

Implementing Hierarchical Features in a Graphically Based Formal

Modelling Language

Peter Henderson, Robert John Walters and Stephen Crouch
Declarative Systems and Software Engineering Group,

Department of Electronics and Computer Science,
University of Southampton,

Southampton, UK. SO17 1BJ
{ph, rjw1, stc} @ecs.soton.ac.uk

Abstract

Many developers who could benefit from building
and analysing formal models of their systems are
deterred from doing so by the process algebra style
input languages of formal modelling languages which
they find difficult to read and understand. This
barrier to the adoption of formal modelling techniques
can be significantly reduced if the process algebra is
replaced with a graphical notation supported by a
model generation tool.

However, whilst having a diagrammatic base for
the language appeals to the novice modeller, the
diagrams can become cluttered for larger models. In
this paper we address the issues of how to add
hierarchical features to a graphical language without
losing the fundamental benefits and appeal of a having
the graphical interface to the language. We illustrate
these ideas using an existing formal modelling
language.

1. Introduction and Motivation

Building executable models of proposed systems

can bring great benefits to software development by
enabling those involved to experiment with and verify
important aspects early in the development process.
This can be particularly important where the system is
to be constructed from components [13] where
surprising behaviour can emerge from unexpected
interactions.

Many potential users of these techniques find
conventional formal modelling languages and tools
intimidating, even when they are offered a graphical
interface to use [3, 7]. What these potential users need
is a simplified graphical interface, together with tool
support which makes the task of model building more
approachable and palatable.

However, as the modeller gains confidence and
builds more ambitious models, the diagrams can
become cluttered and difficult to read. To alleviate
this, the language needs to provide mechanisms which
enable the modeller to attend separately to the details
of parts of the system and the assembly of these parts
into a coherent whole. In particular, they need a
mechanism which offers a hierarchy of views of their
model, enabling them to hide (as opposed to discard)
low level details when appropriate [1].

The typical scheme to generate these
“hierarchical” views of graphical models is to perform
the equivalent of drawing a box around some part of
their model and then hide the contents of the box. The
fine detail of how the process operates is concealed
within the box. The problem with this approach
(which is widely used) is that it only addresses part of
the problem. Whilst it does conceal fine detail of the
internal workings of a process and communications
which occur exclusively within the box, the
connections at the edges of the box remain at the
lowest level. Consequently all the detail implicit in
them remains visible and still has to be handled and
understood by the modeller. This problem is
exemplified by the “high level” diagram of a complex
electronic circuit in which abstract representations of
components are shown as blocks with interconnections
between them which represent the individual wires of
the detailed implementation. This has been referred to
as “wire syndrome” [2].

Figure 1: What we would like to draw

To give an example, imagine a modest system
which divides logically into three components
connected in sequence. In constructing an abstract
view of the system, what we really want is to draw
something like Figure 1 in which the detail inside each
of the abstract components is hidden along with the
detail inside the interconnections between them but
what we get is more like Figure 2. The low level
detail of the internal working of the components is
hidden along with the wholly internal
communications, but where connections are made
between the components, these are simply brought to
the edge of the box unchanged. As a result, instead of
making the single logical connection between
components, the modeller wishing to connect
components has to knit them together using
connections at the most concrete level. To do this
successfully they need to know about, and understand,
every detail of how the components interact and
communicate.

Figure 2: What we get using a naïve notion

of abstracting detail

A second problem which arises with the

implementation of systems for abstraction which is no
longer visible when the model is completed is that
they operate on the complete concrete model. So the
modeller is required to start by generating the
complete, fully detailed description of their model.
Only then are they permitted to draw the outlines of
the abstract elements of the model and hide the
contents. In other words, the modeller has to build
their model from the bottom up and is only able to
take advantage of hierarchical features when the
model generation task is finished, although in fact
these features would be most helpful during the
construction of the model.

We use RDT to illustrate how hierarchical features
without these drawbacks can be incorporated into a
graphically based formal modelling language.

2. The RDT modelling language

RDT was developed as a formal modelling

language for use by users who wished to gain benefits
from working with executable models in return for
only a modest investment in learning about formal
modelling.

