
Effects of Introducing Survival Behaviours into Automated Negotiators

Peter Henderson, Stephen Crouch, Robert John Walters, Qinglai Ni
Declarative Systems and Software Engineering

Electronics and Computer Science
University of Southampton, Southampton, UK

{ph, stc, rjw1, qn}@ecs.soton.ac.uk

Abstract

With the rise of distributed e-commerce in recent years,

demand for automated negotiation has increased. In turn,
this has facilitated a demand for ever more complex
algorithms to conduct these negotiations. As the
complexity of these algorithms increases, our ability to
reason about and predict their behaviour in an ever larger
and more diverse negotiation environment decreases. In
addition, with the proliferation of internet-based
negotiation, any algorithm also has to contend with
potential reliability issues in the underlying message-
passing infrastructure. These factors can create problems
for building these algorithms, which need to incorporate
methods for survival as well as negotiation.

This paper proposes a simple yet effective framework
for integrating survivability into negotiators, so they are
better able to withstand imperfections in their
environment. Results of an experiment are provided
which show how the stability of a negotiation community
is affected by incorporating an example survival
behaviour into negotiators operating in an environment
developed to support this framework.

1. Introduction

The choice of algorithm used to carry out automated

negotiation on behalf of a client is a significant problem in
distributed e-commerce [3, 4, 6-8, 12]. However,
predicting how well a given algorithm will perform in a
given environment is difficult.

The ability of an algorithm to succeed in an automated
negotiation environment is dependent on its ability to
survive in that environment. Automated negotiators, on
their own terms, must be able to make sense of and
conduct negotiation on the web in which there are no
guarantees of the reliability of the underlying message-
passing infrastructure. As the web increases in size and
interconnectivity, this will become an even greater
problem. In some cases, offers sent may not be received

at all, but equally problematic is that offers received are
out of date. Suppose a negotiator receives an offer that
has spent an inordinate amount of time in transit. Despite
replying promptly in sending an accept to this offer, the
negotiator finds their acceptance rejected because the
offer’s sender has already sold their last stock to someone
else. Agreement is not reached because of inconsistent
views of negotiation, caused by inconsistent information.
The ability to tolerate this information inconsistency, and
being able to minimise its negative effects by taking
corrective or compensating action, may reward the
negotiator with greater success.

To compound these issues, a negotiator cannot be
certain whether their experience of such problems with
another negotiator is because of natural occurrence, or
faulty or even malicious behaviour. It is also possible that
the two negotiators are simply unable to reach agreement
because they exhibit mutually incompatible negotiation
strategies. To succeed, automated negotiators must be
able to survive and progress despite such eventualities,
without knowing the intent of other negotiators.

It is not uncommon for communities of automated
negotiators to establish stable norms of behaviour. Over
time, despite negotiators’ different behavioural
characteristics, initially erratic patterns of negotiation can
eventually subside to more predictable patterns of co-
operation. However, making successful predictions about
how and in what form such stability will emerge can
prove difficult [1-2]. Even more difficult are attempts to
predict how the community will react when potentially
disruptive elements are introduced into the environment.

Previously we have examined architectures for e-
commerce systems [11-13], to investigate how federations
of applications co-operate. We have also investigated the
use of a fixed-length tournament-based approach to judge
the fitness of negotiation algorithms against each other
[10]. In this paper, we extend this approach to encompass
the concept of a continuously operational environment,
where negotiators may join and leave this community at
any time. In our implementation of such an environment
we are able to develop new algorithms using the

framework described in this paper, then introduce, observe
and evaluate them as they participate in negotiations with
others. We are also able to introduce uncertainty into the
message-passing infrastructure, and observe how this
affects the participants. Of particular interest is how these
changes affect the stability of negotiation communities.

2. Reactive and proactive negotiation

In essence, the negotiation process consists of a

number of offers being exchanged between two
participants until agreement is reached. Essentially,
notwithstanding the initial offer from either of the
participants, this process is a reactive cycle: wait until an
offer is received, evaluate the new offer, either reply with
an acceptance, a counter-offer, or quit negotiations. This
process is depicted in Figure 1. The dashed box at the top
represents an initial action conducted by only one of the
participants. This is the only proactive task in the process.

