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Abstract—Quick evolution, heterogeneity, interdependence 

between equipment, and many other factors induce high 

complexity to network security analysis. Although several 

approaches have proposed different analysis tools, achieving 

this task requires experienced and proficient security 

administrators who can handle all these parameters. The 

challenge is not to propose a temporary solution but to offer a 

building block for this large domain, though no approach can 

be optimal for all tasks. In previous papers, we have proposed 

a novel formal model of equipment configuration built on data 

flow attribute-based approach to detect network security 

conflicts. In this paper, we extend the previous proposed model 

in order to make it more generic by proving it can handle 

microscopic analysis. We define a formal analysis method for 

network security mechanisms. Therefore, we specify our 

approach in Colored Petri Networks to automate the conflicts 

analysis and test it on a fine-grained firewall scenario. 

Keywords—security; conflict detection; security 

configurations; formal specification; Colored Petri Nets. 

I. INTRODUCTION 

Basically, configuring network equipment often consists 
of rules referring to configuration items. All these rules are 
jointly responsible for the implementation of a behavior in 
terms of network (security) policy and must guarantee the 
administrator’s (security) objectives.  

However, each configuration rule also affects the global 
network security. If a rule is poorly defined, the global 
security might be compromised (principle of the weakest 
link in the security chain). These configuration rules follow a 
syntax and an order of configuration that are specific to each 
type of equipment. When these configurations of network 
devices are inconsistent, they may lead to abnormal or 
unexpected behavior. This results in inconsistency problem.  

To ensure the compliance of network security 
configurations to a security policy, two approaches are 
generally used for protecting data: (1) The Top/Down 
approach is followed by network management practitioners 
and consists in using different abstraction levels of 
management information that help administrators refining 
configuration from objectives. (2) Whereas the Bottom/Up 
approach consists in analyzing existing configurations on 
security devices and deducing the correctness and the 
consistency of these configurations on the network 
equipment. 

However, experience shows that these two approaches 
are often hard tasks. 

In previous papers [17, 18], we have presented data flow 
as a sequence of logical elements to match physical data 
flows and which was a sequence of bytes grouped according 
to the specifications of the network protocols. The security 
mechanisms were suggested as transformation functions 
handling data flows only. We have proven that constraints 
applied to data flow and security mechanisms can point out 
conflicts that may occur between heterogeneous 
mechanisms. In [19], we have completed this work 
improving the data flow model and have proposed a formal 
generic attribute-based model for network security 
mechanisms representation including generic formal 
configurations. We have defined generic atomic commands, 
which allow one to build transformation functions by 
combining them. The importance of a configuration model 
allows controlling the behavior of transformation functions. 
Finally, we have tested our approach through various 
mechanisms such as IPsec, FW and NAPT scenarios. 

In this paper, we made a good progress in extending the 
proposed model so that it becomes not only handle 
macroscopic models as shown in previous papers (dealing 
with technologies as black boxes) but also microscopic 
models (dealing with each mechanism – functionality – 
provided by one technology).  

The rest of this article is organized as follows. Section 2 
presents the related works. Section 3 introduces our formal 
model. Section 4 describes our model specified in Colored 
Petri Nets. Section 5, illustrates our model with a concrete 
example based on iptables technology. Finally, Section 6 
concludes and exhibits our future work.  

II. RELATED WORKS 

A variety of approaches have been proposed in the 
domain of policy conflict analysis and of detecting 
misconfigurations. For example, firewall modeling, design 
method and conflict analysis were targeted by  [1], [5], [12], 
[14] and [16]. This classification had been improved and IDS 
were introduced in [2]. Also, there was a considerable 
amount of work on detecting misconfiguration in IPSec 
tunnels, firewalls and IDS ([3], [7] and [15]). These models 
represent the reality faithfully. But, they are closely attached 
to a limited set of technologies; therefore, it is difficult to 
adapt them to other technologies. 

[4] has proposed a formal approach to determine if a 
network configuration including firewalls and IPSec 
gateways are compliant with the security objectives. The 
formalization is limited to some information contained in the 



   

IP header while our model represents all the attributes of a 
network packet. Independency from technologies has been 
considered by [6]. However, the level of abstraction defined 
for specification creates difficulties when abstract 
specification has to be transformed into real configuration. 

