
HAL Id: hal-04083309
https://hal.science/hal-04083309

Submitted on 27 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spécification Method for Analyzing Fine Grained
Network Security Mechanism Configurations

Hicham El Khoury, Romain Laborde, François Barrère, Abdelmalek Benzekri,
Chamoun Maroun

To cite this version:
Hicham El Khoury, Romain Laborde, François Barrère, Abdelmalek Benzekri, Chamoun Maroun.
Spécification Method for Analyzing Fine Grained Network Security Mechanism Configurations. 6th
Symposium on Security Analytics and Automation 2013 (SafeConfig 2013), Oct 2013, Washington,
D.C., United States. pp.483-487, �10.1109/CNS.2013.6682764�. �hal-04083309�

https://hal.science/hal-04083309
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 12724

To link to this article : doi: 10.1109/CNS.2013.6682764
URL : http://dx.doi.org/10.1109/CNS.2013.6682764

To cite this version : El Khoury, Hicham and Laborde, Romain and
Barrère, François and Benzekri, Abdelmalek and Chamoun, Maroun
Spécification Method for Analyzing Fine Grained Network Security
Mechanism Configurations. (2013) In: 6th Symposium on Security
Analytics and Automation 2013 (SafeConfig 2013), 14 October 2013 -
16 October 2013 (Washington, D.C., United States)

Any correspondance concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

A Specification Method for Analyzing Fine Grained

Network Security Mechanism Configurations

El Khoury Hicham, Laborde Romain,

Barrère François, Benzekri Abdelmalek

IRIT University Paul Sabatier

Toulouse, France

hkhoury@ul.edu.lb, Romain.Laborde@irit.fr,

Francois.Barrere@irit.fr, Abdelmalek.Benzekri@irit.fr

Chamoun Maroun

Saint Joseph University

Beirut, Lebanon

maroun.chamoun@usj.edu.lb

Abstract—Quick evolution, heterogeneity, interdependence

between equipment, and many other factors induce high

complexity to network security analysis. Although several

approaches have proposed different analysis tools, achieving

this task requires experienced and proficient security

administrators who can handle all these parameters. The

challenge is not to propose a temporary solution but to offer a

building block for this large domain, though no approach can

be optimal for all tasks. In previous papers, we have proposed

a novel formal model of equipment configuration built on data

flow attribute-based approach to detect network security

conflicts. In this paper, we extend the previous proposed model

in order to make it more generic by proving it can handle

microscopic analysis. We define a formal analysis method for

network security mechanisms. Therefore, we specify our

approach in Colored Petri Networks to automate the conflicts

analysis and test it on a fine-grained firewall scenario.

Keywords—security; conflict detection; security

configurations; formal specification; Colored Petri Nets.

I. INTRODUCTION

Basically, configuring network equipment often consists
of rules referring to configuration items. All these rules are
jointly responsible for the implementation of a behavior in
terms of network (security) policy and must guarantee the
administrator’s (security) objectives.

However, each configuration rule also affects the global
network security. If a rule is poorly defined, the global
security might be compromised (principle of the weakest
link in the security chain). These configuration rules follow a
syntax and an order of configuration that are specific to each
type of equipment. When these configurations of network
devices are inconsistent, they may lead to abnormal or
unexpected behavior. This results in inconsistency problem.

To ensure the compliance of network security
configurations to a security policy, two approaches are
generally used for protecting data: (1) The Top/Down
approach is followed by network management practitioners
and consists in using different abstraction levels of
management information that help administrators refining
configuration from objectives. (2) Whereas the Bottom/Up
approach consists in analyzing existing configurations on
security devices and deducing the correctness and the
consistency of these configurations on the network
equipment.

However, experience shows that these two approaches
are often hard tasks.

In previous papers [17, 18], we have presented data flow
as a sequence of logical elements to match physical data
flows and which was a sequence of bytes grouped according
to the specifications of the network protocols. The security
mechanisms were suggested as transformation functions
handling data flows only. We have proven that constraints
applied to data flow and security mechanisms can point out
conflicts that may occur between heterogeneous
mechanisms. In [19], we have completed this work
improving the data flow model and have proposed a formal
generic attribute-based model for network security
mechanisms representation including generic formal
configurations. We have defined generic atomic commands,
which allow one to build transformation functions by
combining them. The importance of a configuration model
allows controlling the behavior of transformation functions.
Finally, we have tested our approach through various
mechanisms such as IPsec, FW and NAPT scenarios.