Evaluate the
new offer

Wait for new
offer to arrive

Send counter-
offer

Send
acceptance

Quit
negotiations

Send initial
offer

Figure 1. Reactive negotiation process

It is natural to assume that the structure of algorithms
should follow this same rigid process. This idea is also
easily extended to allow multiple negotiations with
multiple participants.

In practice, adopting a purely reactive approach to the
negotiation process is simply not sufficient. Developing
negotiators in such a way does provide clarity of process,
and simplicity of implementation. However, the success
of the negotiator becomes ultimately dependent on the
success of the negotiation process, which is itself
dependent on the reliability of the operating environment.
Notwithstanding ‘bad’ behaviour exhibited by negotiators,
when this environment becomes unstable, the negotiation
process is liable to collapse.

What is required is a more abstract, proactive approach
to conducting negotiation. An approach that allows
negotiators to reason about their circumstances at a higher
level than the negotiation process alone, and adopt a more
proactive view. Such a proactive approach should view
negotiation as a fully manageable process: a means to
achieve its objectives. In this way, a negotiator thusly
accepts more responsibility for its survival and success,
and reduces dependence on a potentially imperfect
operating environment. Ideally, we would like the clarity
offered by a reactive approach, coupled with the

managerial power offered by the proactive approach.
In the context of this paper, we define success as a

measurement of how well a negotiator performs, and we
define survival as a measurement of whether a negotiator
is able to progress in its environment. As will be
observed later, recognising this separation of task success
and environmental survival can enable more robust
negotiators to be built.

3. The simulator

3.1. The car hire scenario

The scenario adopted for the negotiation simulation
was car hire. If we consider a single participant in this
environment, their objective is to secure a set number of
‘hires’ per day with respect to a given set of car
specifications. For Buyers, we use a ‘hire’ unit to
represent the number of cars they are in possession of for
a given day. For Sellers, this unit represents the number
of cars that are hired out for a given day.

The participant has their own set of example deals they
would accept. Each entry in this set consists of two
attribute name and value pairs for the following attributes:

• Days the length of time we wish to hire the car
• Price the price we would like to pay

A set of examples consists of a number of these

pairings, each representing an acceptable outcome of
negotiation. In practice, an instance of a Buyer participant
within this framework uses their examples as deal targets
for acquiring a number of hire cars, whilst an instance of a
Seller participant views their examples as deal targets for
hiring out available stock. A more realistic model of car
hire would incorporate more attributes, (e.g. car size, car
features, etc.), however the main objective of the
experimentation is to observe overall communal
behaviours, and so we have kept the model simple.

Specifying negotiation criteria as examples provides
an abstract yet flexible method of stating a negotiator’s
desires, although the potential exists for ambiguity
between these example criteria. There is not always a
clear correlation between these examples, and the process
of interpreting these examples in the context of the
negotiation process is a task for the negotiator [14].

Table 1. A typical example set

Days Price

9 250
6 100

Consider the example set in Table 1. If we assume

they are a set of Buyer examples, we can easily determine

that they would be willing to pay 250 for 9 days of car
hire, but also would pay significantly less on a cost per
day basis for 6 days. In reality, such a discrepancy is often
reasonable. It may be that the creator of this example set
unavoidably requires a car for 9 days, so therefore ideally
wants 9 days of car hire. If this were unavailable, the
Buyer would be willing to accept 6 days of hire, but for a
lot less per day to compensate for the extra effort of
having to acquire 3 days of car hire after 6 days. If the
Buyer receives an offer close to one of these examples,
they would be inclined to accept it. If they have to make a
counter-offer, the method they use takes into account their
examples and offers received and attempts to stay close to
them. If, for example, a Buyer negotiator who requires 2
cars per day were able to reach agreement for this quantity
with a Seller for 9 days at 250, as in the set of examples,
they would not need to negotiate again for another 9 days.
If they only succeeded in obtaining 1 car for the same
deal, they would need to attempt to find another deal
somewhere else for the remaining car. The possibility
exists that they will only be able to achieve their hires per
day objective in part, or perhaps not at all.

