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Abstract—Bring Your Own Device (BYOD) is an enterprise
information technology (IT) policy that encourages employees
to use their own devices to access sensitive corporate data at
work through the enterprise IT infrastructure. Many current
BYOD security practices are costly to implement and intrusive
to employees, which, to some degree, negate BYOD’s perceived
benefits. To address such tension, we propose prioritized defense
deployment: Instead of employing the same costly and intrusive
security measures on each BYOD smartphone, more stringent
threat detection/mitigation mechanisms are deployed on those
representative smartphones, each of which represents, security-
wise, a group of smartphones in the whole BYOD device pool.
To this end, we propose a concept and a distributed algorithm,
both named T -dominance, to capture the temporal-spatial pattern
in an enterprise environment. We identify a few desirable prop-
erties of prioritized defense deployment, and analytically show
that T -dominance satisfies such properties. We complement our
analysis with simulations on real Wi-Fi association traces.

Index terms—BYOD, prioritized defense deployment, security
representativeness, temporal-spatial pattern

I. INTRODUCTION

Bring Your Own Device (BYOD) is an enterprise information
technology (IT) policy that encourages employees to use their
own devices to access sensitive corporate data at work through
the enterprise IT infrastructure. Employees’ demand/satisfaction,
decreased IT acquisition and support cost, and increased use of
cloud/virtualization technologies in enterprise IT infrastructure
are common justifications for adopting BYOD [1]. With the
consumerization of smartphones and tablet computers (smart-
phones for brevity) in recent years, the demand for using
personal smartphones in the workplace has brought BYOD
to the attention of enterprise IT professionals as one of the
“tech trends for 2013 [2].”

Despite the commonly cited benefits, BYOD presents sig-
nificant security challenges. On the one hand, forwarding
corporate e-mails to public Web mail services, using pub-
lic cloud-based storage services (e.g., Dropbox and Apple’s
iCloud) to store corporate documents, or even interacting
with smartphones through voice in the workplace may leak
sensitive corporate information assets [3]; moreover, employees
may inadvertently or maliciously introduce malware to the
enterprise network behind the firewalls through their own
malware-infected smartphones. On the other hand, forcing
employees to disable common applications such as Dropbox [3],
though may be necessary security-wise, significantly worsen
employees’ BYOD experience; frequently auditing the use of
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Fig. 1: T -dominance exploits temporal-spatial patterns of BYOD devices to
implement prioritized defense deployment. The black node T -dominates the
white ones for T > 4.

employees’ smartphones not only intrudes on their convenience,
but is also costly to implement.

To address such tension, we propose prioritized defense
deployment: Instead of employing the same costly and intrusive
security measures on each BYOD smartphone, more stringent
threat detection/mitigation mechanisms are deployed on those
representative smartphones, each of which represents, security-
wise, a group of smartphones in the whole BYOD device pool.

In this paper, we interpret and measure security represen-
tativeness through the temporal-spatial pattern inherent in an
enterprise environment: Those BYOD smartphones that connect
with many other smartphones often are representative security-
wise, because they are exposed to more attacks and have more
severe consequences if compromised.

More specifically, we interpret and measure security repre-
sentativeness with a novel temporal-spatial structural property
and propose a distributed algorithm (running distributedly on
individual smartphones) that robustly preserves that property.
We name both the property and the algorithm T -dominance, in
which T is a temporal bound. Each BYOD smartphone executes
the T -dominance algorithm and, based on potentially outdated
information from proximate smartphones (as briefly discussed
in Section II, such information is readily available on many
consumer smartphones), estimates its security representativeness.
If a smartphone considers itself as representative, it turns into
an agent. The algorithm needs no central coordination, which
reduces maintenance overhead for enterprise IT administration
and is less intrusive to BYOD employees. After running the
algorithm for awhile, the whole BYOD smartphone pool will
be T -dominated by the agents: Each smartphone is either an



agent, or is highly likely to be proximate to an agent with a
delay not exceeding T . The idea of T -dominance is illustrated
in Figure 1. A more intrusive and costly defense mechanism
will be deployed on the agents.

Prioritized defense deployment based T -dominance provides
an adjustable (through T ) balance between security provision
and mechanism intrusiveness/cost. We define the concept of
T -dominance and present an algorithm to implement it (Sec-
tion III). We show the temporal robustness and the effectiveness
of the proposed algorithm through analysis (Section IV) and
trace-driven experiments (Section V), and put our works in the
context of previous research (Section VII).

In summary, we make the following contributions.
• We propose prioritized defense deployment based on

security representativeness as a solution to the tension
between the demand for BYOD security practices and the
intrusiveness/cost of such practices.

• We propose a novel interpretation of security representative-
ness, based on the inherent temporal-spatial structures in an
enterprise environment, and illustrate the application of the
concept: strategic sampling to detect malware, prioritized
patching to prevent or recover from damage.

• We propose a method, T -dominance, to capture the
temporal-spatial dynamics of BYOD smartphone networks
in a graph structure (Definition 1) and maintain such
a structure with an algorithm that does not incur extra
administration cost, and is less intrusive to employees
(Section III).

• We show the temporal robustness and the effectiveness
of the proposed algorithm through analysis (Section IV)
and trace-driven experiments (Section V). The temporal
robustness ensures that the T -dominance algorithm will
maintain the T -dominance structural property on potentially
outdated information, due to the absence of constant, central
coordination.

