, CertEP, (S, P, tC)KCU
2 U→P: U, S, (tU, KCS, KUP)KP, CertVU,

(U, S, P, tU, KCS, KUP)KU
−1

3 P→S: (ACS, KCS, GC, tP, TP)KSP
4 P→U: P, (tU, ACS, TP) KUP
5 U→C: (tC, ACS, KCS, TP)KCU
6 C→S: (ACS, M)KCS

(a). Model 1: accessing an unfamiliar service without a
3G connection.

(b). Model 2: accessing an unfamiliar service with a
3G connection.

Figure 2. Security protocols of the two models.

5

In comparison to Model 1, access control is
simplified. The service provider does not differentiate
which mobile client accesses the service, but only
records which user’s proxy asks for the service. The
service provider generates a service access code. Using
the service access code, a client obtains the right to use
the service.

4. Protocols analysis and Formal
Verification

During the several rounds of design and verification
processes, we used BAN logic [18] to verify our security
protocols formally and mechanically. It helps us make
our protocol succinct and facilitates us to find subtle
bugs. Moreover, it facilitates us to express assumptions
more explicitly and to present protocols more clearly.
When we next discuss the details of the verification, only
Model 1 is used as an example.

The detailed BAN logic notation and rules
explanation may be found in [18]. Our idealized
protocol is shown in Figure 3 (a). Each step in the actual
protocol (shown in Figure 2 (a)) is mapped to a step in
the idealized protocol. As the convention of the idealize
protocol in BAN logic, we leave out the clear text
information, because it may be modified by an adversary

party. The idealized protocol has the same goal as the
actual protocol.

We present our assumptions about the protocols in
Figure 3 (b). The first row states that the communication
pairs trust their shared keys, while the second row
declares the trust of the public keys. In row 3, we list the
assumptions that a party trusts another party, who has
control over the key creation or the message creation.
The suspicious assumptions are that a service and its
provider believe that a user’s proxy will correctly create
a session key for its client and the service. From the
service provider’s point of view, as long as a user’s
proxy signs or pays for the transaction, it believes that
the user’s proxy will generate good keys. An alternative
approach is that the service provider creates the session
key, but this will introduce another two messages
between the service provider and the user’s proxy. The
last row of the assumptions is about using timestamps as
fresh nonce. Synchronized clocks are required between a
mobile client and its proxy and between a service and its
provider. In our implementation, the two pairs
synchronize clocks.

Now, we are ready to deduct from assumptions to
conclusions. The deduction itself is lengthy. Thus, we
only discuss intermediate results after each step as shown
in Figure 3 (c). After step 1, a service sees an encrypted
message from a client to its proxy, but the service is not

Figure 3. Formal verification of Model 1 using BAN logic.

Step From→To Message
1 C→S: {CSPC, tC} KCU
2 S→P: {CSPS, tS} KSP, {CSPC, tC} KCU
3 P→U: { K P, P} KCA

−1, {CSPC, tC} KCU

4 U→P: {C
CSK S, #(C

CSK S)}KP, { C
CSK S, #(C

CSK S)}KCU, {CSPU, #(CSPU), C
CSK S } KU

−1, { K U, U} KCA
−1

5 P→S: { C
CSK S, #(C

CSK S)}KSP, { C CSK S, #(C
CSK S)}KCU,

6 S→C: { C
CSK S, #(C

CSK S)}KCS from S, { C
CSK S, #(C

CSK S)}KCU

7 C→S: { C
CSK S, #(C

CSK S)}KCS from C

(a). Idealize protocol of Model 1. (CSPX is a service request message, which X generates.)

1 C≡C
CUK U, U≡C

CUK U, U≡C
CSK S,

S≡S
SPK P, P≡ S

SPK P

2 P≡
PK P, U≡

UK U, P≡
CAK CA, U≡

CAK CA,

P≡ CA ⇒
UK U, U≡ CA ⇒

PK P

3 C≡(U ⇒C
CSK S), P≡(U ⇒C

CSK S), S≡(U ⇒

C
CSK S), S≡(P ⇒U≡C

CSK S) , U≡ (C ⇒

CSPC), P≡ (S ⇒ CSPS) , P≡ (U ⇒ CSPU)
4 C≡ #(tC), C≡ #(tC2), S≡ #(tS), S≡ #(tS2),

P≡ #(tP), P≡ #(TP), U≡ #(tC), P≡ #(tS)
(b). Assumptions of Model 1.

After 1 S�{CSPC, tC} KCU
After 2 P�{CSPC, tC} KCU, P≡ CSPS
After 3 U≡ CSPC, U≡

PK P

After 4 P�{C
CSK S, #(C

CSK S)}KCU, P≡
UK U, P≡CSPU,

P≡C
CSK S

After 5 S≡ C
CSK S, S�{ C

CSK S, #(C
CSK S)}KCU

After 6 C≡ C
CSK S, C≡ S≡ C

CSK S

After 7 S≡ C≡ C
CSK S

Result C≡ C
CSK S, C≡ S≡ C

CSK S, S≡ C
CSK S, S≡

C≡ C
CSK S

 (c). Results after each step of Model 1.

