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Abstract—We combine search-based test case generation and
surrogate models for black-box system testing of elastic systems.
We aim to efficiently generate tests that expose functional errors
and performance problems related to system elasticity.

Elastic systems dynamically change their resources allocation
to provide consistent quality of service in face of workload
fluctuations. However, their ability to adapt could be a double
edged sword if not properly designed: They may fail to acquire
the right amount of resources or even fail to release them. Black-
box system testing may expose such problems by stimulating
system elasticity with suitable sequences of interactions. However,
finding such sequences is far from trivial because the number of
possible combinations of requests over time is unbounded.

In this paper, we analyze the problem of generating test cases
for elastic systems, we cast it as a search-based optimization
combined with surrogate models, and present the conceptual
framework that supports its execution.

Index Terms—model based testing, load testing, genetic algo-
rithm, surrogate models

I. INTRODUCTION

Test and analysis of elasticity has found widespread at-
tention in areas that are (if at all) only remotely related to
computer science, for instance in the materials science for
rubber and plastics (e.g., [3]). Even though there is no direct
relationship between the fields, we argue that we can benefit
from these ideas by applying the same rigor to testing and
analysis of elastic computer systems. In general terms, an
elastic system (ES) is a system that responds to an external
force or other stimulus, and has the ability to change its
internal structure and characteristics accordingly (see more
detailed definition in Section II). In this regard, elasticity can
be seen as a specific type of adaptivity, with the peculiarity
that an adaptation into one direction, i.e., scale out, is typically
followed by an adaptation into the opposite direction, i.e., scale
in, when the source of stress is removed or is reduced.

Elasticity, if not properly designed, can be a double edged
sword that may result in harmful system behaviors or un-
expected costs [18]. Exposing an ES to operations which
change its elasticity state can cause subtle modifications, which
may become, in the worst case, uncontrollable or irreversible.
For example, an ES may start to acquire resources in an
uncontrolled way, it may fail to release resources, it may
oscillate between alternative allocations of resources (denoted
thrashing), it may be unable to scale back to its initial
configuration, it may fail to allocate resources on time to
provide consistent quality of service (QoS), and more [16].

This work is partially supported by the Swiss National Science Founda-
tion under the “Fellowship for Prospective Researches” contract PBTIP2-
142337, and by the European Community’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement 257483 (Indenica).

978-1-4673-6284-9/13/$31.00 © 2013 IEEE

We distinguish two types (or levels) of strain that can be
put on an ES: 1) fair operations which are perfectly valid
and within the capabilities of the system, and 2) excessive
operations that simply overload the ES beyond its capabilities
or physical resources. While it is easy to break a system
by stressing it with excessive load, interestingly we can
also observe a tendency of things to break under continuous
application of fair operations (e.g., a rubber material that
finally breaks after millions of slight stretches; similarly, an ES
that becomes unresponsive after failing to free resources in a
multitude of acquire/release operations) [16]. However, given
the complexity of computer systems (not least in comparison
to the relatively homogeneous structure of synthetic materials),
applying the right sequence of fair operations to break an ES
is comparable to finding the proverbial needle in a haystack.

We tackle this issue and study systematic testing of elastic
systems. We aim to generate test cases that stress a system
with fair (valid) operations over time, causing a multitude of
state changes, potentially identifying faults related to elasticity.
With our test results we strive to obtain 1) an understanding
of the load and request patterns that an ES is able to handle
before it reaches a limit and breaks, and 2) a certain level
of confidence (expressed in test coverage) that an ES indeed
provides reliable elasticity, within the boundaries of valid op-
erations. To achieve this goal, we propose the use of surrogate
models [25] that describe the system with adequate accuracy
and level of abstraction, combined with efficient search-based
software engineering methods [1]. In concrete terms, our
approach integrates model-based testing [24] with heuristic
search, exemplified on the basis of Genetic Algorithms [12].

This paper provides an outline of the testing approach, for-
malizes the search problem for test generation with surrogate
models, and discusses the conceptual architecture that supports
it. We conclude by listing the main research directions.