III. MODELING SECURITY BASED ON DATA FLOW  

We present in this section the foundation of our formal 
framework for modeling security devices based on data flow. 
First, we briefly introduce our model of data flow and data 
flow treatment that were published in [17, 18]. Then we 
define our model of configuration of devices that improves 
the one presented in [19].  

A. A Formal Data Flow-Oriented Model 

In the basic model which was published in [18], a data 
flow is a contiguous set of bytes of variable size conveyed 
over a network. We had defined our core entities by: 

· 

· 

· 

· 

· 

The history of actions of authentication and 
confidentiality performed on a data flow is maintained by 
two sets AUTHN and CONF (definition 1). 

Definition 1: Formal definition of data flows 

Based on above the definitions, we present the set of data 

flows as:  such that: 

·  is the encapsulation chain of  protocols, 

· , represents 
the attributes of the data flow that have been 
authenticated. 

· , represents the 
attributes of the data flow that have been encrypted. 

Definition 2: Basic commands 

A basic command represents the most basic treatment 
that can be applied on data flows. According to our data flow 
model, we propose nine basic commands [19]: get/add/delete 
protocol, get/modify attribute, add/delete authentication, 
add/delete confidentiality which was modeled in CPN-ML. 
Any treatment on data flows performed by a security 
mechanism will be identified as a specific combination built 
from these basic commands which we will call action. Case 
studies and complete model implementation details can be 
found in [19]. 

B. Abstract attribute-based mechanism model 

We supplement data flow model with an abstract model 
of device configuration using an attribute-based approach. 
We improve the initial stage of configuration model 

introduced in [19] to represent and configure a security 
mechanism in a generic way. 

A treatment on a data flow is performed by a specific 
mechanism with a specific configuration. A specific 
mechanism has a specific capability that represents what the 
mechanism can do. For example, a firewall can filter packets 
by analyzing IP addresses, ports, etc. The second component 
of a specific mechanism is its configuration. The 
configuration defines a specific behavior based on the 
capability of the mechanism. For example, a configuration of 
a firewall can be “if IP source address equals 1.2.3.4 and 
TCP source port is less than 1024 then deny”. This 
configuration requires the firewall to be able to (1) retrieve 
the IP source address and the TCP source port in the packet, 
(2) apply functions “IP address is equal to” and “port is less 
than”, and (3) apply action “deny”. As consequence we 
define a mechanism M as a specific capability 
CAPABILITYM and a specific configuration 
CONFIGURATIONM.  

 

1) Formal definition of the capability of a mechanism 
The following definitions are the terminology accredited 

to represent the attribute-based mechanism model. Let  

denote the set of attributes of a data flow f that can be 
fetched by a special mechanism M, and  the set of 
context attributes found in a rule of M. We call context 
attributes, attributes used in the configuration rule that are 
not contained in data flows (e.g. –o eth0 or stateful 
information in iptables rule). Each attribute is required to 
have a type that belongs to ΣM, the set of non-empty types 
recognized by M. (e.g. @ips is an attribute representing the 
source IP Address of an IP packet). 

We denote: 

· TypeM(ai) the type of the attribute ai where ai Î . 

TypeM(ai) Î ΣM. Example: IP_Address = 
TypeM(@ips) and STRING = TypeM(protoname). 

· Value(ai) the value of the attribute ai. Example: 
Value(@ips) = 10.2.1.11 

· Values(ai) the set of values for the attribute ai. 
Example: Values(@ips) = 10.2.0.0/16 (Range of IP 
Addresses) and Values(ports) = [1..1024] (Public port 
numbers). 

We denote by  the set of expressions provided by 

a given M. The type of an expression eM Î  depends 
on its functionality, i.e., the type of the results obtained when 
evaluating eM. The set of all attributes in an expression eM is 
defined as Attr(eM). 

Definition 3: Formal definition of  

Capability of mechanism M is represented by 

 Where: 

1)  is a non-empty finite set of types; 

2)  | AM={ai | 1 £ i £ k where   and 

Type(ai)  ΣM } 

3)  is a finite set of expressions. 

