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Abstract 
 

Many developers who could benefit from building 
and analysing formal models of their systems are 
deterred from doing so by the process algebra style 
input languages of formal modelling languages which 
they find difficult to read and understand.  This 
barrier to the adoption of formal modelling techniques 
can be significantly reduced if the process algebra is 
replaced with a graphical notation supported by a 
model generation tool.  

However, whilst having a diagrammatic base for 
the language appeals to the novice modeller, the 
diagrams can become cluttered for larger models.  In 
this paper we address the issues of how to add 
hierarchical features to a graphical language without 
losing the fundamental benefits and appeal of a having 
the graphical interface to the language.  We illustrate 
these ideas using an existing formal modelling  
language. 

 
 

1. Introduction and Motivation 
 
Building executable models of proposed systems 

can bring great benefits to software development by 
enabling those involved to experiment with and verify 
important aspects early in the development process.  
This can be particularly important where the system is 
to be constructed from components [13] where 
surprising behaviour can emerge from unexpected 
interactions. 

Many potential users of these techniques find 
conventional formal modelling languages and tools 
intimidating, even when they are offered a graphical 
interface to use [3, 7].  What these potential users need 
is a simplified graphical interface, together with tool 
support which makes the task of model building more 
approachable and palatable. 

However, as the modeller gains confidence and 
builds more ambitious models, the diagrams can 
become cluttered and difficult to read.  To alleviate 
this, the language needs to provide mechanisms which 
enable the modeller to attend separately to the details 
of parts of the system and the assembly of these parts 
into a coherent whole.  In particular, they need a 
mechanism which offers a hierarchy of views of their 
model, enabling them to hide (as opposed to discard) 
low level details when appropriate [1]. 

The typical scheme to generate these 
“hierarchical” views of graphical models is to perform 
the equivalent of drawing a box around some part of 
their model and then hide the contents of the box.  The 
fine detail of how the process operates is concealed 
within the box.  The problem with this approach 
(which is widely used) is that it only addresses part of 
the problem.  Whilst it does conceal fine detail of the 
internal workings of a process and communications 
which occur exclusively within the box, the 
connections at the edges of the box remain at the 
lowest level.  Consequently all the detail implicit in 
them remains visible and still has to be handled and  
understood by the modeller.  This problem is 
exemplified by the “high level” diagram of a complex 
electronic circuit in which abstract representations of 
components are shown as blocks with interconnections 
between them which represent the individual wires of 
the detailed implementation.  This has been referred to 
as “wire syndrome” [2].   

 

 
 

Figure 1: What we would like to draw 
 



To give an example, imagine a modest system 
which divides logically into three components 
connected in sequence.  In constructing an abstract 
view of the system, what we really want is to draw 
something like Figure 1 in which the detail inside each 
of the abstract components is hidden along with the 
detail inside the interconnections between them but 
what we get is more like Figure 2.  The low level 
detail of the internal working of the components is 
hidden along with the wholly internal 
communications, but where connections are made 
between the components, these are simply brought to 
the edge of the box unchanged.  As a result, instead of 
making the single logical connection between 
components, the modeller wishing to connect 
components has to knit them together using 
connections at the most concrete level.  To do this 
successfully they need to know about, and understand, 
every detail of how the components interact and 
communicate. 

 

 
Figure 2: What we get using a naïve notion 

of abstracting detail 
 
A second problem which arises with the 

implementation of systems for abstraction which is no 
longer visible when the model is completed is that 
they operate on the complete concrete model.  So the 
modeller is required to start by generating the 
complete, fully detailed description of their model.  
Only then are they permitted to draw the outlines of 
the abstract elements of the model and hide the 
contents.  In other words, the modeller has to build 
their model from the bottom up and is only able to 
take advantage of hierarchical features when the 
model generation task is finished, although in fact 
these features would be most helpful during the 
construction of the model. 

We use RDT to illustrate how hierarchical features 
without these drawbacks can be incorporated into a 
graphically based formal modelling language. 

 
2. The RDT modelling language 

 
RDT was developed as a formal modelling 

language for use by users who wished to  gain benefits 
from working with executable models in return for 
only a modest investment in learning about formal 
modelling. 

RDT [15-17] is a good start.  It uses diagrams 
motivated by Role Activity Diagrams [12] in place the 
of the more usual process algebra and these diagrams 
are accessible to readers from non-formal methods 
backgrounds.  These diagrams are generated by the 
modeller providing the minimum of information to a 
tool which then generates and displays the diagrams 
automatically.  There is also an execution tool and a 
conversion tool which are able to take completed 
models and execute them or convert them to Promela 
code for exhaustive analysis using the SPIN [5, 6] 
model checker. 