II. A MODEL OF ELASTIC SYSTEMS

In the following we provide a simplified model for elastic
systems. Our approach relies on information about the state
of an ES with respect to its elasticity properties. An elasticity
property defines a metric about the structure or behavior of
a system (e.g., number of computing nodes, thread pool size,
allocatable memory, current QoS, etc.). We assume that the
property values have a (total) ordering (e.g., QoS ¢; is higher
than QoS ¢2) and are usually constrained by lower and upper
bounds (if numeric). The elasticity state is a snapshot of (a
subset of) the elasticity properties and their current values.

We define changes in an ES based on the notion of elastic
transition sequences (ETS). Two key differences to transitions
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Fig. 1. Illustration of Elastic Transition Sequences

in purely adaptive systems are that 1) transitions along an ETS
are defined over subsequent values (no values are “skipped”),
and 2) an ETS involves at least a transition into one direction
and an eventual transition back in the opposite direction. A full
ETS is an ETS with starting state equal to final state. Figure 1
illustrates a simple ES with an elasticity property that denotes
the number of nodes (nodes € {1,2,3}). The first transition
sequence is not an ETS, because the system only scales up,
but never down. The second example is not an ETS, because
it skips nodes = 2. The third example is an ETS (but not a
full ETS). The example in Figure 1 can be extended for higher
dimensions with multiple elasticity properties.

The behavior of an ES, in particular triggering of state
transitions, is basically determined by external inputs. Inputs
can be either user requests, or incoming data to be processed,
or any other external aspect that influences the processing. We
abstract from the actual content, and assume that inputs can
be categorized into sets of input types I = {i1,42,...,%n},
and measured or counted (e.g., requests per time unit). For in-
stance, consider an event-based system which runs continuous
queries and elastically scales with the number of processed
events [13]. The inputs could be defined as I = {number
of queries, data rate}. The outputs (categorized into types
O = {o01,02,...,0n,}) determine the ES’s correct operation
and QoS. Moreover, S denotes the set of possible elasticity
states, and s; is the state at time ¢. Apart from s;, we assume a
black-box model: no access is required to the internals, as long
as we can probe the ES and observe its elasticity properties.

III. TESTING GOALS

The basic motivation behind our work is that implemen-
tation of elastic systems is inherently prone to errors, and
hence requires thorough testing [16]. We target two specific
problem areas: 1) different request loads and patterns may
cause functional errors due to implementation bugs, which can
be revealed by systematic testing, and 2) elasticity generally
affects resource utilization, and as resources are associated
with costs, elasticity properties of an ES are considered a
critical feature that deserves to be tested.

The problem we tackle is to generate test cases in the
form of input traces over a predefined time interval. The test
cases should stimulate the triggering of elasticity within the
system and expose bugs that derive from it. The problem is
challenging because the possible traces that can be generated
are infinite, and the behavior of the ES may depend heavily
on the past interactions with the system.

We define two orthogonal test goals, which can be combined
using our approach: 1) finding specific cases that break the

system using fair (valid) operations, and 2) generating suites
that achieve a certain test coverage. For 1), we utilize search
combined with surrogate models to predict the behavior of
the ES. For 2), we can utilize the model of ES and generate
minimal test suites with test cases that cover, e.g., all ETSs in
the system. The details discussed in the following (Section V)
cover the problem encoding for 1), but the search formalization
can be easily extended to cover the goal in 2).

IV. SEARCH FORMALIZATION

We formalize the problem of generating traces as search
problem, and employ Genetic Algorithm [2] (GA) as search-
based technique to solve it. Therefore in the remainder of this
section we focus on concepts that are specific to GA.
Individuals encoding. Test cases are traces, that is, sequences
of inputs in time. We represent them as sequences of workload
vectors, i.e., amount of requests for each type over a very
small interval [19]. As request traces can be very long, a direct
encoding of workload vectors as genomes may be too hard to
manage. Hence, we decide to compact traces by aggregating
them over larger intervals and represent the load distribution
in each interval in a functional form by means of patterns.

A pattern encodes a family of distributions of requests
over a limited time period (pattern duration, PD) using a
base functional and a set of parameters. Sample patterns are:
constant pattern with value parameter; ramp with slope param-
eter; oscillating pattern with amplitude, frequency and other
parameters. Islam et al. [16] list other interesting patterns.