3.2. The negotiation environment

An environment was developed which enables

automated Buyers and Sellers to participate in the
described scenario. This environment is similar in
concept to a market run over an indefinite number of days;
where Buyers and Sellers enter and leave at will on a daily
basis. There are no restrictions on how many days they
are able to participate, or how and with whom they
conduct negotiations, although Buyers only negotiate with
Sellers, and vice versa. Since there is no fixed duration to
the simulation, negotiators cannot take advantage of other
negotiators by exploiting the length of the simulation [5].

Participants are able to negotiate with anyone at any
time. Their algorithm determines the manner in which
they conduct negotiations with others to achieve their
objectives. This allows us to construct and observe
behaviour-rich simulations.

The environment consists of two components:

• Supervisor initiates, maintains and controls the

environment, including the negotiators. Also
maintains measures of negotiator performance.

• Negotiator given a set of negotiation parameters
(including a set of examples and a target for the
number of cars to possess/hire out each day), and
is responsible for conducting negotiation.

To initiate a new environment, the Supervisor is

launched, which then enables negotiators to be configured
and instantiated, so they may participate in the simulation.
Performance is measured by two factors: average hires per
day, and average money spent/accrued per day. Each

average calculation is based over the over last six days.
This effectively gives us a running indicator of success
(money per day) and survival (hires per day) as the
simulation progresses. In short, if a negotiator is
managing a high number of hires per day, it is surviving.
If it manages a high amount of money for a seller - or a
low amount for a buyer - per day, it is succeeding.
Success and survivability are not only dependent on the
reliability of communications, but on the structure of the
community itself. If there is a shortage of car hire for
sale, Buyers will do badly. If there is a shortage of
demand, Sellers will do badly. In addition, in most cases
the further apart the Buyer and Seller example sets are, the
lower the likelihood of many deals being reached.

Figure 2 details the operation and message flow within
the negotiation environment.

offer, accept, acceptAccept,
acceptReject

Negotiator

Negotiator

dayStart,
dayEnd,

doProcessing

dayStart,
dayEnd,

doProcessing
participantStateparticipantState

Figure 2. Operation and message flow within

the negotiation environment
 A message (e.g. offer) sent from one negotiator to

another is stored in the receiving negotiators first-in-first-
out ‘message inbox’, and it is each negotiator’s
responsibility to service their inbox and process its
contents. Within this negotiation model, either negotiator
(Buyer or Seller) may send an initial offer to the other.
An arbitrary number of counter-offers are then
subsequently made until one sends a request to accept
their partner’s last sent offer (accept). With each message
type, a quantity is attached. For a Buyer, this represents
the quantity of cars they want for that deal. For a Seller,
this represents the quantity of cars they wish to hire out.

In such an asynchronous system, offers may become
out of date; the negotiator may no longer be able to supply
the quantity requested. Therefore, on receipt of an accept,
an acknowledgement is required. This acknowledgement
is either an acceptAccept, which is confirmation that the
deal is accepted, or acceptReject, which is rejection.
During this handshake, the quantity of resources stated in
an accept are locked until either confirmation is received.
This ensures that only one party accepts these resources.

How the Supervisor and Negotiator fit into this
framework is examined in more detail in the following
sections. Each specification follows an event-driven
paradigm, specified using an abstract pseudocode.

3.2.1. Supervisor. The Supervisor coordinates the
environment according to the following behaviour:

on startSimulation {
 do forever {
 for each participant in Participants {
 participant.dayStart()
 }
 for hours = 1 to 24 {
 randomize order of Participants
 for each participant in Participants {
 participant.doProcessing()
 }
 }
 for each participant in Participants {
 participant.dayEnd()
 }
 }
}

Here we can observe how the Supervisor manages the
negotiators. Essentially, the simulation runs forever, and
for each hour of each day, all the negotiators are requested
to do a single ‘chunk’ of processing (doProcessing()).
dayStart() and dayEnd() are called on each negotiator at
the beginning and end of each day for performance
measurement and maintenance purposes.