II. MODEL

Due to the wide deployment of Wi-Fi infrastructure in enter-
prise networks and the wide availability of Wi-Fi co-location
information on smartphones (to support, for example, location-
based services), we consider a threat model that includes, besides
the common drive-by download attack, smartphone malware that
can infect Wi-Fi co-located smartphones through techniques
such as ARP poisoning; we briefly discuss the feasibility and
current state of such proximity malware attacks in Section VI.

Each smartphone maintains a connectivity log of past access
point associations, with entries in the form of (ST = s,ET =
e,APID = APi) indicating that the smartphone is associated
with access point APi from time s to e. Connectivity logging
is a standard feature on major mobile platforms, such as the
consolidated.db in iOS’s location-aware services [4].

Given the connectivity log of a pair of smartphones, u and v,
we can find the maximal temporal intervals during which the two
smartphones are co-located within the temporal window [t−W, t]
of size W 1: [s1, e1], [s2, e2], . . . , [sk, ek]. Let sk+1 = s1 +W ;

1Temporal window is used in the definition of reachability to phase out old
information that may be outdated. An example is that, for an employee who
transferred from one department to another two days ago, a temporal window
W of 2 days will exclude the information before the transfer when computing
reachability.

we have s1 < e1 < . . . < si < ei < . . . < sk < ek ≤ sk+1 =
s1 +W .

At a particular moment m (t − W ≤ m ≤ t), the waiting
time g(m) before the next encounter between u and v is:

g(m) =

{
0 ∃i, s.t. si ≤ m ≤ ei,

minsi≥m(si −m) otherwise. (1)

Thus, we define the expected delay r(u, v) till next encounter
between u and v at time t as their reachability, computed by:

r(u, v) =

∫ sk+1

s1
g(m)dm

W
=

∑k
i=1(si+1 − ei)

2

2W
. (2)

As a special case, if the two smartphones are not co-located
between t−W and t (reflected by the lack of common intervals
in l1 and l2 during that temporal window), their reachability is
defined to be +∞. The definition of reachability in Equation (2)
has implications (Lemma 1) on our design (Section IV)2.

Given a set of smartphones P = {u, v, w, . . .} along with
their connectivity logs, we define the reachability graph G(P ) of
P to be a weighted undirected graph with P as the vertices and
r(u, v) as the weights on the edges between two smartphones u
and v. Given a threshold T , we define the filtered reachability
graph GT (P ) to be the subgraph of G(P ) consisting of all the
vertices along with those edges with weights no greater than T .

III. DESIGN

A. Motivation: prioritized defense deployment

Threat detection/mitigation in an enterprise network is an
ongoing, rather than a one-shot, process. Threat detection/miti-
gation mechanisms, such as malware detection and vulnerability
patching, need to be deployed on BYOD smartphones and
regularly updated to defend against evolving and emerging
threats. Doing so constantly on all BYOD smartphones is costly
for the enterprise, and intrusive to the employees. Random
sampling is less costly and intrusive, but is oblivious to the
temporal diversity of BYOD employees’ connectivity patterns
and, thus, presents challenges such as how many and how often
devices shall be checked for security vulnerabilities and receive
updates, as well as how to quantify the security provision.

Prioritized defense deployment addresses these challenges
by assigning each BYOD smartphone one of two mutually
exclusive roles, agents and non-agents, according to its security
representativeness, and prioritizing the agents for defense
mechanism deployment. The use of the neutral terms (agent
and non-agent) to differentiate the security representativeness
brings forth the essence of such distinction without confining
prioritized defense deployment to one narrow scenario. For
example, in the context of proximity malware attacks, prioritized
defense deployment can support strategic sampling for detecting
malware, and prioritized patching for preventing/recovering
from malware attacks.

• In strategic sampling, the agents resemble traditional
Internet honeypots for intrusion detection [5]: They attract

2In Equation (2), we use
∫ sk+1
e1

g(m)dm, instead of
∫ t
t−W g(m)dm, as the

numerator; effectively, we cut the temporal interval [t−W, s1] and paste it to the
right of [t−W, t]; then we take an interval of length W from the right to form
the interval [s1, s1+W ], i.e., [s1, sk+1]. This ensures the temporal robustness
of the reachability metric in Theorem 1 (more specifically, in Lemma 1).



and expose propagating malware. The agents are peri-
odically checked for malware infection by enterprise IT
security staff. Prioritized defense deployment will choose
those security-wise representative smartphones as agents,
and hence, provide a quantifiable security provision for
detecting malware.

• In prioritized patching, the agents resemble the high-risk
population (prior to their immunization) and vaccine depot
(after their immunization) in human epidemiology: They are
high-risk target of malware (prior to being patched against
the malware) due to their temporal-spatial importance in
connecting the network; they are also good deliverers of
the security patches (after being patched) for the same
reason.

Strategic sampling is reactive, and prioritized patching is
proactive: Whereas an agent in the former waits for a co-
located smartphone to infect it, an agent in the latter actively
distributes patches to co-located smartphones. Nevertheless,
in both applications of prioritized defense deployment, a
smaller number of agents lowers the sampling/patching cost
for enterprise IT management, and reduces intrusiveness to
employees; it is, therefore, more desirable.