By sequencing patterns we can encode long traces in
genomes of predefined length, denoted number of patterns
(N P). Each genome cell contains a mapping to the pattern, its
duration, and parameterizations. We call this pattern sequence
the master trace (cf. Figure 2). We account for different types
of inputs by means of ratio parameters (R, Ro,...): In every
cell these parameters multiply the values of the master trace
to obtain per-request traces. Once per-request sequences are
ready, we derive test cases by discretizing and merging their
functions into a single trace. Figure 2 exemplifies this process.

We make the following simplifications to ease the evolution
of genomes during the search: We assume that the length of the
genome is predefined, that each pattern has a constant duration,
and that we use only the oscillating pattern, encoded as
Axsin(B*t+C)+ D, to generate the sequence. Furthermore,
we consider only the rate of input requests and not their
input data. We assume that input requests can be partitioned
into homogeneous classes, achieving a desired level of test
coverage [14]. We argue that these choices ease the search
but provide good levels of expressiveness and flexibility. In
fact the oscillating pattern has four degrees of freedom and
can generate very different load distributions (see Figure 2).
Moreover, in case different input data result in very different
demands on the system, we can encode them as requests
belonging to different classes, and use the ratio parameters
to govern their relative distribution. Our intuition is that the
oscillating pattern can suitably capture the load oscillations
that normally trigger system elasticity.

Mutation operators. We randomly select and mutate individ-
uals by applying the following operators: i) mutate pattern: we
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Fig. 2. Pattern-based test case encoding using the oscillating pattern

select a pattern in the sequence and update the value of some
of its parameters; ii) mutate request mix: we select a pattern
in the sequence and update the value of ratios parameters. All
the values are constrained by specified validity ranges.
Initial population. Provided we have the population size, and
the values for NP and PD, we build the initial population by
randomly initializing the pattern of the individuals.

Fitness function. The fitness function is at the heart of the
search process and guides the evolution of the population
towards the most suitable solutions. For testing purposes, the
actual fitness function to be used depends on the test goal
that must be achieved. Nevertheless, for the case of testing
elastic systems we identify three core concepts that should be
considered when building a fitness function: 1) Promote tests
that trigger system elasticity, i.e., both system expansions and
contractions. This can be captured by counting the occurrences
of changes, their direction and their entity, i.e., the difference
in the amount of resource used. 2) Promote tests that cause
system misbehaviors, such as performance issues, or that result
in system behaviors that are close to the limit. This can be
captured by tracking the number of times the behavior of a
system is out of range of the expected behavior, and how much
the behavior deviates (severity distance metric). 3) Promote
tests that use few resources to stress the system. This can be
captured by counting the total amount of generated requests.
Parent selection. We use the Roulette Wheel selection method
to select more frequently fitter parents [5].

Recombination operators. We enable elitism and we use one-
and two- point cross-over to recombine parents.
Termination criteria. We default the termination criteria to
the maximum number of iterations.

V. COMBINING SEARCH AND MODELS

The fitness function depends on the system behavior, so we
need to generate and execute traces at every search round. Un-
fortunately, in our context this process is impractical because
each test may take a long time to complete, and there are
several tests to run at each round. To overcome this limitation
we take inspiration from model-driven design optimization and
propose to use surrogate models within the search cycle [22].
Surrogate Models. The key idea is to use specific models
as “surrogate” of an ES — hence their name. Surrogate mod-

els employ powerful techniques to correlate and interpolate
data, for solving either classification or regression problems.
Common examples of surrogate models are artificial neural
networks, support vector machines, Bayesian networks, regres-
sion trees and Kriging models (see details in [25])

The feasibility of our approach relies on the assumption
that we can find suitable surrogate models that 1) simu-
late/predict the behavior of elastic systems and 2) reflect on
the (un)certainty of their own predictions. Among the available
models we deem Kriging models and Gaussian processes
(GP) [21] as suitable models for implementing the proposed
test case generation for ES: They are proven to accurately
capture the behavior of elastic systems, and they natively
provide a confidence measure for prediction quality [7], [8].

