
Flexible and Publicly Verifiable Aggregation Query
for Outsourced Databases in Cloud

Jiawei Yuan
Department of Computer Science

University of Arkansas at Little Rock, USA
Email: jxyuan@ualr.edu

Shucheng Yu
Department of Computer Science

University of Arkansas at Little Rock, USA
Email: sxyu1@ualr.edu

Abstract—For securing databases outsourced to the cloud, it
is important to allow cloud users to verify that their queries to
the cloud-hosted databases are correctly executed by the cloud.
Existing solutions on this issue suffer from a high communication
cost, a heavy storage overhead or an overwhelming computational
cost on clients. Besides, only simple SQL queries (e.g., selection
query, projection query, weighted sum query, etc) are supported
in existing solutions. For practical considerations, it is desirable
to design a client-verifiable (or publicly verifiable) aggregation
query scheme that supports more flexible queries with affordable
storage overhead, communication and computational cost for
users. This paper investigates this challenging problem and
proposes an efficient publicly verifiable aggregation query scheme
for databases outsourced to the cloud. By designing a renewable
polynomial-based authentication tag, our scheme supports a wide
range of practical SQL queries including polynomial queries
of any degrees, variance query and many other linear queries.
Remarkably, our proposed scheme only introduces constant com-
munication and computational cost to cloud users. Our scheme
is provably secure under the Static Diffie-Hellman problem, the
t-Strong Diffie-Hellman problem and the Computational Diffie-
Hellman problem. We show the efficiency and scalability of our
scheme through extensive numerical analysis.

I. INTRODUCTION

By outsourcing databases to the cloud, cloud users enjoy
data sharing across geographical boundaries in addition to
other benefits such as cost saving, on-demand self-service,
resource elasticity, etc [15]. Despite appealing advantages,
outsourcing databases to cloud also raises security concerns
even for non-confidential databases. In particular, clients who
query database outsourced to the cloud may wonder whether
or not their queries are always correctly executed by cloud
servers. This is because large-scale cloud infrastructures may
suffer from hardware/software failures, errors caused by hu-
man operations, and even malicious attacks [1], [2]. To specify,
clients need to verify the integrity and completeness of their
queries over the outsourced databases: for any query request,
we need to assure that the query is executed by the cloud on
correct data and the returned results have not been modified
(integrity); the results shall include the complete data set
(completeness), e.g., if the query is on range [a, b], the results
shall not be on other ranges [a′, b′], where a′ 6= a and b′ 6= b.

Related Work. A number of techniques [11], [13], [7], [9],
[10], [14], [8], [12], [16] have been proposed, aiming to pro-
vide both completeness and correctness of queries to remote
databases. These existing techniques can be mainly divided

into two groups: tree-based techniques [11], [7], [8], [12]
and signature-based techniques [13], [9], [10], [14]. Among
existing tree-based techniques, the best one is proposed by
Li et.al. [7], which introduces a novel embedded Merkle
B+-Tree structure and achieve integrity of the query result
with simple hash operations. However, the communication
complexity of ref. [7] is linear to the number of tuples and
attributes associated with the query results, which limits its
performance for queries results with large ranges. Compared
with the tree-based techniques, signature-based techniques
greatly reduce the communication complexity by aggregating
signatures. Nevertheless, these techniques require large storage
overhead for signatures, because each attribute of every tuple
in the database needs a signature for verification purpose. In
addition, existing tree-based and signature-based techniques
only support simple verifiable SQL queries (i.e., selection,
projection, join queries). Trivial extension of these techniques
for enabling more aggregation queries inevitably introduces
tremendous communication cost or storage overhead for the
system. Using homomorphic authenticators, Zheng et.al [16]
recently proposed an integrity checking scheme that supports
weighted sum query in addition to simple SQL queries. Their
signature design allow all attributes in one tuple to share one
signature and make the storage overhead independent to the
number of attributes. However, in this scheme tags of all
tuples needed for calculating the sum shall be transmitted to
the client, which represents a non-trivial communication cost.
What is more, the client has to perform all integrity verification
operations including expensive exponentiation operations, the
number of which is linear to the number of tuples associated
with the result. For large databases or queries over large
ranges, such a computational complexity means a formidable
computational burden to the client. Last but not least, ref.
[16] does not support advanced aggregation queries such as
high-degree polynomial queries. For practical considerations,
more advanced aggregation queries shall be supported. Storage
overhead, communication cost and computational cost on
client side shall be minimal in order to accommodate a wide
range client devices such as mobile phones.