RDT is a small language with just three event 
types.  Between them, these are just enough to permit 
the modeller to construct any processes they might 
wish to use.  In fact they have been shown to be 
sufficient to provide the essential features of the 
pi-calculus [10, 11, 14]. 

However, whilst the language has sufficient power 
to represent complex systems, the first implementation 
did not provide a mechanism for abstraction so any 
model has to be constructed and viewed in a form 
which displays every detail of the model.  If an 
abstract view of a system is to be modelled, it is left to 
the modeller to abstract away unnecessary detail 
before commencing work with RDT. 

 
3. Larger models in RDT 

 
  The fundamental events of RDT operate at a low 

level of abstraction.  Some types of operation which 
the modeller would like to describe, particularly those 
which would naturally involve the use of data, lead to 
complex processes with intricate connections to their 
neighbours.  In part this is because processes are not 
able to inspect the values they receive on channels.  A 
process in RDT has a named state which generally 
changes when the process takes part in an event.  
Essentially, the processes hold no data outside their 
named state.  When a process is to receive a value 
which it will act on as data, it cannot inspect the value 
it receives on some channel as “input” and act 
accordingly.  Instead, the discrimination of value has 
to be inferred from the channel on which the 
communication takes place.  A process is then able to 
move to an appropriate, explicitly named state 
according to which event actually takes place.  This 
scheme is effective but does lead to complex processes 
and models in which process instances are connected 
by many channels. 

As an example, consider the standard cycle leader 
election algorithm.  Using this algorithm, a collection 
of processes connected into a cycle are able to elect a 
leader.  We will use a version in which we assume no 
node calls an election whilst one is in progress.   



The algorithm works with a collection of nodes 
connected into a ring.  Each node receives messages 
from one of their two neighbours and sends messages 
to their other neighbour.  The behaviour of a node is as 
follows: 

 
• Provided one is not already in progress, any node 

may decide to call an election by sending a 
message to its neighbour announcing an election 
and appending their id number. 

 
• When a node receives a message announcing an 

election, it compares the number attached with its 
own.  If the number in the message is higher than 
its own, it passes the message on unchanged.  If 
the number in the message is lower, the node 
replaces it with its own before passing on the 
message.  If the number appended to the message 
is the node’s own number then the node sends a 
message claiming to be the new leader. 

 
• A node receiving a message naming the new 

leader notes the fact and passes the message on to 
the next unchanged unless it is the new leader 
(when it does nothing). 

 
As the message from the node which initiates the 

election passes around the ring, the number attached to 
the message is increased each time it arrives at a node 
with a higher number.  When a node receives the 
message back with its own number in it, that node can 
deduce that the message has passed all the way around 
the ring because that is the only way the message can 
come back.  The fact that the message has the node’s 
own number attached means that on its journey around 
the ring it has not passed any node with a larger 
number.  Consequently this node must have the 
highest number and be the new leader.  As the new 
leader, the node sends a message around informing all 
the others of the identity of the new leader.  This time, 
when the message returns, the new leader knows that 
all of the others know the identity of the new leader 
and the algorithm is finished. 

Building a model of a system which uses this 
algorithm illustrates the problem we wish to address 
nicely.  RDT has the power to model such a system, 
but the interconnections between the components 
required are quite intricate.  Figure 3 shows an 
example implementation in RDT of a process from 
such a model.  This process is constructed to be one 
node in the cycle algorithm.  It has approaching 
twenty connections to the outside but they must all 
connect to one of its two neighbours in the ring.   

 
 

Figure 3: An example cycle algorithm 
process 

 
Figure 4 shows an RDT model diagram in which 

three instances of these processes similar to that in 
Figure 3 are connected together in a cycle to form a 
complete model.  The number of connections between 
the processes has resulted in a diagram which is 
already cluttered with just three nodes in the ring.  

 

 
 

Figure 4: An Example Model of the Cycle 
Algorithm 

 
Whilst they do accurately describe the processes 

and nodes they represent, neither of these diagrams is 
really satisfactory.  For the modeller, particularly the 
less experienced and skilled to whom this tool is 
intended to appeal, these diagrams are confusing.  In 
the execution tool, RDX, the situation is different.  
Each of the process and channel instances in the model 
has a window on the face of the application.  
However, much of the complexity within the 



processes is hidden since their windows only show the 
current named state of the process and a list of those 
events which the process is presently able to initiate.  
The complexity of the interconnections is apparent in 
the number of channels in the model but, to drive the 
model, the user only interacts with the process 
windows so the channel windows can be hidden 
without interfering with the execution of the model.  
The channel windows provide additional (low level) 
information which the modeller can inspect should 
they wish to.  Figure 5 shows the model defined in 
Figure 4 running in RDX. 