2) Formal definition of the configuration of a 

mechanism 
Based on these precedents capabilities, we will define the 

elements of configuration as following: 

Definition 4: Formal definition of  



   

Configuration of M is a list of rules  (definition 5) 
and a conflict resolution algorithm ‘CRA’ (definition 8) 
where both are based on one or more elements of 
CAPABILITYM (definition 3): 

 

Definition 5: Formal definition of  

A rule of M consists of a set of constraints on AM (a set 
of k fetched attributes), together with an action, ACTIONM, 
from the set of all possible actions based on basic commands 
(definition 2). 

 

Definition 6: Formal Definition of  

 is the set of Boolean expression on AM 

that must be satisfied for the action to be triggered, the 

condition can be represented in the conjunctive normal form 

. 

 

where Type(condM)=Bool and , e  ΣM 

Definition 7: Formal Definition of  

 is the set of action expressions on AM of type 

data flow (definition 1) as follow:  

                     

and Type(action)  M 

 is required to be a set of needed and necessary 

expressions (definition 2) that affect a data flow.  

Definition 8: Conflict Resolution Algorithm (CRAM) 
Conflict may occur with any set of rules where at least 

two matching rules in  have different actions: Allow, 
Deny, Protect, and so on. Mechanisms include one or more 
conflict resolution algorithms to cope with this situation. 
Examples of such algorithms are deny-takes-precedence, 
first-match-takes-precedence, more-specific-takes-
precedence, etc. 

In order to provide a unified way for representing 
conflict resolution algorithms, we reuse the work of Chinaei 
et al. [10]. 

IV. SPECIFICATION IN COLORED PETRI NETS (CPN) 

In order to facilitate the analysis detection task, we have 
specified our formalism in hierarchical colored Petri nets; 
this formal language being adapted to our issues [6] and 
featured with tools (CPN tools [13]) to validate our formal 
methodology.  

// Definition of the list of attributes 

color ATTRIBUTE = record name:STRING * value:STRING 

color ATTList = list ATTRIBUTE; 

// Definition of encapsulation chain of protocols 

color PROTOCOLID = record name :STRING * id :INT; 

color PROTOCOL = record protoid:PROTOCOLID*value:ATTList; 

color ENCAPSULATION = list PROTOCOL; 

… 

color CONF = product ATTRIBUTE*PROTOCOL*SECALGO*LEVEL ; 

color CONFLIST = list CONF; 

// Definition of data flows 

color DATAFLOW = product ENCAPSULATION*AUTHNLIST*CONFLIST; 

Fig. 1. Definition in CPN-ML of data flow  

A. Net structure and declaration of our definition in CPN 

We simulate and validate our CPN model with “CPN 
Tools”. The CPN development environment uses an 
extension of the Meta Language (ML) to formally specify 

colors of tokens, guards at transitions, and functions on arcs. 
We have translated the formal definition of data flows (Fig. 
1) and mechanism (Fig. 2) into ML. 

… 

// Definition of rules 

color RULE = product CONDITION * ACTION; 

color RULES = list RULE; 

// Definition of a list of  

color AM=product PROTOCOLID*ATTRIBUTE; 

… 

// Definition of the representation of a mechanism M 

color CONFIGURATION = product RULES*CRA; 

color M=record capab:CAPABILITY*CONFIG:CONFIGURATION; 

Fig. 2. Definition in CPN-ML of a mechanism 

B. Generic attribute-based mechanism model (GAM) 

Our objective is to provide a generic CPN model that 
could be specialized to represent any security mechanisms. 
Thanks to hierarchical CPN, this CPN can be considered as a 
black box representing the basic element for specifying any 
treatment on data flows. 

 

Fig. 3. GAM – a generic attribute-based mechanism model in CPN  

Fig. 3, displays our generic attribute-based mechanism 
model (GAM). It takes as input a DATAFLOW (place F in 
Fig. 3 tagged “In”) and returns a DATAFLOW as an output 
(place F’ in Fig. 3 tagged “Out”). The description of the 
generic mechanism is defined in place “mechanism” which 
contains the capability and the configuration of the 
mechanism. Finally, the contextual attributes  are stored 
in place “memory”. This memory could be used for 
representing stateful mechanisms [11]. In addition, place 
“memory” can be shared by different generic mechanisms. 