RDT [15-17] is a good start. It uses diagrams
motivated by Role Activity Diagrams [12] in place the
of the more usual process algebra and these diagrams
are accessible to readers from non-formal methods
backgrounds. These diagrams are generated by the
modeller providing the minimum of information to a
tool which then generates and displays the diagrams
automatically. There is also an execution tool and a
conversion tool which are able to take completed
models and execute them or convert them to Promela
code for exhaustive analysis using the SPIN [5, 6]
model checker.

RDT is a small language with just three event
types. Between them, these are just enough to permit
the modeller to construct any processes they might
wish to use. In fact they have been shown to be
sufficient to provide the essential features of the
pi-calculus [10, 11, 14].

However, whilst the language has sufficient power
to represent complex systems, the first implementation
did not provide a mechanism for abstraction so any
model has to be constructed and viewed in a form
which displays every detail of the model. If an
abstract view of a system is to be modelled, it is left to
the modeller to abstract away unnecessary detail
before commencing work with RDT.

3. Larger models in RDT

 The fundamental events of RDT operate at a low

level of abstraction. Some types of operation which
the modeller would like to describe, particularly those
which would naturally involve the use of data, lead to
complex processes with intricate connections to their
neighbours. In part this is because processes are not
able to inspect the values they receive on channels. A
process in RDT has a named state which generally
changes when the process takes part in an event.
Essentially, the processes hold no data outside their
named state. When a process is to receive a value
which it will act on as data, it cannot inspect the value
it receives on some channel as “input” and act
accordingly. Instead, the discrimination of value has
to be inferred from the channel on which the
communication takes place. A process is then able to
move to an appropriate, explicitly named state
according to which event actually takes place. This
scheme is effective but does lead to complex processes
and models in which process instances are connected
by many channels.

As an example, consider the standard cycle leader
election algorithm. Using this algorithm, a collection
of processes connected into a cycle are able to elect a
leader. We will use a version in which we assume no
node calls an election whilst one is in progress.

The algorithm works with a collection of nodes
connected into a ring. Each node receives messages
from one of their two neighbours and sends messages
to their other neighbour. The behaviour of a node is as
follows:

• Provided one is not already in progress, any node

may decide to call an election by sending a
message to its neighbour announcing an election
and appending their id number.

• When a node receives a message announcing an

election, it compares the number attached with its
own. If the number in the message is higher than
its own, it passes the message on unchanged. If
the number in the message is lower, the node
replaces it with its own before passing on the
message. If the number appended to the message
is the node’s own number then the node sends a
message claiming to be the new leader.

• A node receiving a message naming the new

leader notes the fact and passes the message on to
the next unchanged unless it is the new leader
(when it does nothing).

As the message from the node which initiates the

election passes around the ring, the number attached to
the message is increased each time it arrives at a node
with a higher number. When a node receives the
message back with its own number in it, that node can
deduce that the message has passed all the way around
the ring because that is the only way the message can
come back. The fact that the message has the node’s
own number attached means that on its journey around
the ring it has not passed any node with a larger
number. Consequently this node must have the
highest number and be the new leader. As the new
leader, the node sends a message around informing all
the others of the identity of the new leader. This time,
when the message returns, the new leader knows that
all of the others know the identity of the new leader
and the algorithm is finished.

Building a model of a system which uses this
algorithm illustrates the problem we wish to address
nicely. RDT has the power to model such a system,
but the interconnections between the components
required are quite intricate. Figure 3 shows an
example implementation in RDT of a process from
such a model. This process is constructed to be one
node in the cycle algorithm. It has approaching
twenty connections to the outside but they must all
connect to one of its two neighbours in the ring.

Figure 3: An example cycle algorithm
process

Figure 4 shows an RDT model diagram in which

three instances of these processes similar to that in
Figure 3 are connected together in a cycle to form a
complete model. The number of connections between
the processes has resulted in a diagram which is
already cluttered with just three nodes in the ring.