The randomize order of Participants statement
introduces an element of fairness into the simulation.
Without this statement, each participant in the list of
Participants would always be called in the same order; the
simulation would perhaps favour the first negotiator, since
he has a greater chance of securing the first deal.

3.2.2. Negotiator. A Negotiator developed in the
framework requires two distinct areas of its behaviour to
be specified: reactive and proactive. The reactive aspect
of its behaviour handles the negotiation process:

on receive offer from participant {
 // What to do when an offer is received
}
on receive accept from participant {
 // Agree to an acceptance proposal?
 // (i.e. the other participant wishes to
 // accept your last offer)
 // Returns either True or False
}
on receive acceptAccept from participant {
 // What to do when an acceptance to a
 // previously sent accept is received. Here,

// negotiation is positively concluded with
// ‘participant’

}
on receive acceptReject from participant {
 // What to do when a reject to a previously
 // sent accept is received. Here, negotiation
 // is negatively concluded with ‘participant’
}

The proactive aspect of the negotiator’s behaviour
handles survival issues, assessing its situation and
instigating corrective actions based on negative aspects of
this assessment:

on algorithmProcess {
 // proactive behaviour is specified here
}

This conditionally proactive behaviour is specified as
rules, in the form of condition -> action pairs. As will be

demonstrated later with an example, we are able to specify
survival behaviours within this function.

When the Supervisor invokes a negotiator’s
doProcessing() instruction, the framework performs two
actions transparent to the algorithm’s creator:

• Reactive - Service message box new messages are
read and the negotiator’s reactive functions are
invoked depending on the message type.

• Proactive - Invoke algorithm’s proactive function
(algorithmProcess) this allows the negotiator the
opportunity to evaluate their situation, and possibly
take proactive action.

Thus, in this framework, there is a distinct separation

between the reactive and proactive parts of the negotiation
process. Suppose a negotiator initiates negotiation with
another negotiator by sending them an initial offer. From
this point, the negotiation process is dealt with by the
reactive functions; multiple negotiations with multiple
partners are handled automatically. However, the
algorithm is still able to take proactive action if required,
enabling the negotiator to monitor and manage these
negotiation processes at a more abstract level.

4. The experiment

4.1. Overview

This paper will detail one experiment, which consists
of four simulations. Other experiments were conducted
which used different algorithms and different example
sets. The results presented here are representative of these
other experiments.

The first simulation establishes how a community of
negotiators develops in a stable message-passing
environment. The negotiators are naïve in that they adopt
a purely reactive approach to negotiation.

In the second simulation, it is established how the
same community of negotiators develops with an element
of uncertainty introduced into the message-passing
environment. In this simulation, there is a 10% chance
that a sent offer will not reach its destination.

For the third simulation, it will be shown how each
algorithm can be adapted to incorporate an example
proactive survival behaviour, and the simulation executed
again with reliable communications. This provides us
with an opportunity to observe how these adapted
algorithms behave in a reliable environment.

The fourth simulation illustrates how these adapted
algorithms behave in the unreliable communications
environment.

After each day, the performance of each negotiator is
evaluated, with respect to average hires per day and
average money accrued (Seller) or spent (Buyer) per day.

Thus, we have measures of survival and success
respectively. This paper focuses on the results for average
hires per day, since we wish to examine the survivability
of the community. By examining how the number of hires
per day for each participant changes over time, we are
able to reason about the survivability of the negotiation
processes conducted by the negotiators, and ultimately,
the survivability of the negotiation community.

4.2. The algorithms

In each simulation, instances of two algorithms form
the negotiation community. These algorithms were not
designed to be realistic negotiators. Rather, their
strategies are designed to be sufficiently simple that we
are able to reason about their behaviour in a complex,
evolving community.

• Stubborn this mimics ‘stubborn’, anti-
concessionary behaviour by sending only its
examples as offers to a negotiation partner. It does
not attempt to reason about the offers received.
Initially, it sends its first example, then its second,
etc. When it has sent all its examples, it starts again.
After 30 rounds of negotiation, it simply accepts the
last received offer from its partner.