Informally, the behavior of the GAM is the following: 

Input: (DATAFLOW, M) 

Output: (DATAFLOW) 

Step 1: getAM(DATAFLOW, M) 

This function retrieves the perceived attributes  from 

the dataflow (variable condition) 

Step 2: Matching(DATAFLOW, M, AMD) 

2.1 This function returns all the rules that match the 

attributes retrieved in the dataflow and the memory. 

2.2 If there is at most one matching rule in the list 

“match”, go to step 4. 

Step 3: CRA(DATAFLOW, RULES, CONFIGURATION) 

At this point, the matching list contains at least two rules 
(obtained via step2). CRA (definition 8) will be applied in 
order to rearrange and remove rules that won’t be applied 
and then go to step 4. 

Step 4: ApplyAction(DATAFLOW, RULES) 



   

Actions of matching rules are applied. The result is a 
dataflow which could be empty, unchanged or modified. 

V. CASE STUDY 

In this section, we present the modeling of the iptables 
technology [11] to prove that our approach can be used for 
fine grained specifications. First, we introduce iptables, 
especially its capability to filter and tag dataflows. Then we 
present a use case related to filtering and routing. Finally, we 
specify this example and show how we can discover 
conflicts. 

A. Introduction to iptables 

Iptables is an IP Filter which is shipped with Linux 
kernel [11]. Technically speaking, an IP filter will work on 
Network layer in TCP/IP stack but actually iptables work on 
data link and transport layer as well. In a broad sense, 
iptables consists of tables (Raw, Mangle, NAT, and Filter). 
Each table has a number of build-in chains (PREROUTING, 
INPUT, FORWARD, OUTPUT and POSTROUTING) 
which is further comprised of rules e.g. PREROUTING is 
used by raw, mangle and nat tables.  

In their journey in the TCP/IP stack, packets traverse the 
different chains. If the packet is coming from the network, it 
enters in the PREROUTING chain. Then, a routing decision 
is taken. Depending on the routing decision, the packet is 
sent to the INPUT chain if the destination is the local host or 
the FORWARD and the POSTROUTING chains if the 
destination is a remote host. If a local process sends a packet, 
it passes through the OUTPUT and PREROUTING chains. 
For more details refer to the following tutorial [11]. 

Tables consist of the set of possible actions that iptables 
can perform (Table Filter is for filtering, table NAT is for 
DNAT/NAPT). A less known table is MANGLE. A mangle 
rule allows setting marks on packets. These marks can be 
used in future processing in their rules’ conditions. They 
identify a packet based on its mark and process it 
accordingly. The mangle marks exist only within the same 
Linux system. The mark cannot be transmitted across the 
network. In addition, the mangle facility is used to modify 
some fields in the IP header, like type of service TOS 
(DSCP) and TTL fields.  

B. Description of the iptables scenario 

Let’s consider an administrator who wants to configure 
Linux router R1 (Fig. 4). The administrator has to configure 
the system for (1) routing SMTP packets to 192.168.2.2, and 
(2) filtering specific packets. 

 
Fig. 4. iptables configuration scenario 

1) Routing SMTP packets 
The administrator has to configure R1 to route every 

SMTP packets to 192.168.2.2 (router R2). However, the 
default route is set to 192.168.3.2 (router R3). Theoretically, 
routing is based on destination IP addresses only. However, 
the administrator has read the tutorial in [8] that explains 
how to use iptables to route packets based on ports. The idea 
is to use the mangle table to mark SMTP packets and to use 
this mark for routing them. 

Following this technique, the administrator creates a rule 
in the PREROUTING chain to set ‘1’ in the mark for SMTP 
packets using the command “--set-xmark” that adds a 
specific value to the current mark: 

# iptables -t mangle -A PREROUTING -p tcp --dport 25 -j 

MARK --set-xmark 0×1/0×0 

Since the packets are marked with a ‘1’, the following 
instruction in the routing policy database aims to let 
outgoing mail be sent via router R2: 

# echo 201 mail.out >> /etc/iproute2/rt_tables 

# ip rule add fwmark 0×1 table mail.out 

# /sbin/ip route add default via 196.168.2.2 dev eth2 table 

mail.out 

1) Filtering packets: 
The administrator wants to filter packets addressed to 

192.168.2.0/24 with destination port less than 1024. He reads 
a tutorial [9] that explains how to use table mangle as a good 
way “to use groups when writing rules, which can simplify 
things if you’ve got a potentially large rulebase”. 