In this paper, we propose T -dominance as an approach to
implement prioritized defense deployment. In the rest of the
section, we define the concept of T -dominance (Section III-B)
and design a localized and temporally robust algorithm for
electing a T -dominating agent set in a BYOD network for
prioritized defense deployment (Section III-C).

B. T -dominance: the concept
The concept of T -dominance is defined on the filtered

reachability graph GT (P ) (Section II) over a network of
smartphones P as follows.

Definition 1 (T -dominance). Let P be a set of smartphones
and A be a subset of P called the agents. We say that the
agents A T -dominates the smartphones P at moment t if, for
any u ∈ GT (P ), either u ∈ A or u is a neighbor of an agent
a ∈ A in GT (P ).

By definition, P trivially T -dominates itself. We are interested
in a non-trivial A that T -dominates P . For prioritized defense
deployment based on T -dominance, a small A is desirable.

T -dominance quantifies the security provision in both strategic
sampling and prioritized patching (Section III-A). For example,
consider that a Wi-Fi co-location-based epidemic malware starts
to propagate at the moment t.

In strategic sampling, if the agents T -dominate the network,
it is highly likely that one of the (T -dominating) agents will
co-locate with an infected smartphone, and thus, be infected
before t+ T . Thereafter, the infection will be detected the next
time the infected agent is checked. If the periodic check is
scheduled at a cycle of T , the epidemic is highly likely to be
detected before t+2T , which is controllable by the choice of T .
Comparing to both constant monitoring and random sampling,
strategic sampling through the T -dominating agents provides
control over the trade-off between cost/intrusiveness, in terms
of the scale and frequency of the sampling, and the security
provision, in terms of the maximal detection delay.

In prioritized patching, when a piece of smartphone malware
is detected or a system vulnerability is uncovered, patches for
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Fig. 2: After exchanging auxiliary information during their encounter, agent u’s
scope expands to include another agent v’s direct acquaintance and vice versa.

preventing further exploitation can be first issued to the agents
at the moment t. The agents will then become immune to this
particular threat and will, therefore, slow down the malware’s
epidemic propagation. Furthermore, the agents can distribute the
patches to their co-located smartphones. T -dominance ensures
that most BYOD smartphones will receive the patches by
t+ T . Like in strategic sampling, prioritized patching through
T -dominating agents provides control over the trade-off between
cost/intrusiveness, in terms of the scale and frequency of the
initial patching, and the security provision, in terms of maximal
patching delay.

C. T -dominance: the algorithm
Now we have seen that the T -dominating agents serve a

specific role in prioritized defense deployment. In this section,
we present a local algorithm that runs on individual smartphones
to elect agents without central coordination. The algorithm
consists of two decision processes: activation and deactivation.
We present deactivation before activation, because activation
contains deactivation as a sub-process.

1) Agents vs. non-agents: Agents and non-agents differ in the
amount of auxiliary information they maintain: An agent keeps
track of other smartphones it shares co-location opportunities
with, while a non-agent does not. The auxiliary information helps
smartphones make informed activation/deactivation decisions
without central coordination; the differentiation in the amount
of maintained auxiliary information reduces prioritized security
deployment’s overhead for those non-agent smartphones. The
auxiliary information maintained by the agents includes co-
located smartphones’ IDs, agent/non-agent status, and connec-
tivity logs; each record is time-stamped for later consolidation.

When two smartphones are co-located (or, meet) and at least
one of them is an agent, the agent will collect information
from the other smartphone. When an agent u meets another
smartphone v, there are two scenarios.

• When agent u meets non-agent v, since a non-agent only
maintains its own auxiliary information, u can only obtain
v’s own information from v. After the meeting, u’s auxiliary
information expands to include v.

• When agent u meets another agent v, they share information
on other smartphones they directly met with. After the
meeting, u’s auxiliary information expands to include v
and v’s direct acquaintance, as illustrated in Figure 2.

In both cases, agent u forms a filtered reachability graph
GT (P ) from all the phones P within its expanded scope, and
takes the largest connected component containing itself, GD(u),
as its domination graph. Later operations will be conducted on
this domination graph GD(u).

2) Deactivation: Each agent first collects at least a time
window’s intelligence before it is eligible for deactivation. When



an agent u meets another agent v, and only after u has been
an agent for at least a temporal window W ’s time3, u makes
a decision of whether it will deactivate itself: A deactivated
agent changes into a non-agent. Deactivation reduces the number
of agents and, hence, the overall sampling/patching cost and
intrusiveness of the deployed defense mechanism.

u makes its deactivation decision based on its domination
graph GD(u). Let N(w) be the neighbors of a vertex w in
GD(u) and N [w] = N(w)∪{w} be the closed neighbor set of
w. Depending on the security context/corporate policy, u may
choose to be either aggressive or conservative in deactivating
itself. Accordingly, we propose two alternative rules that u can
follow to decide whether to deactivate itself:

• Individual. u deactivates itself if there exists an agent
w with higher priority in GD(u) so that N [w] ⊆ N [w].

• Group. u deactivates itself if there exists a connected
set of agents U in GD(u), each of which has a higher
priority than u, so that N [u] ⊆

⋃
w∈U N [w]. Such a U is

said to be a replacement of u.
The definition of the two rules implies that agents under the
Group rule are more aggressive in deactivation that those under
the Individual rule. The two rules provide a trade-off between
cost (in terms of number of agents) and responsiveness (in
terms of delay between malware infection and detection in
strategic sampling, or between patch release and distribution in
prioritized patching) in a prioritized defense deployment scheme.
The requirement for connectedness in Group is to enlist the
bridging nodes in the BYOD smartphone network (such as an
inter-departmental courier on a large corporate site) for security
defense due to their critical role in connecting the network and,
hence, higher chances of being attacked.