 

 
 

Figure 5: RDX running the cycle algorithm 
model with three nodes 

 
4. Hierarchy in RDT 

 
If an abstraction method is to be helpful, it needs to 

provide the modeller with a mechanism which permits 
them to step back from the detailed operation of the 
pieces in their model and look at a more generalised 
view.  In addition, this abstraction mechanism should 
ideally permit the modeller/system designer to start at 
the higher levels of abstraction and fill in the details 
later.  It should also address the issue of “wire 
syndrome” and provide the modeller with mechanisms 
which they can use to conceal the complexity of the 
interconnections between the various parts of their 
model. 

In many modelling languages [4, 8, 9, 11], 
processes may be constructed from a collection of 
other processes.  The final system is built by creating 
an instance of one of these compound processes.  
Implicit in this mechanism of creating the compound 
process is some ambiguity about whether process 
descriptions relate to a class of behaviour or an 
instance of a class of behaviour.  In contrast, RDT 

makes a much sharper distinction between types and 
instances of process.  A process diagram describes a 
class of behaviour, the way that a process of this type 
behaves.  The model diagram relates to instances.  It 
describes how a collection of instances of processes 
are connected together to construct an executable 
model.  This distinction was made in this way to help 
the novice or non-technical user to identify with the 
nature of the section of their model on which they are 
working.  From observation, these users are inclined to 
slip into thinking in terms of an instance of the process 
they are describing even when the description they are 
working with is necessarily concerned with the 
behaviour of this type of process in general. 

Looking at the model of the cycle election 
algorithm again, there is a clear need here for the finer 
detail of the interconnections to be eliminated if the 
modeller is to form a high level view of this model and 
the connections between the processes within it.  We 
have something which looks like Figure 1 and we 
would like something which looks more like Figure 2.   

There is another benefit to be obtained from 
addressing this problem which would be particularly 
beneficial to the modeller.  Looking at the cycle leader 
election model as an example once more, to complete 
the model, the modeller has to make a considerable 
number of connections between the various processes.  
This operation can be time consuming and is a 
potential source of errors.  However, these connections 
are in fact systematic with the same connections 
repeated between each pair of neighbours.  The task of 
making these connections would be considerably 
simplified and errors eliminated if the modeller were 
able to make them at the abstract level.  In keeping 
with the general philosophy of RDT, the model 
generation tool could then complete the details 
automatically. 

 
5. Implementing Hierarchical Features in 
RDT 

 
As described above, two elements are required if 

the modeller is to gain real benefit from hierarchical 
features in a modelling language.  The first is to 
provide a mechanism which will permit the modeller 
to box in and hide lower level details of some section 
of a model providing them with a larger element 
which can be used as a component in constructing a 
system.  The second is to provide a mechanism by 
which the low level communications breach the 
boundaries of these “larger boxes” can be consolidated 
together in a similar manner to the way that the 
internal operations of the “large boxes” are hidden.  In 
effect, doing the same thing to the interconnections 
between the processes as to the processes themselves.  



Without both of these mechanisms in place, the 
modeller will never be free of the need to consider and 
understand the most detailed inner workings of the 
pieces they use in their model.  It is also important to 
make these features available to the modeller early in 
the model generation activity. 

RDT already has a single level of process 
abstraction: the model diagram shows instances of the 
processes which combine to form the model but the 
internal details of the processes are concealed.  Work 
is in progress which will permit the modeller using the 
model generation tool to work with a more abstract 
view of their model by selecting some number of 
process instances to be combined into a single 
compound process in the familiar manner. 

The other aspect, that of hiding the low level 
details is addressed with a new concept added to RDT 
– the connector.  A connector provides an abstract 
description of the connection between two processes at 
the model lever (or higher).  A connector has a name 
and the most minimal description of one does no more 
than give it a name.  The modeller is then able to use 
instances of this connector to join processes in a model 
diagram.  Figure 6 shows the way the cycle model 
from Figure 4 appears when drawn using connectors.  
In this example, all of the interconnections between 
the processes are contained within the connectors, but 
the modeller may also add individual connections at 
the channel level should they wish (which are shown 
using thin lines as on the standard model diagram). 