In this paper, we made a good progress in extending the
proposed model so that it becomes not only handle
macroscopic models as shown in previous papers (dealing
with technologies as black boxes) but also microscopic
models (dealing with each mechanism – functionality –
provided by one technology).

The rest of this article is organized as follows. Section 2
presents the related works. Section 3 introduces our formal
model. Section 4 describes our model specified in Colored
Petri Nets. Section 5, illustrates our model with a concrete
example based on iptables technology. Finally, Section 6
concludes and exhibits our future work.

II. RELATED WORKS

A variety of approaches have been proposed in the
domain of policy conflict analysis and of detecting
misconfigurations. For example, firewall modeling, design
method and conflict analysis were targeted by [1], [5], [12],
[14] and [16]. This classification had been improved and IDS
were introduced in [2]. Also, there was a considerable
amount of work on detecting misconfiguration in IPSec
tunnels, firewalls and IDS ([3], [7] and [15]). These models
represent the reality faithfully. But, they are closely attached
to a limited set of technologies; therefore, it is difficult to
adapt them to other technologies.

[4] has proposed a formal approach to determine if a
network configuration including firewalls and IPSec
gateways are compliant with the security objectives. The
formalization is limited to some information contained in the

IP header while our model represents all the attributes of a
network packet. Independency from technologies has been
considered by [6]. However, the level of abstraction defined
for specification creates difficulties when abstract
specification has to be transformed into real configuration.

III. MODELING SECURITY BASED ON DATA FLOW

We present in this section the foundation of our formal
framework for modeling security devices based on data flow.
First, we briefly introduce our model of data flow and data
flow treatment that were published in [17, 18]. Then we
define our model of configuration of devices that improves
the one presented in [19].

A. A Formal Data Flow-Oriented Model

In the basic model which was published in [18], a data
flow is a contiguous set of bytes of variable size conveyed
over a network. We had defined our core entities by:

·

·

·

·

·

The history of actions of authentication and
confidentiality performed on a data flow is maintained by
two sets AUTHN and CONF (definition 1).

Definition 1: Formal definition of data flows

Based on above the definitions, we present the set of data

flows as: such that:

· is the encapsulation chain of protocols,

· , represents
the attributes of the data flow that have been
authenticated.

· , represents the
attributes of the data flow that have been encrypted.

Definition 2: Basic commands

A basic command represents the most basic treatment
that can be applied on data flows. According to our data flow
model, we propose nine basic commands [19]: get/add/delete
protocol, get/modify attribute, add/delete authentication,
add/delete confidentiality which was modeled in CPN-ML.
Any treatment on data flows performed by a security
mechanism will be identified as a specific combination built
from these basic commands which we will call action. Case
studies and complete model implementation details can be
found in [19].

B. Abstract attribute-based mechanism model

We supplement data flow model with an abstract model
of device configuration using an attribute-based approach.
We improve the initial stage of configuration model

introduced in [19] to represent and configure a security
mechanism in a generic way.

A treatment on a data flow is performed by a specific
mechanism with a specific configuration. A specific
mechanism has a specific capability that represents what the
mechanism can do. For example, a firewall can filter packets
by analyzing IP addresses, ports, etc. The second component
of a specific mechanism is its configuration. The
configuration defines a specific behavior based on the
capability of the mechanism. For example, a configuration of
a firewall can be “if IP source address equals 1.2.3.4 and
TCP source port is less than 1024 then deny”. This
configuration requires the firewall to be able to (1) retrieve
the IP source address and the TCP source port in the packet,
(2) apply functions “IP address is equal to” and “port is less
than”, and (3) apply action “deny”. As consequence we
define a mechanism M as a specific capability
CAPABILITYM and a specific configuration
CONFIGURATIONM.