To complete the previous rules, u needs to decide whether w
has a higher priority than itself. Again, u can be either aggressive
or conservative: There are two alternative criteria that u can
apply to decide whether w has a higher priority than itself (let
N∩ = N(u) ∩N(w)):

• Strong. w has a priority higher than u if 1) N∩ 6= ∅;
2) ∃x ∈ N∩, r(x,w) < r(x, u); 3) ∀x ∈ N∩, r(x,w) ≤
r(x, u).

• Weak. w has higher priority than u if 1) N∩ 6= ∅; 2)∑
x∈N∩

r(x,w) <
∑

x∈N∩
r(x, u).

By definition, if an agent decides that one of its peers has a
higher priority than itself under the Strong rule, it will reach the
same conclusion under the Weak rule. Similar to Individual and
Group, Strong and Weak provide a trade-off between cost and
responsiveness in a prioritized defense deployment scheme. The
absence of equivalence in the second clauses in both criteria is
to eliminate the case that a pair of agents (wrongfully) assume
that the other party will take over the responsibility for their
dominated nodes and, hence, deactivate themselves during the
same encounter.

3) Activation: When an agent u meets a non-agent v, u
makes the decision of whether it should activate v.

One possible strategy is to activate every co-located non-agent.
Given enough contact opportunities, such a strategy leads to an
epidemic activation: Every smartphone gets activated at least
once, no matter whether it is representative. However, since some

3The intuitive explanation for this is to let the agent be well informed before
making a decision. We provide a technical justification in Section IV.

of the agents are to be deactivated later, a more discreet strategy
is desirable to avoid thrashing, i.e., employees’ smartphones get
repeatedly activated and deactivated in cycle, which consumes
computational and energy resources on the smartphones without
much security benefits.

The insight is that a non-agent should be activated unless
it is highly likely to be deactivated later. Thus, the activation
decision process comes down to measuring the likelihood of
the non-agent being deactivated later if it is activated now.

Let us consider how an agent u can decide whether to activate
a non-agent v. The activation process consists of two consecutive
stages, deactiviablity and coverage.

Deactiviability. u computes a filtered reachability graph on its
scope along with that of v, and invokes the deactivation strategy
for v on the graph (in other words, u assumes v’s perspective
and decides, if v is to make the deactivation decision, whether
v will deactivate itself). We say v is deactivable if the result
(computed by Agent u) turns out to be that v will deactivate
itself.

If v is not deactivable, u will activate v and terminate the
activation decision process.

Otherwise, if u is deactivable, Agent v will proceed to the
next stage.
Coverage. Let A(u) be the set of agents that u knows of
(including u itself). Agent u estimates v’s unique coverage
contribution to A(u) and activates v with a corresponding
probability.

The unique coverage contribution of v to A(u) is those periods
of time (within the temporal window) that none of the agents
in A(u) covers, but only v does.

Let the total length of v’s unique coverage be c(v\A(u)), and
let the total length of A(u)’s coverage be c(A(u)). u activates
v with a probability:

1− exp(−c(v\A(u))

c(A(u))
). (3)

Thus, the probability is close to 0 if v contributes little unique
coverage (c(v\A(u)) → 0) and is close to 1 if v contributes
significant unique coverage ( c(v\A(u))

c(A(u)) → ∞). In other words,
the more unique coverage v contributes, the more likely it will
be activated by u. The unique temporal coverage contribution
of the newly activated agent may help expose malware infection
in strategic sampling or deliver patches in prioritized patching.

4) T -dominance-based prioritized defense deployment: By
the activation and deactivation processes, a subset of the whole
BYOD smartphone pool are elected as agents, and the rest are
non-agents. Since the enterprise has much less central control
over employees’ BYOD devices than traditionally enterprise-
issued ones, the T -dominating agent set allows security measures
to be prioritized for those security-wise representative devices in
order to reduce security mechanisms’ cost/intrusiveness under
a quantified security provision. For example, during each round
of strategic sampling, an agent will have a higher probability
of being sampled than a non-agent; similarly, in prioritized
patching, when a new vulnerability is found, an agent will have
a higher priority of being patched early than a non-agent. Thus,
prioritized defense deployment can be formalized as follows.
Prioritized defense deployment. In deploying a repeatedly
executed/upgraded defense mechanism, let the priority of, or the



probability of deploying a security mechanism in one round on,
the agents and non-agents be p and q respectively. Prioritized
defense deployment is to have p > q.

A relatively small q reduces security overheads for those
devices that have less contacts with others and, therefore, are
less likely to spread or be infected with malware, while at
the same time not completely neglecting the security of these
relatively reclusive devices.

As a special case, p = 1 and q = 0: All the agents, and only
the agents, are sampled in each round in strategic sampling,
or patched (directly by corporate IT security staff) against
each new vulnerability in prioritized patching. Suppose there
is a bounded maximal rate of sampling or patching (due to
technological, economic, or organization-political restriction),
T -dominance-based prioritized defense deployment provides an
ordering that favors more security-wise representative devices
in the sampling/patching request queue. In Section V-B2, we
simulate this scenario over real Wi-Fi association traces.