In this paper, we argue that extensions of Kriging and GP
models for time series analysis [4] and uncertainty propaga-
tion [9] fulfill the requirements on accuracy and uncertainty
measure that our test case generation demands. These surro-
gate models are able to predict the system behavior under
different conditions, e.g., under varying load, in a matter of
(milli-)seconds [23]. Therefore, the efficiency of the overall
process (see Figure 3) is greatly improved.

Model-Enhanced Search. We evolve the population accord-
ing to the expected system behavior, as predicted by the
models, and not according to the real one. In Figure 3, we mark
the fitness function computed on the expect behavior with
a star symbol. This raises questions about models accuracy
and search effectiveness. If models are inaccurate, the search
may point towards test cases that are presumed fitter while
they are not. We address these concerns by letting the search
execute some, but not all, the test cases on the real system. By
collecting data from real executions, we can achieve a double
goal: 1) evaluate the true fitness function, and 2) improve the
surrogate models. At the same time, by executing only a small
fraction of the tests, we maintain the search process efficient.

To decide which tests to execute, a trade-off accounts for the
model inaccuracy and the expected improvement of the fitness
function, as described by Jones et al. in the domain of design
optimization [17]. In essence, the system should run only tests
that are promising, i.e., expected to be fitter according to our
incomplete knowledge of the system. A test case is promising
if the model is highly accurate and predictions show that the
system will behave differently from its specifications. Con-
versely, a test is promising if the model has broad confidence
intervals, and there is chance to discover unexpected behavior
that the surrogate model inherently cannot capture (given the
limited knowledge of the system).

At the beginning of the search, we may have very lim-
ited knowledge, and we may need to execute several tests.
However, as the search continues to improve the model, less
and less executions are needed because at every execution our
knowledge of the system increases.

In summary, we use surrogate models to improve the
efficiency of the search process, effectively making it practical
for long test traces geared to the target ES; conversely, we use
the search process to improve the accuracy of surrogate models
only where its predictions are more critical.
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Fig. 3. Model-driven search-based generation of test cases

VI. RELATED WORK

Considerable body of work consider meta-heuristic tech-
niques for functional testing [2] as well as non functional
testing [1]. For brevity reasons, here we can discuss only a
limited subset of them.

Di Penta et al. [6] use search-based optimization to generate
test data that cause service level agreement (SLA) violations in
service oriented systems. We share a similar test goal, that is,
to find valid tests that induce system misbehaviors in a black-
box style. Consequently, our fitness functions contain similar
attributes, and demand monitoring data from test executions.
To reduce the amount of test executions, we propose surrogate
models to generalize from single executions.

Surrogate models are used to predict the value of an
unknown function starting from observations, and are com-
monly used for model-assisted design optimization in several
engineering fields. For example, Gramacy et al. use them
to optimize the design of the NASA re-entry vehicles [10],
while Mariani et al. use them in the design of multi-processor
systems-on-chip [20].

Our search is toward specific distributions of requests in
time that is similar to what Briand and coauthors proposed
for stress testing real-time applications [5]. In our approach,
we need a running system and we use surrogate models to
drive the search while Briand et al. refer to the structure of
tasks to be executed and do not require a running version the
SUT. Similarly, Hénsel et al. [11] propose meta-heuristic to
generate test cases in the form of timed traces. Blocks serve
as the basic construct for compacting long traces into short
genomes. We propose pattern that are similar to blocks but
encode also a functional form of requests distribution.

Surrogate models are black-box models of the system
behavior, and we use them to derive tests that encode en-
vironment evolution. Our fest oracle evaluates test results
using systems outputs and end-to-end behavior, and does not
consider system interactions with the environment. In this
sense, our approach is specular to the one proposed by Igbal
and coauthors [15] that use models of the environment to
generate black-box tests, and that define test oracles in terms of
the expected interactions between the SUT and environment.
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VII. CONCLUSIONS AND FUTURE DIRECTIONS

We position our recent work in the context of search-based
software testing: We introduce the problem of testing elastic
systems, formalize the main point of the search problem, and
discuss how we combine search and surrogate models.

We are currently implementing the software framework
to support our approach, and evaluating its feasibility and
applicability with elastic systems in our Cloud. In the near
future, we will investigate the use of models to filter out invalid
and infeasible tests and also to limit the occurrence of tests that
are too similar to the ones already considered in the process.
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