1) Formal definition of the capability of a mechanism
The following definitions are the terminology accredited

to represent the attribute-based mechanism model. Let

denote the set of attributes of a data flow f that can be
fetched by a special mechanism M, and the set of
context attributes found in a rule of M. We call context
attributes, attributes used in the configuration rule that are
not contained in data flows (e.g. –o eth0 or stateful
information in iptables rule). Each attribute is required to
have a type that belongs to ΣM, the set of non-empty types
recognized by M. (e.g. @ips is an attribute representing the
source IP Address of an IP packet).

We denote:

· TypeM(ai) the type of the attribute ai where ai Î .

TypeM(ai) Î ΣM. Example: IP_Address =
TypeM(@ips) and STRING = TypeM(protoname).

· Value(ai) the value of the attribute ai. Example:
Value(@ips) = 10.2.1.11

· Values(ai) the set of values for the attribute ai.
Example: Values(@ips) = 10.2.0.0/16 (Range of IP
Addresses) and Values(ports) = [1..1024] (Public port
numbers).

We denote by the set of expressions provided by

a given M. The type of an expression eM Î depends
on its functionality, i.e., the type of the results obtained when
evaluating eM. The set of all attributes in an expression eM is
defined as Attr(eM).

Definition 3: Formal definition of

Capability of mechanism M is represented by

 Where:

1) is a non-empty finite set of types;

2) | AM={ai | 1 £ i £ k where and

Type(ai) ΣM }

3) is a finite set of expressions.

2) Formal definition of the configuration of a

mechanism
Based on these precedents capabilities, we will define the

elements of configuration as following:

Definition 4: Formal definition of

Configuration of M is a list of rules (definition 5)
and a conflict resolution algorithm ‘CRA’ (definition 8)
where both are based on one or more elements of
CAPABILITYM (definition 3):

Definition 5: Formal definition of

A rule of M consists of a set of constraints on AM (a set
of k fetched attributes), together with an action, ACTIONM,
from the set of all possible actions based on basic commands
(definition 2).

Definition 6: Formal Definition of

 is the set of Boolean expression on AM

that must be satisfied for the action to be triggered, the

condition can be represented in the conjunctive normal form

.

where Type(condM)=Bool and , e ΣM

Definition 7: Formal Definition of

 is the set of action expressions on AM of type

data flow (definition 1) as follow:

and Type(action) M

 is required to be a set of needed and necessary

expressions (definition 2) that affect a data flow.

Definition 8: Conflict Resolution Algorithm (CRAM)
Conflict may occur with any set of rules where at least

two matching rules in have different actions: Allow,
Deny, Protect, and so on. Mechanisms include one or more
conflict resolution algorithms to cope with this situation.
Examples of such algorithms are deny-takes-precedence,
first-match-takes-precedence, more-specific-takes-
precedence, etc.

In order to provide a unified way for representing
conflict resolution algorithms, we reuse the work of Chinaei
et al. [10].

IV. SPECIFICATION IN COLORED PETRI NETS (CPN)

In order to facilitate the analysis detection task, we have
specified our formalism in hierarchical colored Petri nets;
this formal language being adapted to our issues [6] and
featured with tools (CPN tools [13]) to validate our formal
methodology.

// Definition of the list of attributes

color ATTRIBUTE = record name:STRING * value:STRING

color ATTList = list ATTRIBUTE;

// Definition of encapsulation chain of protocols

color PROTOCOLID = record name :STRING * id :INT;

color PROTOCOL = record protoid:PROTOCOLID*value:ATTList;

color ENCAPSULATION = list PROTOCOL;

…

color CONF = product ATTRIBUTE*PROTOCOL*SECALGO*LEVEL ;

color CONFLIST = list CONF;

// Definition of data flows

color DATAFLOW = product ENCAPSULATION*AUTHNLIST*CONFLIST;

Fig. 1. Definition in CPN-ML of data flow

A. Net structure and declaration of our definition in CPN

We simulate and validate our CPN model with “CPN
Tools”. The CPN development environment uses an
extension of the Meta Language (ML) to formally specify

colors of tokens, guards at transitions, and functions on arcs.
We have translated the formal definition of data flows (Fig.
1) and mechanism (Fig. 2) into ML.