IV. ANALYSIS

We identify a few desirable properties for an algorithm that
implements T -dominance-based prioritized defense deployment
and shows that the algorithm presented in Section III satisfies
them.

A desirable algorithm should maintain the T -dominance
structural property on a BYOD smartphone network, or, in
other words, be correct: The effectiveness of strategic sampling
and prioritized patching is contingent on the premise that the
delay (as estimated by the reachability metric) to reach most
smartphones from the agents through co-location is bounded by
T .

Property 1 (Correctness). The T -dominance structural property
is maintained by the algorithm.

If an algorithm that implements T -dominance-based prior-
itized defense deploy requires employees to forfeit their co-
location records for centralized planning, the algorithm will still
be costly for the enterprise (due to the collection and central
planning) and intrusive to the employees (due to the forfeiture).
A distinction of a BYOD enterprise network, in comparison
with a traditional enterprise-issued device network, is that it is
more costly for the enterprise to provide security support the
diverse set of devices and that the employees are more reluctant
to intrusive security measures initiated by the enterprise (since,
by definition, they belong to the employees). A key idea of
prioritized security deployment is the observation that what
matters to the enterprise is that which BYOD smartphones are
representative security-wise (so that they will be prioritized for
security mechanism deployment), rather than the detailed co-
location information; employees may prefer not going through
the chore of periodically updating with the enterprise about their
whereabouts, but only sharing the information locally with co-
located smartphones when needed. Thus, a desirable algorithm
should be localized.

Property 2 (Localization). An agent makes its activation/deac-
tivation decisions based on its own status and the connectivity
logs from other smartphones it co-locates with.

While localization (Property 2) decentralizes information
collection process among opportunistically co-located smart-

phones, the information collected by agents about its past
co-located neighbors may be outdated, and the reachability
computed from such information may be different from the
actual one at that moment. Requiring employees to constantly
or on-demandly update such information with their neighbors
induces great overheads and, therefore, negates the benefits of
decentralization. Thus, a desirable algorithm should be able to
handle outdated information while electing agents for prioritized
defense deployment.

Property 3 (Temporal robustness). Property 1 is achieved even
if the connectivity logs obtained from other smartphones during
Wi-Fi co-location is outdated.

In the rest of the section, we will show that the algorithm
presented in Section III satisfies the Properties 1–3. Because
only Deactivation (Section III-C2) may violate the properties,
and Group-Weak is the most aggressive deactivation rule, we
prove, in Theorem 1, that all three properties are satisfied by
the design under the Group-Weak rule; the cases for other less
aggressive deactivation rules are corollaries to Theorem 1. In
addition, we complement our analysis here with simulations on
real AP-association traces in Section V.

Theorem 1. If an agent a deactivates itself in its local (and
potentially outdated) view at the moment t, then, in the global
(and updated) view, each of the smartphones T -dominated by
a, including a itself, is still T -dominated by some agent at t.

We break the proof of Theorem 1 down to a series of lemmas.
Before proceeding, we need to make some extension to the
notation to be more precise. The reachability metric, as defined
in Equation (2) for two smartphones u and v, are actually defined
on snapshots of u and v connectivity logs lu and lv , respectively.
Therefore, we make this explicit by writing r(lu, lv) in place of
r(u, v).

Lemma 1 is a property of the reachability metric defined in
Equation (2).

Lemma 1. Let lu and l′u (lv and l′v) be two snapshots of the
connectivity log of smartphone u (v). If the common intervals of
l′u and l′v are all contained in those of lu and lv in the temporal
window [t−W, t], then:

r(lu, lv) ≤ r(l′u, l
′
v).

Proof: In the same notation in Equation (2), let the
common intervals of lu and lv within the window [t − W, t]
be [s1, e1], . . . , [sk, ek]; sk+1 = s1 + w. By Equation (2),
r(lu, lv) =

∑k
i=1(si+1 − ei)

2
/
2W.

Since the common intervals of l′u and l′v are all contained
in the common intervals of lu and lv in the temporal window
[t−W, t], the common intervals of l′u and l′v within the window
[t−W, t] can be represented as [si, ei], [si+1, ei+1], . . . , [sj , ej ]
for some 1 ≤ i ≤ j ≤ k. By Equation (2), r(l′u, l

′
v) =∑j

n=i(s
′
n+1 − e′n)

2
/
2W.

We have:

r(l′u, l
′
v)− r(lu, lv) =

[
(si +W − ej)

2−
i−1∑
n=1

(sn+1 − en)
2 −

k∑
n=j

(sn+1 − en)
2

/ 2W.
(4)



Since s1 < e1 < . . . < si < ei < . . . < sj < ej < . . . < sk <
ek < sk+1 = s1 +W ,

i−1∑
n=1

(sn+1 − en)
2 +

k∑
n=j

(sn+1 − en)
2

≤

[
i−1∑
n=1

(sn+1 − en)

]2

+

 k∑
n=j

(sn+1 − en)

2

≤(si − e1)
2 + (sk+1 − ej)

2

≤(si − e1 + sk+1 − ej)
2 = (si − e1 +W + s1 − ej)

2

≤(si − s1 +W + s1 − ej)
2 = (si +W − ej)

2.

(5)

By Equations (4) and (5), r(lu, lv) ≤ r(l′u, l
′
v).