As some point in the detailing of the processes, the 
modeller needs to specify what is concealed within 
each connector.  This detail comprises pairs of channel 
names which are to be connected.  If the modeller has 
created (even partially) the low level description of the 
processes in the model, the tool will be able to offer a 
list of the available channel names that appear in the 
processes defined in the model for the modeller to pick 
from, otherwise the modeller will need to create their 
own channel names as they work.  Alternatively, if the 
modeller chooses to detail the connections which exist 
within the connectors they are using in advance of 
completing the inner detail of a process, the tool will 
be able to offer candidate names for communications 
channels derived from the names used within the 
connectors. When describing a connector, the 
modeller specifies the names of channels at each end 
of the connector.  It is to be expected that the names at 
either end of the connector will be chosen to make 
sense to the modeller as they construct the detail of the 
processes at either end.  Consequently the names at 
either end will not be same making the two ends of the 
connector different.  This is the reason for the 
arrowheads on the connectors shown in Figure 6.  
They don’t imply anything about the direction of the 

communication which passes along them which is 
expected, in general, to pass in both directions.  They 
simply serve to distinguish one end of the connector 
from the other.  There is no particular benefit to 
drawing a picture of a connector in isolation, but if we 
did it would look something like Figure 7. 
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Figure 6: The cycle model using 

Connectors 
 
When a connector is joined to a process, the effect 

is as if all channel names used by the process for 
communication are joined to the correspondingly 
named strand at the appropriate end of the connector.  
So, taking the connector in Figure 7 as an example, if 
the end with the arrowhead is joined to a process 
which uses channels named, Ch A, to Ch D, these will 
be connected (pair-wise) to channels in the other 
process names Ack, Send, Rec., and Sig.  The creation 
of these multiple associations will be handled for the 
modeller by the tool.  If the modeller desires, the RDT 
model generation tool will display the model diagram 
showing the fully detailed connections between the 
processes. 

In order to permit the most flexibility in the use of 
connectors, it has been decided not to mandate that 
they need to be fully used when placed between 
processes.  This permits a modeller, for example, to 
describe a single universal connector which they will 
use throughout some model if they wanted to do so.  
Therefore, it is not an error to join one end of a 



connector to a process which has only some of the 
channel names of that end of the connector. 

 

 
 

Figure 7: A connector 
   
However, in order to ensure that the behaviours of 

models created with and without connectors are 
consistent, it is necessary to stipulate that, strands in 
connectors cannot be connected at just one end.  In the 
event that there is a match for a strand at one end of a 
connector but not at the other, no channel is associated 
with the matched end.  The reason for this follows 
from the fact that RDT permits channels to be 
buffered.  Using the simple, concrete connection of 
channels in the standard model diagram of RDT, it is 
not possible to create a channel which is connected at 
just one end.  Therefore we cannot allow such a 
situation to be generated using connectors.  The 
particular difficulty concerns events which are 
prevented from occurring in a process because the 
channels into which they write are not connected.  If 
channels are buffered and a “dangling” channel were 
associated with such a name, the possibility arises the 
event may now occur as the process can write into the 
channel until it becomes full.  

 
6. Benefits from connectors 

 
The major benefit to using connectors is that they 

permit modellers to manage and control the mass of 
connections that they need to make between process 
instances in the model diagrams of RDT by wrapping 
them up into multi-cored connections.  By doing this 
they are able to hide the low level detail of the 
interconnections between process instances.  It also 

makes the diagrams both easier to create and easier to 
read. 

Using connectors also permits modellers to create 
new models much more quickly.  For example, a 
modeller wishing to experiment with the cycle 
algorithm described above by adding further process 
instances to the cycle would have a considerable task 
making the connections between the new collection of 
process instances one at a time.  Using a connector, 
they could put in place the multitude of connections 
required much more quickly and with considerably 
reduced risk of error. 

 
7. Conclusion 

 
Building and analysing formal models of 

distributed computer systems can assist developers 
considerably in creating correct systems but is not 
easy.  Using a modelling language with a graphical 
interface helps to overcome the barrier presented by 
the process algebra based input languages used by 
many of the modelling languages.  However, as the 
models grow in size, the diagrams can become 
cluttered and confusing. 

RDT is an example of a graphically based formal 
modelling language.  It has the power of the 
pi-calculus.  In its original design, the RDT language 
was kept as small as possible and its associated tools 
were designed to be as simple as possible to use.  
However, its lack of hierarchical features places a 
practical limit on the size of the models which it can 
handle. 

This paper outlines the desirable features of a 
scheme for hierarchical models and identifies a 
weakness in many of the schemes already available.  
They address issues relating to the hiding of low level 
detail within components, but don’t address the 
communications between them.  We also describe 
enhancements which add hierarchical features to RDT.  
In particular it describes a new concept added to the 
language, the connector, which permits modellers to 
control and manage the connections between the 
process instances of an RDT model.   

The implementation of these connectors has been 
carefully considered to ensure that the modeller is able 
to use the concept throughout the model building 
process. 
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