In this paper, we design an efficient verifiable aggregation
query scheme for outsourced databases. By uniquely incor-
porating our proposed renewable polynomial-based authen-
tication tags, our scheme can efficiently check the integrity

and completeness of numerous aggregation queries, including
polynomial queries of any degree, variance query and many
other linear queries. In addition, the communication cost and
computational cost for the client during integrity checking is
constant in our scheme. We achieve this via our novel design
on authentication tag aggregation. Moreover, our proposed
scheme is featured by public integrity checking – every client
is able to verify the integrity of his query result without
any help from the database owner. Thus, the owner can
stay off-line after outsourcing the database. Extensive analysis
shows that our proposed scheme is efficient and scalable. Our
proposed scheme is provably secure under the Computational
Diffie-Hellman (CDH) problem, the t-Strong Diffie-Hellman
(SDH) assumption and the Static Diffiee-Hellman problem.

We summarize the main contributions of this paper as below.
• An efficient, flexible and publicly verifiable aggregation

query scheme for outsourced databases in cloud is pro-
posed. For the first time, we achieve constant communi-
cation and computational cost for clients.

• Our proposed scheme allows verification of polynomial
queries of any degree, variance query and many other
flexible linear queries, in addition to all queries supported
by existing schemes.

• Our proposed scheme is provably secure under standard
assumptions.

• Our proposed polynomial based authentication tag can
be used as an independent solution for other related
application, such as database auditing, encrypted key
word search, etc.

The rest of this paper is organized as follows: Section II
describes the models of our scheme. In Section.III, we present
the construction of our scheme. In Section IV, we analyze our
proposed scheme in terms of security and performance. We
conclude our paper in Section V.

II. MODELS

A. System Model

Cloud Server

a11 a12 ... a1s

an1 an2 ans

...

...

…
...

Public Keys

Proof &

Q
uery Result

Data
base

Q
uery

Database

Clients

f(),h(),g()….

Aggregation
Function

Database
Owner

Fig. 1. System Model

We consider a system consisting of three major entities
as shown in Fig.1: Database Owner, Cloud Server and
Client. The database owner has a relational database with

multiple tables, each of which consists of multiple tuples and
multiples attributes. The owner outsources his databases to the
cloud server together with the corresponding authentication
tags. The client who has access to the database performs
verifiable aggregation query without help of the owner. To
check integrity and completeness of a query result, the client
requests the cloud server to generate the proof information for
the query result. Based on the proof information and public
keys, the client verifies completeness and integrity of the query
result.

B. Security Model

In this work, the cloud server is considered as untrusted
and potentially malicious, which is consistent with previous
schemes [8], [14], [16]. Completeness and integrity of query
results from cloud servers are mainly affected by the following
factors: 1) attacks corrupting the database; 2) attacks con-
ducting queries on small ranges instead of the actual range;
3) attacks conducting simple aggregation queries instead of
complex ones; 4) hardware/software failures, human errors.
We assume that transmission channels among entities are well
secured using existing techniques.

III. OUR CONSTRUCTION

A. Design Details

In this section, we describe the design details of our
scheme. We consider a database table TB consisting of
n tuples {r1, r2, · · · , rn}, each of which has s attributes
{a0, a1, · · · , as−1}. For an attribute in a tuple, we denote it
as ri.aj . TB is ordered by attribute a0 (it can also be ordered
by any other attributes). Let e : G × G → GT be a bilinear
map and H(·) be the one-way hash function, where G is a
multiplicative cyclic group of prime order p and u, g be two
random generators of G. We define f~c(x) as a polynomial with
coefficient vector ~c = (c0, c1, · · · , cs−1).

KeyGen: A database owner first generates a random signing
key-pair ((spk, ssk) R← SKG) using BLS signature [3]. Then,
the owner chooses two random numbers α, ε

R← Z∗p . The
owner also computes κ ← gε, ν ← gεα and {gαj}s+1

j=0. The
public and secret keys are:

PK = {p, κ, ν, u, spk, {gα
j

}s+1
j=0}, SK = {ε, α, ssk}

Setup: The database owner randomly chooses a random
table name TBname ∈ Z∗p . Let τ ′ be “TBname||n”; the
file tag τ is τ ′ together with a signature on τ ′ under ssk:
τ ← τ ′||SKGssk(τ ′). Suppose the database will support
polynomials query with highest degree q (the value of q can
be set according to the requirement of the owner and clients),
for each tuple ri in a table, the owner generates authentication
tags as:

σix = (uH(TBxname||i) ·
s−1∏
j=0

g(ri.aj)
xαj+2

)ε

= (uH(TBxname||i) · gf~βix (α))ε

where 1 ≤ x ≤ q, ~βix = {0, 0, βix,0, βix,1, · · · , βix,s−1} and
βix,j = (ri.aj)

x. The owner outsources the table and its
corresponding authentication tags to cloud servers.