In the following discussion, we use ltu(v) to denote the
snapshot of smartphone v’s connectivity log stored on an agent
u (only agents store other smartphones’ connectivity logs) at
time t, or in other words, u’s local view of v at t. By definition,
ltu(u) is u’s latest connectivity log at t, which is exactly u’s
connectivity log at t from the global view; therefore, we write
ltu(u) simply as ltu. We use ltu(u) and ltu in different contexts to
emphasize the different perspectives: The former is from u’s
local view, and the latter is from the global view.

Lemma 2 shows that, after collecting a window’s intelli-
gence, an agent’s local view on the set of smartphones that
is T -dominated by it agrees with the global view. This is
the technical justification for requiring an agent to collect a
window’s intelligence before deactivating itself.

Lemma 2. Suppose a is an agent during [t−W, t]. For each
smartphone u with r(lta, l

t
u) < +∞, we have

r(lta(a), l
t
a(u)) = r(lta, l

t
u).

Proof: Since r(lta, l
t
u) < +∞, by Definition (2), a has met

u at least once during [t − W, t]; since a is an agent during
[t − W, t], lta = lta(a) includes a record on the last meeting
between a and u. Thus, the common intervals of lta(a) and lta(u)
are exactly the same with those of lta and ltu in the temporal
window [t−W, t]. By Lemma 1, r(lta(a), l

t
a(u)) ≤ r(lta, l

t
u) and

r(lta(a), l
t
a(u)) ≥ r(lta, l

t
u). Hence r(lta(a), l

t
a(u)) = r(lta, l

t
u).

Proof of Theorem 1: a deactivates itself at t if a is an agent
during [t−W, t] and finds, in its local view, a group of agents A
with higher priorities, so that each smartphone T -dominated by a
(including a itself) is T -dominated by at least one agent from A.

By Lemma 2, a’s local view on the set of smartphones
T -dominated by itself agrees with the global view. Hence, we
only need to show that a non-agent u, which is T -dominated
by both a and another agent v ∈ A at t in a’s local view, is
actually T -dominated by some agent at t in the global view.

The proof is concluded if a’s local view on v agrees with
the global view. However, two possible discrepancies between
a’s local view and the global view demands further discussion:
connectivity log and agent status of v.

The first case is straightforward to resolve. Suppose v is still
an agent at t in the global view. Since lta(u) and la(v) are past
snapshots of ltu and ltv respectively, the common intervals of
lta(u) and la(v) are all contained in ltu and ltv in the temporal
window; by Lemma 1, r(ltu, l

t
v) ≤ r(lta(u), l

t
a(v)). Since u is

T -dominated by v in a’s local view, we have r(lta(u), l
t
a(v)) ≤ T .

Thus, r(ltu, l
t
v) ≤ T : u is T -dominated by the agent v at the

moment t in the global view.
The latter case is more involved. Suppose v is no longer an

agent at t in the global view. v must have deactivated itself and
delegated the dominance of u to a replacement w at an earlier
time t′ < t after the last encounter between a and v (w must
be an agent at the moment t′ for this to happen). Thus, lta(v) is
a past snapshot of lt

′

v(v). Since lt
′

v(u) contains all the encounters
between u and v up to the moment t′, the common intervals
of lta(u) and lta(v) are all contained in those of lt

′

v(u) and lt
′

v(v),
thus r(lt

′

v(u), l
t′

v(v)) ≤ r(lta(u), l
t
a(v)) ≤ T by Lemma 1.

Since v deactivated itself at t′ for w, r(lt
′

v(u), l
t′

v(w)) ≤
r(lt

′

v(u), l
t′

v(v)) ≤ T . Since lt
′

v(u) and lt
′

v(w) are both past snapshots
of ltu and ltw, the common intervals of lt

′

v(u) and lt
′

v(w) are con-
tained in those of ltu and ltw, thus r(ltu, l

t
w) ≤ r(lt

′

v(u), l
t′

v(w)) ≤ T
by Lemma 1. That is to say, even though v may be deactivated
at t, u is still T -dominated by the agent w delegated by v.

Thus, by the same argument on v’s replacement w at t′,
even if v has deactivated itself by t, either the replacement w
actually T -dominates u at t, or it has further delegated u to
other agents at an earlier time. By tracing back this chain of
delegation, we can eventually find, in the global view, an agent
that T -dominates u at t.

We now show that there is no loop in the chain of delegation.
Along with the fact T ≥ r(lta(a), l

t
a(u)) ≥ r(lta(u), l

t
a(v)) ≥

r(lt
′

v(u), l
t′

v(v)) ≥ r(lt
′

v(u), l
t′

v(w)) ≥ . . . we have just proved, the
non-equality requirement in the priority comparison rule ensures
that there is no loop in the chain of delegation.

V. VERIFICATION

We complement our analysis on T -dominance with simula-
tions driven by real-world collected datasets.

A. Dataset and methodology
The dataset is from the Wireless Topology Discovery (WTD)

project [6]. The dataset consists of traces collected from
over 150 UC San Diego freshmen using hand-held mobile
devices for an 11-week period. Periodic Wi-Fi AP scanning
and association results were recorded every 20 seconds. The
students participating in this experiment, though coming from
different majors, resided in the same university housing facility.
This setting resembles the arrangement in a large enterprise
site, with employees working in their designated office spaces
(corresponding to students’ dormitories). The traces capture
the mobility and connectivity patterns of a group of users in a
relatively short period of time [6].