Figure 4: An Example Model of the Cycle
Algorithm

Whilst they do accurately describe the processes

and nodes they represent, neither of these diagrams is
really satisfactory. For the modeller, particularly the
less experienced and skilled to whom this tool is
intended to appeal, these diagrams are confusing. In
the execution tool, RDX, the situation is different.
Each of the process and channel instances in the model
has a window on the face of the application.
However, much of the complexity within the

processes is hidden since their windows only show the
current named state of the process and a list of those
events which the process is presently able to initiate.
The complexity of the interconnections is apparent in
the number of channels in the model but, to drive the
model, the user only interacts with the process
windows so the channel windows can be hidden
without interfering with the execution of the model.
The channel windows provide additional (low level)
information which the modeller can inspect should
they wish to. Figure 5 shows the model defined in
Figure 4 running in RDX.

Figure 5: RDX running the cycle algorithm
model with three nodes

4. Hierarchy in RDT

If an abstraction method is to be helpful, it needs to

provide the modeller with a mechanism which permits
them to step back from the detailed operation of the
pieces in their model and look at a more generalised
view. In addition, this abstraction mechanism should
ideally permit the modeller/system designer to start at
the higher levels of abstraction and fill in the details
later. It should also address the issue of “wire
syndrome” and provide the modeller with mechanisms
which they can use to conceal the complexity of the
interconnections between the various parts of their
model.

In many modelling languages [4, 8, 9, 11],
processes may be constructed from a collection of
other processes. The final system is built by creating
an instance of one of these compound processes.
Implicit in this mechanism of creating the compound
process is some ambiguity about whether process
descriptions relate to a class of behaviour or an
instance of a class of behaviour. In contrast, RDT

makes a much sharper distinction between types and
instances of process. A process diagram describes a
class of behaviour, the way that a process of this type
behaves. The model diagram relates to instances. It
describes how a collection of instances of processes
are connected together to construct an executable
model. This distinction was made in this way to help
the novice or non-technical user to identify with the
nature of the section of their model on which they are
working. From observation, these users are inclined to
slip into thinking in terms of an instance of the process
they are describing even when the description they are
working with is necessarily concerned with the
behaviour of this type of process in general.

Looking at the model of the cycle election
algorithm again, there is a clear need here for the finer
detail of the interconnections to be eliminated if the
modeller is to form a high level view of this model and
the connections between the processes within it. We
have something which looks like Figure 1 and we
would like something which looks more like Figure 2.

There is another benefit to be obtained from
addressing this problem which would be particularly
beneficial to the modeller. Looking at the cycle leader
election model as an example once more, to complete
the model, the modeller has to make a considerable
number of connections between the various processes.
This operation can be time consuming and is a
potential source of errors. However, these connections
are in fact systematic with the same connections
repeated between each pair of neighbours. The task of
making these connections would be considerably
simplified and errors eliminated if the modeller were
able to make them at the abstract level. In keeping
with the general philosophy of RDT, the model
generation tool could then complete the details
automatically.

5. Implementing Hierarchical Features in
RDT

As described above, two elements are required if

the modeller is to gain real benefit from hierarchical
features in a modelling language. The first is to
provide a mechanism which will permit the modeller
to box in and hide lower level details of some section
of a model providing them with a larger element
which can be used as a component in constructing a
system. The second is to provide a mechanism by
which the low level communications breach the
boundaries of these “larger boxes” can be consolidated
together in a similar manner to the way that the
internal operations of the “large boxes” are hidden. In
effect, doing the same thing to the interconnections
between the processes as to the processes themselves.

Without both of these mechanisms in place, the
modeller will never be free of the need to consider and
understand the most detailed inner workings of the
pieces they use in their model. It is also important to
make these features available to the modeller early in
the model generation activity.

RDT already has a single level of process
abstraction: the model diagram shows instances of the
processes which combine to form the model but the
internal details of the processes are concealed. Work
is in progress which will permit the modeller using the
model generation tool to work with a more abstract
view of their model by selecting some number of
process instances to be combined into a single
compound process in the familiar manner.