…

// Definition of rules

color RULE = product CONDITION * ACTION;

color RULES = list RULE;

// Definition of a list of

color AM=product PROTOCOLID*ATTRIBUTE;

…

// Definition of the representation of a mechanism M

color CONFIGURATION = product RULES*CRA;

color M=record capab:CAPABILITY*CONFIG:CONFIGURATION;

Fig. 2. Definition in CPN-ML of a mechanism

B. Generic attribute-based mechanism model (GAM)

Our objective is to provide a generic CPN model that
could be specialized to represent any security mechanisms.
Thanks to hierarchical CPN, this CPN can be considered as a
black box representing the basic element for specifying any
treatment on data flows.

Fig. 3. GAM – a generic attribute-based mechanism model in CPN

Fig. 3, displays our generic attribute-based mechanism
model (GAM). It takes as input a DATAFLOW (place F in
Fig. 3 tagged “In”) and returns a DATAFLOW as an output
(place F’ in Fig. 3 tagged “Out”). The description of the
generic mechanism is defined in place “mechanism” which
contains the capability and the configuration of the
mechanism. Finally, the contextual attributes are stored
in place “memory”. This memory could be used for
representing stateful mechanisms [11]. In addition, place
“memory” can be shared by different generic mechanisms.

Informally, the behavior of the GAM is the following:

Input: (DATAFLOW, M)

Output: (DATAFLOW)

Step 1: getAM(DATAFLOW, M)

This function retrieves the perceived attributes from

the dataflow (variable condition)

Step 2: Matching(DATAFLOW, M, AMD)

2.1 This function returns all the rules that match the

attributes retrieved in the dataflow and the memory.

2.2 If there is at most one matching rule in the list

“match”, go to step 4.

Step 3: CRA(DATAFLOW, RULES, CONFIGURATION)

At this point, the matching list contains at least two rules
(obtained via step2). CRA (definition 8) will be applied in
order to rearrange and remove rules that won’t be applied
and then go to step 4.

Step 4: ApplyAction(DATAFLOW, RULES)

Actions of matching rules are applied. The result is a
dataflow which could be empty, unchanged or modified.

V. CASE STUDY

In this section, we present the modeling of the iptables
technology [11] to prove that our approach can be used for
fine grained specifications. First, we introduce iptables,
especially its capability to filter and tag dataflows. Then we
present a use case related to filtering and routing. Finally, we
specify this example and show how we can discover
conflicts.

A. Introduction to iptables

Iptables is an IP Filter which is shipped with Linux
kernel [11]. Technically speaking, an IP filter will work on
Network layer in TCP/IP stack but actually iptables work on
data link and transport layer as well. In a broad sense,
iptables consists of tables (Raw, Mangle, NAT, and Filter).
Each table has a number of build-in chains (PREROUTING,
INPUT, FORWARD, OUTPUT and POSTROUTING)
which is further comprised of rules e.g. PREROUTING is
used by raw, mangle and nat tables.

In their journey in the TCP/IP stack, packets traverse the
different chains. If the packet is coming from the network, it
enters in the PREROUTING chain. Then, a routing decision
is taken. Depending on the routing decision, the packet is
sent to the INPUT chain if the destination is the local host or
the FORWARD and the POSTROUTING chains if the
destination is a remote host. If a local process sends a packet,
it passes through the OUTPUT and PREROUTING chains.
For more details refer to the following tutorial [11].

Tables consist of the set of possible actions that iptables
can perform (Table Filter is for filtering, table NAT is for
DNAT/NAPT). A less known table is MANGLE. A mangle
rule allows setting marks on packets. These marks can be
used in future processing in their rules’ conditions. They
identify a packet based on its mark and process it
accordingly. The mangle marks exist only within the same
Linux system. The mark cannot be transmitted across the
network. In addition, the mangle facility is used to modify
some fields in the IP header, like type of service TOS
(DSCP) and TTL fields.

B. Description of the iptables scenario

Let’s consider an administrator who wants to configure
Linux router R1 (Fig. 4). The administrator has to configure
the system for (1) routing SMTP packets to 192.168.2.2, and
(2) filtering specific packets.