6

able to see the content. Then after the second step, by
using the message-mean, nonce-verification, and
jurisdiction rules, a service provider believes that a client
requests to access its service. We also base our
deduction on the assumption that the request, which the
service provider sees, is a fresh service request from its
service (not a replay message). As we have discussed
above, synchronized clocks are required in this step. The
service provider also sees the encrypted message
forwarded from the service. During the processing of the
messages in step 3, the user’s proxy validates the service
provider’s certificate. (We omit the details of certificate
verification, and suppose that the certificate is confirmed
to be correct.) Meanwhile, based on a similar deduction
as we discussed in process of step 2, the proxy believes
that the client requests a service access.

Several deductions are needed after the service
provider receives the messages in step 4. First, since the
service provider possesses its private key, it sees the
session key for the client and the service from the user’s
proxy (other rule). Next, the service provider verifies the
proxy’s certificate and validates the signature of the
proxy. Last, we repeatedly use message-meaning for
public key, nonce-verification, and jurisdiction rules
along with the assumption that the user’s proxy creates
the session key correctly, we derive that the service
provider believes the session key. The service provider
also forwards an encrypted message from the user’s
proxy to the client. After step 5, the service learns the
session key from the service provider’s message.
Meanwhile, it sees an encrypted message for the client.
Afterward, from the sixth step, the client not only gets its
copy of the session key, but also learns that the service
believes the session key. Finally after step 7, the client
starts to use the service. It is therefore straightforward
that the service believes that the client believes the
session key. In summary, we come to a strong
conclusion that the client and the service believe the
session respectively and believe that each other believes
the session key respectively.

5. Conclusion and Future work
We presented a proxy-based approach to facilitate ad

hoc communications in public environments, based on a
service discovery protocol. To access unfamiliar public
services securely, we proposed two models. The models
utilize existing Internet connections to setup trust
relationships and exchange security keys while keeping
efficient ad hoc communications. We formally verified
and improved our security protocols using BAN logic.

An ongoing work is to design and prototype models
without using PKI, since many devices or services may
not have certificates. The two models that are discussed
in this paper are master-slave relationships. The new
models focus on facilitating secure peer-to-peer
communications. We are also going to experiment with
heterogeneous environments, which have coexisting
infrastructure and ad hoc service discovery.

Reference
[1] F. Stajano and R. Anderson, "The Resurrecting Duckling:
Security Issues for Ad-hoc Wireless Networks," 7th
International Workshop on Security protocols, Cambridge, UK,
1999.
[2] F. Stajano and R. Anderson, "The Resurrecting Duckling --
what next?," 8th International Workshop on Security protocols,
Cambridge, UK, 2000.
[3] D. Balfanz, D. K. Smetters, P. Stewart, and H. C. Wong,
"Talking to Strangers: Authentication in Ad-Hoc Wireless
Networks," 9th Annual Network and Distributed System
Security Symposium, San Diego, CA, 2002.
[4] R. Anderson, F. Bergadano, B. Crispo, J.-H. Lee, C.
Manifavas, and R. Needham, "A New Family of Authentication
Protocols," Operating Systems Review, 1998.
[5] F. Zhu, M. Mutka, and L. Ni, "Splendor: A Secure, Private,
and Location-aware Service Discovery Protocol Supporting
Mobile Services," 1st IEEE Annual Conference on Pervasive
Computing and Communications,IEEE Computer Society
Press, Fort Worth, Texas, 2003.
[6] M. Burnside, D. Clarke, T. Mills, S. Devadas, and R.
Rivest, "Proxy-Based Security Protocols in Networked Mobile
Devices," 17th ACM Symposium on Applied Computing,
Madrid, Spain, 2002.
[7] M. Langheinrich, "A Privacy Awareness System for
Ubiquitous Computing Environments," UbiComp 2002,
GÖTEBORG, SWEDEN, 2002.
[8] B. A. Miller, T. Nixon, C. Tai, and M. D. Wood, "Home
Networking with Universal Plug and PIay," IEEE
Communications Magazine, December, 2001, pp. 104-109.
[9] M. Nidd, "Service Discovery in DEAPspace," IEEE
Personal Communications, August, 2001, pp. 39-45.
[10] "Salutation Architecture Specification," Salutation
Consortium, Version 2.0c, June 1, 1999, available at
ftp://ftp.salutation.org/salute/sa20e1a21.ps.
[11] E. Guttman, C. Perkins, J. Veizades, and M. Day,
"Service Location Protocol, Version 2," IETF, RFC2608, June
1999, available at http://www.ietf.org/rfc/rfc2608.txt.
[12] "Specification of the Bluetooth System -- Core,"
Bluetooth SIG, Version 1.1, February 22, 2001, available at
http://www.bluetooth.org/docs/Bluetooth_V11_Core_22Feb01.
pdf.
[13] F. Zhu, M. Mutka, and L. Ni, Classification of Service
Discovery in Pervasive Computing Environments, MSU-CSE-
02-24, Michigan State University, East Lansing, 2002.
[14] E. Amoroso, Fundamentals of Computer Security
Technology New Jersey, PRT Prentice Hall, 1994.
[15] S. Lloyd, C. Adams, and S. Kent, Understanding Public-
Key Infrastructure: Concept, Standards, and deployment
considerations, New Riders, 1999.
[16] R. Anderson, Security Engineering: A Guide to Building
Dependable Distributed Systems, John Wiley & Sons, 2001.
[17] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson,
R. Jarvis, B. Smith, and L. Yu, "Negotiating Trust on the Web,"
IEEE Internet Computing, Nov-Dec, 2002, pp. 30-37.
[18] M. Burrows, M. Abadi, and R. Needham, "A Logic of
Authentication," ACM Transactions on Computer Systems,
1990.