• Experimental this is a far more reactive algorithm
than stubborn. Its first example forms its initial
offer. When a new offer is received, it attempts to
find an example that matches the number of days in
the received offer. If found, it sends a sequence of
offers for this example, each a little more
concessionary on price. If not found, it does the
same but with the first example. When it reaches a
$20 concession on price for the selected example, it
attempts to move negotiation to its next example by
specifying it as the next offer.

Initially, a simulation begins with 2 ‘Stubborn’ buyers

and 2 ‘Stubborn’ sellers conducting negotiations. After 20
days of negotiation, an ‘Experimental’ buyer and
‘Experimental’ seller are introduced to observe how this
affects the community.

Each negotiator is responsible for a number of
negotiation processes; a maximum of one per partner at
any given time. As a result, the possibility exists that
negotiations with one party will be abandoned in favour of
accepting another deal from another party. However, this
does not prevent the original two negotiators from
resuming negotiations from where they were abandoned at
a later date, if both are prepared to do so. The algorithms
present in this experiment do exhibit this forgiving
behaviour, not forcing negotiations with the one who
abandoned the negotiation to begin at the start of their
behavioural process. As will be observed in the next
chapter, this leads to some interesting behaviour.

4.3. The example sets

Each Buyer is given the same set of Buyer examples,
and each Seller given the same set of Seller examples.
The Buyer example set is given in Table 2 and the Seller
example set is given in Table 3.

Table 2. Buyer
example set

Days Price
2 160
4 240

Table 3. Seller
example set

Days Price
1 100
2 180
3 200

The objective of each Stubborn Buyer and Seller is to

make one deal per day, whilst the objective of the
Experimental Buyer and Sellers is to make four hires per
day. However, this is very difficult for the Stubborn
negotiators to achieve, due to the length of their
negotiation process. It is not impossible, however, as will
be observed in the results in the next chapter.

5. Results

Figure 3 shows the results of simulation 1,

representing average hires per day for each negotiator
over a 40 day period. The four lines clustered at the
bottom represent the four Stubborn negotiators, whilst the
two at the top represent the two Experimental negotiators.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Figure 3. Simulation 1 - average hires per day
Since Stubborn always takes 30 rounds (hours) to

reach a deal, we observe that there are no deals struck on
the first day. After about 4 days, in which all negotiators
perform equally well, these negotiators begin to exhibit a
certain communal behaviour. Note that no Stubborn
reaches their maximum hires per day. This is due to the
inflexible, laborious nature of the Stubborn algorithm.

One might expect a strict pattern to be observed.
However, there are two reasons why this is not the case.

Experimental algorithms introduced

Stubborn algorithms never reach their
objective of 1 car per day

Firstly, the environment has been designed with fairness
in mind: as mentioned in section 3.2.1 the order in which
negotiators perform processing is random. Secondly,
participants are able to abandon negotiations with a
particular party, and resume them at a later date (see
section 4.1). Together, these factors decrease the
likelihood that such behavioural harmonics will occur.

Also interesting are the results of the two Experimental
algorithms. Following their introduction after 20 days,
they remain very stable in their behaviour, in fact
achieving their maximum required hires per day for nearly
10 days. After this however, a significant slump occurs.
This is because initially, they deal only with each other;
their negotiation process is far more efficient than
Stubborn’s, and they reach agreement quickly. Following
this, however, one of them chances to strike a deal with
one of the Stubborn negotiators, and this causes them to
be affected by their erratic negotiation strategy. The
reason that one of the Experimental negotiators makes this
choice, despite it resulting in decreased hires per day, is
that they are not able to anticipate that this will have a
negative impact later. They make a choice that appears
optimal at the time, but have no way of knowing that it
represents a poor global choice.

Figure 4 illustrates the effects of introducing a 10%
chance of an offer being lost. The results are as expected.
Clearly, the Stubborn negotiators are unable to reach
agreement at all. After the two Experimentals are
introduced, they do slightly better due to their more
efficient negotiation process. They reach agreement
quickly, but following this, they are unable to maintain
their initial success. Their negotiation processes also
become affected by their inability to reason about their
failure and take corrective action.