Following the example provided in [9], the administrator 
has grouped rules in the FORWARD chain intents to filter it. 
The setup is to mark with a ‘1’ the packet addressed to the 
192.168.2.0/24 network and with a ‘2’ the ones addressed to 
port between 0 and 1024. If a packet comes out with a mark 
equals ‘3’, it will be dropped. This allows splitting rules in 
groups related to destination IP addresses and destination 
ports. 

# iptables –t mangle -A FORWARD –d 192.168.2.0/24 -j 

MARK –set-xmark 0×1/0×0 

# iptables –t mangle -A FORWARD -p tcp –dport :1024 -j 

MARK –set-xmark 0×2/0×0 

# iptables -A FORWARD -m mark –mark 0×3 –j DROP 

2) The problem 
The administrator discovers that a packet for 192.168.2.2 

with destination port equals to 25 is forwarded instead of 
being dropped. And when destination IP address is  
192.168.3.2 with destination port 25, the packet is dropped 
instead of being routed to R2. 

C. CPN iptables Scenario 

We propose to analyze this scenario with our approach. 
The interaction between mechanisms in the iptables 
technology is implemented in CPN tools. Each table in the 
iptables chains is modeled using a GAM specialized with 
specific capabilities and configuration corresponding to 
prerouting mangle, routing, forward mangle and forward 
filter (Fig. 5). Different approaches could be used to specify 
the mangle mark that is set to a packet. We have decided to 
represent it in the dataflow. Thus, the first mangle GAM 



   

transforms a dataflow f =(< …,ip1,tcp1,… >,{},{}) into dataflow f' =(<(mangle-mark,{<fwmark,1>}),..,ip1,tcp1,..>, 

{},{}). Another approach could have been to represent it 
in a shared memory, i.e., the first mangle GAM does not 
modify the dataflow, but add in the shared memory the mark 
that can be reused by other GAM. We prefer to use the first 
approach because the mark is a packet metadata in the Linux 
kernel. 

 
Fig. 5. Navigating through marking menus 

Analysis of conflicts can be done by following data flows 
in each GAM (Mangle_1, router, Mangle_2 or Filter). When 
injecting a dataflow where destination IP address is equal to 
192.168.2.2 and the destination port equals to 25, value of 
attribute “fwmark” of protocol “mangle-mark” is equal to 4 
in the GAM Filter (Mangle_1 sets mark to ‘1’ and Mangle_2 
adds ‘3’ to the mark). As consequence, the packet is 
forwarded (Fig. 6). 

 

Fig. 6. Accepted data flow by GAM Filter 

When injecting a dataflow where destination IP address 
is equal to 192.168.3.2 and the destination port equals to 25, 
value of attribute “fwmark” of protocol “mangle-mark” is 
equal to 3 in GAM Filter (Mangle_1 sets mark to ‘1’ and 
Mangle_2 adds ‘2’ to the mark). Thus, the packet is dropped 
by the GAM filter (Fig. 7). 

  

Fig. 7. Dropped data flow by GAM Filter 

VI. CONCLUSION 

In this paper, we have presented a formal data flow-
oriented approach for specifying security mechanisms. This 
work improves our previous results by (1) enhancing the 
model of mechanisms and their configurations, and (2) 

proving our approach can specify complex and fine grained 
security scenarios. In addition, our model of mechanism 
being generic and can be specialized without being modified. 
The whole approach has been represented in CPN for 
facilitating the use of this model. 

Analysis of security conflicts is currently done by 
simulation only. Our future work will try to help/automate 
analysis by allowing analyzers to set properties in temporal 
logic that will be automatically checked by a tool. For 
example, looking at dataflow token with certain 
characteristics in some place at some point. Our aim is to 
provide a model-checking based tool such as [6]. 
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