The other aspect, that of hiding the low level
details is addressed with a new concept added to RDT
– the connector. A connector provides an abstract
description of the connection between two processes at
the model lever (or higher). A connector has a name
and the most minimal description of one does no more
than give it a name. The modeller is then able to use
instances of this connector to join processes in a model
diagram. Figure 6 shows the way the cycle model
from Figure 4 appears when drawn using connectors.
In this example, all of the interconnections between
the processes are contained within the connectors, but
the modeller may also add individual connections at
the channel level should they wish (which are shown
using thin lines as on the standard model diagram).

As some point in the detailing of the processes, the
modeller needs to specify what is concealed within
each connector. This detail comprises pairs of channel
names which are to be connected. If the modeller has
created (even partially) the low level description of the
processes in the model, the tool will be able to offer a
list of the available channel names that appear in the
processes defined in the model for the modeller to pick
from, otherwise the modeller will need to create their
own channel names as they work. Alternatively, if the
modeller chooses to detail the connections which exist
within the connectors they are using in advance of
completing the inner detail of a process, the tool will
be able to offer candidate names for communications
channels derived from the names used within the
connectors. When describing a connector, the
modeller specifies the names of channels at each end
of the connector. It is to be expected that the names at
either end of the connector will be chosen to make
sense to the modeller as they construct the detail of the
processes at either end. Consequently the names at
either end will not be same making the two ends of the
connector different. This is the reason for the
arrowheads on the connectors shown in Figure 6.
They don’t imply anything about the direction of the

communication which passes along them which is
expected, in general, to pass in both directions. They
simply serve to distinguish one end of the connector
from the other. There is no particular benefit to
drawing a picture of a connector in isolation, but if we
did it would look something like Figure 7.

ÿþýüýÿûúùøþ

ÿþýüýÿûúùø�

ÿþýüýÿûúùø�

ýý�ýýýþ

ýý�ýýýþ

ýý�ýýýþ

Figure 6: The cycle model using

Connectors

When a connector is joined to a process, the effect

is as if all channel names used by the process for
communication are joined to the correspondingly
named strand at the appropriate end of the connector.
So, taking the connector in Figure 7 as an example, if
the end with the arrowhead is joined to a process
which uses channels named, Ch A, to Ch D, these will
be connected (pair-wise) to channels in the other
process names Ack, Send, Rec., and Sig. The creation
of these multiple associations will be handled for the
modeller by the tool. If the modeller desires, the RDT
model generation tool will display the model diagram
showing the fully detailed connections between the
processes.

In order to permit the most flexibility in the use of
connectors, it has been decided not to mandate that
they need to be fully used when placed between
processes. This permits a modeller, for example, to
describe a single universal connector which they will
use throughout some model if they wanted to do so.
Therefore, it is not an error to join one end of a

connector to a process which has only some of the
channel names of that end of the connector.

Figure 7: A connector

However, in order to ensure that the behaviours of

models created with and without connectors are
consistent, it is necessary to stipulate that, strands in
connectors cannot be connected at just one end. In the
event that there is a match for a strand at one end of a
connector but not at the other, no channel is associated
with the matched end. The reason for this follows
from the fact that RDT permits channels to be
buffered. Using the simple, concrete connection of
channels in the standard model diagram of RDT, it is
not possible to create a channel which is connected at
just one end. Therefore we cannot allow such a
situation to be generated using connectors. The
particular difficulty concerns events which are
prevented from occurring in a process because the
channels into which they write are not connected. If
channels are buffered and a “dangling” channel were
associated with such a name, the possibility arises the
event may now occur as the process can write into the
channel until it becomes full.

6. Benefits from connectors

The major benefit to using connectors is that they

permit modellers to manage and control the mass of
connections that they need to make between process
instances in the model diagrams of RDT by wrapping
them up into multi-cored connections. By doing this
they are able to hide the low level detail of the
interconnections between process instances. It also

makes the diagrams both easier to create and easier to
read.

Using connectors also permits modellers to create
new models much more quickly. For example, a
modeller wishing to experiment with the cycle
algorithm described above by adding further process
instances to the cycle would have a considerable task
making the connections between the new collection of
process instances one at a time. Using a connector,
they could put in place the multitude of connections
required much more quickly and with considerably
reduced risk of error.