0

0.5

1

1.5

2

2.5

3

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Figure 4. Simulation 2 - average hires per day

In order to conduct the third simulation, a survival

behaviour had to be integrated into both the algorithms.
The example survival behaviour chosen was a timeout.
The behaviour was specified as follows:

on algorithmProcess {
 for each participant in Participants {
 if (have sent offer to Participant &
 have not had reply in least 3 hours) {
 send last sent offer to participant
 }
 }
}

Essentially, if we have not received a response to an
offer sent in the last 3 hours, just resend the offer again.
The results of simulation 3 are given in Figure 5.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figu

The
survival
efficienc
hires pe
stability
negotiat
survival
the algo
response
normal
be instig
abandon
last offe

As w
initially
type, bu
other gr
affects t

Figu
Surprisi
robust
affected
an initi
simulati
degree
achieves
first si
algorith
this case

Stubborn algorithms
unable to make any deals
per day

Experimental
algorithms initially
reach agreement
together, then
succumb to
unreliable
environment

Experimental
algorithms do
slightly better than
in simulation 1
Stubborn algorithms
generally achieve their
deals per day objective
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

re 5. Simulation 3 - average hires per day

results were not as expected. Introducing this
 behaviour into this system has maximised the
y of the community; they are achieving greater
r day on average. Even more surprising is the
 that has clearly emerged among the Stubborn
ors. These effects are being observed because the
 behaviour has affected the negotiation process of
rithms. This behaviour essentially takes action in
 to unresponsive negotiators. So, even under

circumstances, it is still likely this behaviour will
ated. Effectively, a negotiator now responds to
ment from another negotiator by resending their
r. This is discussed in more detail later.

ith the first simulation, both algorithm groups
 reach agreement only with those of their own
t are eventually tempted by negotiations with the
oup. Here we clearly observe that this behaviour
he stability of the community as a whole.
re 6 displays the results of simulation 4.
ngly, introducing a 10% message loss to the more
community of negotiators has not dramatically
 the survival of their community. In fact, despite
al inability to attain the stability noticed in
on 3, the community eventually achieves a similar
of survival. More significantly, this community
 a greater degree of survival than observed in the

mulation. The result that the experimental
ms always achieve their objectives is anomalous in
, and not representative.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
1

Figu

Why
4 survive
introduce
introduci
we have
environm
negotiatio
rigid reac
result, th
negotiato
perspecti
whole, it
has intro
Negotiato
increases

6. Conc

Deve

survive
environm
difficult.
take corr
negotiatio

This
the devel
separatel
behaviou
that is a
integratin
algorithm
improved
suspected
their neg
to ineffec
example
opportun
strictly a
process;

more deals by maximising efficiency within this process.
With the need to increase the robustness of negotiators

in an ever more complex environment, we need to be able
to predict how this robustness will affect their behaviour
with others. When implementing self-protection measures
to ensure survival, we need to know that we are not
hindering the negotiator’s ability to succeed.

Experimental
algorithms always
achieve their deals
per day objective
Stubborn algorithms
initially erratic, but
most reach a
consistently high
degree of survival
3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

re 6. Simulation 4 - average hires per day

is it that the negotiators in both simulations 3 and
 so much better? The reason is because we have
d chaos and opportunity into the community. By
ng the survival behaviours into these algorithms,
improved their ability to survive in an unreliable
ent. But, we have also made their individual
n processes more agile; they no longer follow a
tive path to a negotiation’s conclusion. But, as a
e negotiation process that occurs between two
rs is less predictable. If we extend this
ve and observe the actions of the community as a
 has become more chaotic. However, this chaos
duced a very welcome factor: opportunity.
rs are making more offers to their partners. This

 the chances that their quota is achieved.

lusion

loping robust automated negotiators able to
and succeed in the complex, evolving

ent of the internet will become increasingly
 The ability to evaluate progress and proactively
ective or compensatory action outside of the rigid
n process confers a greater degree of survival.