Given the frequency of data recording (once every 20 seconds),
we transformed the periodic records into a series of sessions (a
session is defined as a device associating with an AP during a
period of time) by the following method: Consecutive records
of the same device associating with the same AP within 20
seconds were combined to form a single session.

The transformed traces were then fed into an event-driven
simulator implemented in Perl. Each session in the transformed
traces triggers two events along the time line: an association
event and a de-association event. We took the first 200 thousands



entries in the records and used the first 30% of the data for
the 190 nodes to accumulate connectivity logs, which allowed
them to simulate the agent election process later. Then, some
nodes were randomly selected as initial agents; the agents
made activation/deactivation decisions, based on the algorithm
specified in Section III. In the following scenarios, the simulation
process was repeated with different psuedo-random number
generator (PRNG) seeds to obtain the means and quartiles.

B. Scenario and results
1) T -dominating agent election: We simulated the agent

election process under the different T -dominating strategies
(Group-Strong, Group-Weak, Individual-Strong, and Individual-
Weak) with different numbers of initial agents and T . Since for a
given set of initial agents, no proximity-based activation strategy
can activate more agents than the epidemic one (the epidemic
strategy is one in which agents unconditionally activate their co-
located neighbors), we normalized the results with the epidemic
strategy to make them comparable: At a particular moment, the
number of agents elected by a T -dominance strategy is divided
by the number of agents activated by the epidemic strategy, to
obtain the normalized agent set size. We computed the means
of the results from multiple rounds of simulation, with different
PRNG seeds, to account for the potential bias introduced by a
peculiar initial setting. Figure 3 shows a representative result
with 5, 10, and 15 initial agents (out of the 190 nodes) with
T = 18, 000s (5 hours). The following are a few notes on
Figure 3:

• In terms of agent set reduction through self-deactivation,
Group-Weak is the most aggressive strategy, and Individual-
Strong is the most conservative one, while the other two
come in between, and are comparable. This confirms our
design intuition in Section III.

• The size of the initial agent set has little influence on
the size of the agent set eventually elected. The small
differences are mostly at the beginning of the process and
are difficult to notice without zooming in. One explanation
is that this dataset, like in many closed-world networks
such as in an enterprise, is well connected: Except for
maybe a few peculiar cases, an agent election process
originating from a small set of agents spreads to the whole
network quickly; the activation/deactivation process since
that moment will then converge.

• An agent election process election process consists of two
consecutive phases. The first phase (0 to around 5000
seconds in Figure 3) corresponds to the general trend of
decreases (with occasional small increases) in normalized
agent set size (NASS), and reflects the overwhelming effect
of deactivation in search of the T -dominating agent set.
The second phase (after 5000 seconds in Figure 3) is
characterized by the dynamic balance between activation
and deactivation when the T -dominanting agent set has
been activated.

2) Prioritized defense deployment: We simulated prioritized
defense deployment based on the T -dominance-elected agents.
We consider the following scenario. Following the election of
T -dominating agents as in Figure 3, the elected agents were
periodically checked for malware infection; once an infection
is detected, the infected agent would enroll itself, along with
the non-agents T -dominated by it, in a malware patching pool.

For simplicity, we considered the case in which there was no
delay in detecting agent infection: The agents were constantly
monitored for malware infection.

Independently, a smartphone was randomly selected from the
patching pool at the rate of once every ten seconds and, if the
smartphone was indeed infected, it would be patched. Patched
smartphones would then become immune to malware infection.

We compared the T -dominance-based prioritized defense
deployment, instantiated by this strategic sampling/patching
(strategic s/p) strategy, with a random sampling/patching (ran-
dom s/p) strategy. The latter periodically selected a smartphone
randomly for malware infection checking, at the same rate as in
the prioritized defense deployment (i.e., once every ten seconds).
If the selected smartphone was indeed infected, it would be
patched immediately.

We considered both epidemic and static malware models,
which correspond to proximity malware attacks and drive-by
download attacks, respectively. We assumed that an agent could
detect malware infection in co-located smartphones, and, if
malware infection was detected, would enroll its T -dominating
smartphones in the malware patching pool.

Boxplots of the results4 are shown in Figures 4 and 5 for
different numbers of initial agents (corresponds to the value in
Figure 3) and initial malware-infected smartphones.

Figure 4 shows the delay between the initial malware outbreak
and the first patching of a malware-infected smartphone. A few
notes on Figure 4:

• Strategic s/p has a shorter delay than random s/p. In other
words, the former is more responsive to malware infection
than the latter. This justifies the adoption of T -dominance
for prioritized defense deployment: By having an agent set
that T -dominants the whole smartphone pool to serve as
sampling points, malware outbreaks will be detected more
promptly.

• The delay under the static malware model with small num-
bers of initial malware-infected smartphones is relatively
long; the delay under the epidemic malware model with
large numbers of initial malware-infected smartphones is
relatively short. The explanation is that more smartphones
will be infected by the malware shortly in the latter case,
so initial sampling and ensuing patching will take less time
than the former case.