7. Conclusion

Building and analysing formal models of

distributed computer systems can assist developers
considerably in creating correct systems but is not
easy. Using a modelling language with a graphical
interface helps to overcome the barrier presented by
the process algebra based input languages used by
many of the modelling languages. However, as the
models grow in size, the diagrams can become
cluttered and confusing.

RDT is an example of a graphically based formal
modelling language. It has the power of the
pi-calculus. In its original design, the RDT language
was kept as small as possible and its associated tools
were designed to be as simple as possible to use.
However, its lack of hierarchical features places a
practical limit on the size of the models which it can
handle.

This paper outlines the desirable features of a
scheme for hierarchical models and identifies a
weakness in many of the schemes already available.
They address issues relating to the hiding of low level
detail within components, but don’t address the
communications between them. We also describe
enhancements which add hierarchical features to RDT.
In particular it describes a new concept added to the
language, the connector, which permits modellers to
control and manage the connections between the
process instances of an RDT model.

The implementation of these connectors has been
carefully considered to ensure that the modeller is able
to use the concept throughout the model building
process.

8. References

[1] M.M.K. Hashmi and A.C. Bruce, “Design and use
of a system-level specification and verification
methodology,” Design Automation Conference, 1995,
with EURO-VHDL, Proceedings EURO-DAC '95.,
European, 1995, pp. 490-495.

[2] P. Henderson and G.D. Pratten, “POSD - A
Notation of Presenting Complex Systems of
Processes,” First IEEE International Conference on
Engineering of Complex Systems, Ft. Lauderdale,
Florida, 1995, pp. 125-128.

[3] G.H. Hilderink, “Graphical modelling language for
specifying concurrency based on CSP,” Software, IEE
Proceedings- [see also Software Engineering, IEE
Proceedings], vol. 150, pp. 108-120, 2003.

[4] C.A.R. Hoare, Communicating sequential
processes: Prentice-Hall International, 1985.

[5] G.J. Holzmann, “The Model Checker SPIN,” IEEE
Transactions on Software Engineering, vol. 23, pp.
279-295, 1997.
[6] G.J. Holzmann, The Spin Model Checker: Primer
and Reference Manual: Addison Wesley, 2003.

[7] S. Leue and G. Holzmann, “v-Promela: a visual,
object-oriented language for SPIN,” Object-Oriented
Real-Time Distributed Computing, 1999. (ISORC '99)
Proceedings. 2nd IEEE International Symposium on,
1999, pp. 14-23.

[8] J. Magee and J. Kramer, Concurrency: State
models and Java Programs: John Wiley and Sons,
1999.

[9] R. Milner, Communication and Concurrency:
Prentice Hall, 1989.

[10] R. Milner, “Elements of Interaction: Turing
Award Lecture,”, vol. 36. Communications of the
ACM, 1993.

[11] R. Milner, “The Polyadic pi-Calculus: a
Tutorial,” in Logic and Algebra of Specification, F. L.
Hamer, W. Brauer, and H. Schwichtenberg, Eds.:
Springer-Verlag, 1993.

[12] M.A. Ould, Business Processes - Modelling and
Analysis for Re-engineering and Improvement: John
Wiley and Sons, 1995.

[13] C. Szyperski, Component Software: Longman,
1998.

[14] D.N. Turner, “The Polymorphic pi-calculus:
Theory and Implementation,”. Edinburgh: University
of Edinburgh, 1995.

[15] R.J. Walters, “Automating Checking of Models
built using a Graphically Based Formal Modelling
Language,” 27th Annual International Computer
Software and Applications Conference (COMPSAC
2003), Dallas, Texas., 2003, pp. 98-104.

[16] R.J. Walters, “A Graphically Based Language for
Constructing, Executing and Analysing Models of
Software Systems,” 26th Annual International
Computer Software and Applications Conference
(COMPSAC 2002), Oxford, 2002, pp. 363-369.

[17] R.J. Walters, “A Graphically based language for
constructing, executing and analysing models of
software systems,” in Electronics and Computer
Science. Southampton: University of Southampton,
2002, pp. 270.