paper has introduced a framework that enables
oper to specify reactive and proactive behaviour
y. Developers are able to specify conditional
r at a higher level than the negotiation process
ble to manage and optimise this process. By
g an example survival behaviour into the
s we have demonstrated that not only has this
 their ability to take proactive action in cases of
 message loss, but as a side-effect have made

otiation processes more flexible. By responding
tual negotiations at this abstract level with our
survival behaviour, we have created more

ities for success. Negotiators are no longer
dhering to the rigidity of the reactive negotiation
they proactively increase their potential to make

References

[1] R. Axelrod, The Evolution of Co-operation, Basic Books

Inc., New York, 1984.
[2] R. Axelrod, The Complexity of Cooperation, Basic Books

Inc., New York, 1997.
[3] B. Burg, “Agents in the World of Active Web Services”,

Lecture Notes in Computer Science, Vol. 2362, Springer,
2002, pp. 343-356.

[4] M. Bichler, A. Segev, J.L. Zhao, “Component-Based E-
Commerce: Assessment of Current Practices and Future
Directions”, ACM Sigmod Record: Special Section on
Electronics Commerce, Vol. 27, No. 4, 1998, pp. 7-14.

[5] K. Binmore, N. Vulkan,, “Applying Game Theory to
Automated Negotiation”, Netonomics, Jan. 1999. See
http://www.worcester.ox.ac.uk/fellows/vulkan.

[6] L.F. Cranor, P. Resnick, “Protocols for Automated
Negotiations with Buyer Anonymity and Seller
Reputations”, Proceedings of the Telecommunications
Policy Research Conference (TPRC 97), 1997. See
http://www.si.umich.edu/~presnick.

[7] F. Farhoodi, P. Fingar, “Developing Enterprise Systems
with Intelligent Agent Technology”, Distributed Object
Computing, Object Management Group, 1997.

[8] P. Fingar, H. Kumar, T. Sharma, Enterprise E-Commerce,
1st edn. Meghan-Kiffer Press, Tampa FL, 2000.

[9] D.B. Fogel, "Applying Fogel and Burgin’s ‘Competitive
Goal-Seeking through Evolutionary Programming’ to
Coordination, Trust and Bargaining Games”, Proceedings
of the 2000 Congress on Evolutionary Computation (CEC
2000), IEEE Press Piscataway NJ, 2000, pp. 1210-1216.

[10]. P. Henderson, R.J. Walters, S. Crouch, Q. Ni, “A
Comparison of some Negotiation Algorithms using a
Tournament-Based Approach”, Lecture Notes for
Computer Science, Vol. 2592, Springer-Verlag Berlin
Heidelberg, 2003, pp. 137-150.

[11] P. Henderson, “Laws for Dynamic Systems”, Proceedings
of the Fifth International Conference on Software Reuse
(ICSR 98), IEEE Computer Society Press, 1998, pp. 330–
336. See http://www.ecs.soton.ac.uk/~ph/papers.

[12] P. Henderson, R.J. Walters, “Behavioural Analysis of
Component-Based Systems”, Information and Software
Technology, Vol. 43, No. 3, 2001, pp. 161–169.

[13] P. Henderson, “Asset Mapping - Developing Inter-
enterprise Solutions from Legacy Components”, In:
Systems Engineering for Business Process Change - New
Directions, Springer-Verlag UK, 2002, pp. 1-12.

[14] R. Sesseler, “Building Agents for Service Provisioning out
of Components”, Proceedings of the Fifth International
Conference on Autonomous Agents, 2001.

http://www.worcester.ox.ac.uk/fellows/vulkan
http://www.si.umich.edu/~presnick
http://www.ecs.soton.ac.uk/~ph/papers

	Abstract
	1. Introduction
	2. Reactive and proactive negotiation
	3. The simulator
	3.1. The car hire scenario
	3.2. The negotiation environment
	3.2.1. Supervisor. The Supervisor coordinates the environment according to the following behaviour:
	3.2.2. Negotiator. A Negotiator developed in the framework requires two distinct areas of its behaviour to be specified: reactive and proactive. The reactive aspect of its behaviour handles the negotiation process:

	4. The experiment
	4.1. Overview
	4.2. The algorithms
	4.3. The example sets

	5. Results
	6. Conclusion
	References