Fig. 4. iptables configuration scenario

1) Routing SMTP packets
The administrator has to configure R1 to route every

SMTP packets to 192.168.2.2 (router R2). However, the
default route is set to 192.168.3.2 (router R3). Theoretically,
routing is based on destination IP addresses only. However,
the administrator has read the tutorial in [8] that explains
how to use iptables to route packets based on ports. The idea
is to use the mangle table to mark SMTP packets and to use
this mark for routing them.

Following this technique, the administrator creates a rule
in the PREROUTING chain to set ‘1’ in the mark for SMTP
packets using the command “--set-xmark” that adds a
specific value to the current mark:

iptables -t mangle -A PREROUTING -p tcp --dport 25 -j

MARK --set-xmark 0×1/0×0

Since the packets are marked with a ‘1’, the following
instruction in the routing policy database aims to let
outgoing mail be sent via router R2:

echo 201 mail.out >> /etc/iproute2/rt_tables

ip rule add fwmark 0×1 table mail.out

/sbin/ip route add default via 196.168.2.2 dev eth2 table

mail.out

1) Filtering packets:
The administrator wants to filter packets addressed to

192.168.2.0/24 with destination port less than 1024. He reads
a tutorial [9] that explains how to use table mangle as a good
way “to use groups when writing rules, which can simplify
things if you’ve got a potentially large rulebase”.

Following the example provided in [9], the administrator
has grouped rules in the FORWARD chain intents to filter it.
The setup is to mark with a ‘1’ the packet addressed to the
192.168.2.0/24 network and with a ‘2’ the ones addressed to
port between 0 and 1024. If a packet comes out with a mark
equals ‘3’, it will be dropped. This allows splitting rules in
groups related to destination IP addresses and destination
ports.

iptables –t mangle -A FORWARD –d 192.168.2.0/24 -j

MARK –set-xmark 0×1/0×0

iptables –t mangle -A FORWARD -p tcp –dport :1024 -j

MARK –set-xmark 0×2/0×0

iptables -A FORWARD -m mark –mark 0×3 –j DROP

2) The problem
The administrator discovers that a packet for 192.168.2.2

with destination port equals to 25 is forwarded instead of
being dropped. And when destination IP address is
192.168.3.2 with destination port 25, the packet is dropped
instead of being routed to R2.

C. CPN iptables Scenario

We propose to analyze this scenario with our approach.
The interaction between mechanisms in the iptables
technology is implemented in CPN tools. Each table in the
iptables chains is modeled using a GAM specialized with
specific capabilities and configuration corresponding to
prerouting mangle, routing, forward mangle and forward
filter (Fig. 5). Different approaches could be used to specify
the mangle mark that is set to a packet. We have decided to
represent it in the dataflow. Thus, the first mangle GAM

transforms a dataflow f =(< …,ip1,tcp1,… >,{},{}) into dataflow f' =(<(mangle-mark,{<fwmark,1>}),..,ip1,tcp1,..>,

{},{}). Another approach could have been to represent it
in a shared memory, i.e., the first mangle GAM does not
modify the dataflow, but add in the shared memory the mark
that can be reused by other GAM. We prefer to use the first
approach because the mark is a packet metadata in the Linux
kernel.

Fig. 5. Navigating through marking menus

Analysis of conflicts can be done by following data flows
in each GAM (Mangle_1, router, Mangle_2 or Filter). When
injecting a dataflow where destination IP address is equal to
192.168.2.2 and the destination port equals to 25, value of
attribute “fwmark” of protocol “mangle-mark” is equal to 4
in the GAM Filter (Mangle_1 sets mark to ‘1’ and Mangle_2
adds ‘3’ to the mark). As consequence, the packet is
forwarded (Fig. 6).

Fig. 6. Accepted data flow by GAM Filter

When injecting a dataflow where destination IP address
is equal to 192.168.3.2 and the destination port equals to 25,
value of attribute “fwmark” of protocol “mangle-mark” is
equal to 3 in GAM Filter (Mangle_1 sets mark to ‘1’ and
Mangle_2 adds ‘2’ to the mark). Thus, the packet is dropped
by the GAM filter (Fig. 7).