Figure 5 shows the number of malware-infected smartphones
averaged through the whole infection process (from the malware
outbreak to the moment that all malware-infected smartphones
were patched). A few notes on Figure 5:

• Under the epidemic malware model, T -dominance-based
strategic s/p has significant less average malware infections
than that of random s/p: A typical number of average
infections is 3 for strategic s/p and 13 for random s/p. The
difference is even more pronounced when there are more
initial malware infections as in the upper rightest column
with 15 initial infections.

• Even under the static malware model, where the malware
would not propagate from infected smartphones to others
and, hence, the average number of malware-infected
smartphones over time shall be less than the initial number,

4Boxplots [7] show the max/min, 75%/25% quartiles, and the median of a
group of observations.
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the strategic s/p based on the T -dominating agent set has
1 to 3 less average infections than the random s/p.

Results shown in Figures 4 and 5 collectively show the re-

sponsiveness and effectiveness of T -dominance-based prioritized
defense deployment, as instantiated by the strategic s/p, in
detecting and mitigating BYOD smartphone malware.

VI. EXTENDED DISCUSSION

Currently, we are not aware of any real-world report of
smartphone malware propagating through Wi-Fi co-location.
However, this does not mean that the attack model is purely
hypothetical or impractical. For example, a report [8] on
hijacking hotel Wi-Fi hotspots for drive-by malware attacks
on laptops comes close to what we have in mind; practical
man-in-the-middle attacks against Wi-Fi co-located devices was
demonstrated in a recent BlackHat security conference [9]. We
note that enabling environments and techniques for Wi-Fi co-
location-based smartphone malware are already in place.

• Given the complexity of the commercial smartphone
software platforms and the diversity of security awareness
and experience of application developers, it is reasonable
to believe that remote exploitable vulnerabilities will be
discovered and exploited.

• The privilege authorization frameworks on smartphone
platforms, which supposedly prevent the malware from
obtaining unwarranted privilege, are often ignored for
convenience, or circumvented for customization by the
users. Rootkits, like iOS Jailbreak5, are routinely used
by users for installing third-party applications, whose
trustworthiness is often assumed, but not verified.

• Commercially-available Wi-Fi honeypots like Wi-Fi Pineap-
ple6 enable DNS spoofing, ARP poisoning, and man-in-
the-middle attacks.

• The concentration of mobile application development on the
two major smartphone platforms (iOS and Android) greatly
reduces device heterogeneity, and thus, makes malware
epidemics possible.

Given these considerations, Wi-Fi-co-location-based smartphone
malware is likely to emerge in the near future; even worse, such
malware may have already been deployed in the real world. This
makes the study in mitigating it for a comprehensive BYOD
network security model relevant and worthwhile.

5http://www.jailbreakme.com/
6http://hakshop.myshopify.com/products/wifi-pineapple



VII. RELATED WORKS

Although BYOD features numerous recent IT industry
analyses and news reports as one prominent enterprise IT
trend in the coming years [1, 2, 3], academic studies on the
security implications of BYOD are scarce and still at an early
stage [10, 11, 12]. One explanation is that while it is agreed
that BYOD brings many benefits as well as management/security
challenges, approaches to modeling and resolving the challenges
are still being explored. In this paper, we identify the tension
between security provision and employee intrusiveness/security
mechanism deployment cost as one of the challenges for
BYOD security and propose prioritized defense deployment
as a solution.

Proximity malware has been studied previously in the
context of sensor, ad hoc, P2P, or mobile networks, with a
focus on either identifying the critical point for long-term
malware survival/extinction under various epidemiological mod-
els [13, 14, 15], or extracting and exploiting mobility pattern
and community structure for malware mitigation [16, 17, 18].
Studies on Android, one of the dominating smartphone software
platforms, show that many mobile applications are vulnerable
to attacks and malware on the Android smartphone software
platform [9, 19, 20] and that malware is rampant [21].

The fascinating topic of capturing temporal dynamics in
complex networks is studied by many previous works, of-
ten in the context of human mobility patterns captured by
telecommunication service traces [22, 23, 24]. T -dominance is
our attempt to capture the temporal dynamics in the BYOD
enterprise environment. The exploitation of temporal dynamics
for mitigating BYOD malware threat is novel.

The T -dominance algorithm is inspired by previous works on
the Connected Dominating Set (CDS) problem of topology and
routing in ad hoc and sensor networks [25, 26, 27]. However, the
interpretation of CDS for temporal dynamics, the application in
electing security-wise representative nodes in a BYOD network,
and the issue of temporal robustness are all novel.

VIII. CONCLUSION

Evidence indicates that many enterprises have adopted or are
considering adopting a BYOD IT policy. However, research
on BYOD enterprise network security is still at an early
stage; many issues are yet to be clearly identified. In this
paper, in the context of smartphone malware attacks and
widely deployed enterprise Wi-Fi infrastructures, the tension
between security provision and intrusiveness/cost is identified
as one such issue; prioritized defense deployment based on
security representativeness is one approach to address the
tension; prioritization by temporal-spatial structure through
T -dominance is one interpretation of security representativeness.
Other issues/approaches/interpretations are to be explored.

Independent from the application of T -dominance in prior-
itizing defense deployment, we briefly discuss the possibility
of abusing T -dominance in making BYOD malware attacks
stealthy. This shows, from another perspective, the importance
of understanding the temporal-spatial structure for BYOD
enterprise network security. For example, a study on the
competition between a strategic sampling/prioritized patching
scheme and an instance of stealthy malware, running the

T -dominance algorithm with different T , would be interesting.
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