Fig. 7. Dropped data flow by GAM Filter

VI. CONCLUSION

In this paper, we have presented a formal data flow-
oriented approach for specifying security mechanisms. This
work improves our previous results by (1) enhancing the
model of mechanisms and their configurations, and (2)

proving our approach can specify complex and fine grained
security scenarios. In addition, our model of mechanism
being generic and can be specialized without being modified.
The whole approach has been represented in CPN for
facilitating the use of this model.

Analysis of security conflicts is currently done by
simulation only. Our future work will try to help/automate
analysis by allowing analyzers to set properties in temporal
logic that will be automatically checked by a tool. For
example, looking at dataflow token with certain
characteristics in some place at some point. Our aim is to
provide a model-checking based tool such as [6].

REFERENCES

[1] E. Al-Shaer, H. Hamed, “Discovery of Policy Anomalies in
Distributed Firewalls”, in IEEE INFOCOM, 2004.

[2] J. Alfaro, N. Cuppens, F. Cuppens, “Complete analysis of
configuration rules to guarantee reliable network security policies”, in
International Journal of Information Security, 7(2), 2008.

[3] Z. Fu, F. Wu, H. Huang, K. Loh, F. Gong, I. Baldine, C. Xu,
“IPSec/VPN Security Policy: Correctness, Conflict Detection and
Resolution”, in IEEE POLICY, 2001.

[4] J. Guttman, A. Herzog, “Rigorous automated network security
management”, in International Journal of Information Security, 4(3),
2005.

[5] H. Hamed, E. Al-Shaer, “Taxonomy of Conflicts in Network Security
Policies”, in IEEE INFOCOM, 2006.

[6] R. Laborde, M. Kamel, F. Barrère, and A. Benzekri, “Implementation
of a Formal Security Policy Refinement Process in WBEM
Architecture”, Journal of Network and Systems Management, 15(2),
2007.

[7] S. Preda, “Reliable context aware security policy deployment with
applications to IPv6 environments”, PhD thesis, Télécom Bretagne,
2010.

[8] Tutorial-1, www.lartc.org (Accessed in 26 June 2013).

[9] Tutorial-2, www.andys.org.uk/bits/2010/01/27/iptables-fun-with-
mark (Accessed in 26 June 2013).

[10] A. Chinaei, H. Chinaei, F. Tompa. “A Unified Conflict Resolution
Algorithm” in SDM 2007, LNCS 4721, pp. 1–17, 2007.

[11] iptables, www.frozentux.net/iptables-tutorial (Accessed in 26 June
2013).

[12] E. Al-Shaer, S. AL-Haj, “FlowChecker: Configuration Analysis and
Verification of Federated OpenFlow Infrastructures”. In SafeConfig
2010.

[13] CPN Tools, www.cpntools.org (Accessed in 26 June 2013).

[14] E. Al-Shaer, W. Marrero, A. El-Atawy,K. ElBadawi, “Network
configuration in a box: towards end-to-end verification of network
reachability and security”. In ICNP 2009.

[15] F. Cuppens, N. cuppens-Boulahia, J. Garcia-Alfaro, T. Moataz, X.
Rimasson “Handling Stateful Firewall Anomalies”. IFIP SEC 2012.

[16] A. Liu, M. Gouda, “Diverse Firewall Design”, IEEE Transactions on
parallel and distributed systems, 19(9), 2008.

[17] H. El Khoury, R. Laborde, F. Barrère, A. Benzekri, M. Chamoun, “A
Generic Data Flow Security Model” (poster). SafeConfig 2011.

[18] H. El Khoury, R. Laborde, F. Barrère, M. Chamoun, A. Benzekri, “A
Formal Data Flow-Oriented Model For Distributed Network Security
Conflicts Detection”. In ICNS 2012.

[19] H. El Khoury, R. Laborde, M. Chamoun, F. Barrère, A. Benzekri, “A
Generic Attribute-Based Model for Network Security Mechanisms
Representation and Configuration”, in FCST 2012.