Query: To perform an aggregation query, a client first
retrieves the table tag τ from the cloud and verifies the
signature on it: if the signature is invalid, the client rejects
it and halts; otherwise, suppose the client wants to perform
a query Qry = “select SUM(ci ∗ (ri.at)mi) from TBname
where L < a0 < U”, where {ci} and {mi} are parameters
assigned by the client, and L,U are the lower bound and upper
bound of the query condition. The client first sends query
Qryra = “select SUM(ri.at) where L < a0 < U” to the
cloud server together with a random number ρ.

Completeness-Prove: On receiving the query request, the
cloud first executes the query and gets LI and UI as the
lower bound index and upper bound index of the query results.
The cloud then computes σra =

∏
σρ

i

i1 and yra = f ~A(ρ),
where i ∈ {UI + 1, UI − 1, LI + 1, LI − 1} and ~A =
{0, 0, 0,

∑
ri.a1 ∗ (ρi), · · · ,

∑
ri.as−1 ∗ (ρi)}. As polynomials

f(x) ∈ Z[x] have the algebraic property that (x−r) perfectly
divides the polynomial f(x) − f(r), r

R← Z∗p . The cloud
divides the polynomial f ~A(x) − yra with (x − ρ) using
polynomial long division, and denotes the coefficients vector
of the resulting quotient polynomial as ~t = (t0, t1, · · · , ts+1),
that is, f~t(x) ≡

f ~A(x)−f ~A(r)

x−r . The cloud generates

ψra =

s+1∏
j=3

(gα
j

)tj = gf~t(α)

Finally, the cloud responds the client with the complete-
ness proof information as prfra = {UI, LI, ψra, σra,
yra, rLI−1.a0, rLI+1.a0, rUI−1.a0, rUI+1.a0}.

Completeness-Verify: Based on the completeness proof in-
formation Prfra, the client computes ηra = (gα

2

)
∑

ρi∗ri.a0 ·
u
∑

H(TBname||i)ρi , where i ∈ {UI+1, UI−1, LI+1, LI−1}.
The client then checks

e(ηra, κ) · e(ψra, ν · κ−r)
?
= e(σra, g) · e(κ−yra , g) (1)

If Eq.1 holds, the client compares U with rUI−1.a0, rUI+1.a0
and L with rLI−1.a0, rLI+1.a0. If rLI−1.a0 ≥ L or
rUI−1.a0 ≥ U or rLI+1.a0 ≤ L or rUI+1.a0 ≤ U ,
the client rejects the result and holds; otherwise, the client
then sends the query message QM to the cloud server. The
message QM = {ρ,Qry} contains a random number ρ and an
aggregation query Qry = “select SUM(ci ∗ (ri.at)mi) from
TBname where L < a0 < U”.

Integrity-Prove: The cloud server first generates query
result as

QRST =

UI∑
i=LI

ci ∗ (ri.at)mi

Then, the cloud generates y=f ~B(ρ), where ~B =

{0, 0,
∑UI
i=LI ci ∗ (ri.a0)m0 , · · · ,

∑UI
i=LI ci ∗ (ri.at−1)mt−1 ,∑UI

i=LI ci ∗ (ri.at+1)
mt+1 , · · · ,

∑UI
i=LI ci ∗ (ri.as−1)

ms−1}.
By dividing f ~B(x) − y with (x − ρ), the cloud gets

coefficients vector of the resulting quotient polynomial
~w = (w0, w1, · · · , wt−1, wt+1, · · · , ws+1). Afterward, the
cloud computes

ψ =

s+1∏
j=2,j 6=t

(gα
j+2

)wj = gf~w(α)

The cloud server then aggregates authentication tags for query
result as σ =

∏UI
i=LI σ

ci
ix, where x = mi for each i.

Finally, the cloud computes responds the client with the
query result QRST and the corresponding proof information
Prf = {ψ, σ, y}.

Integrity-Verify: Based on the proof information Prf , the
client computes ω =

∑UI
i=LI ci ∗H(TBminame||i) and η = uω .

Then the client verifies the integrity of the query result as

e(η · gα
t+2QRST , κ) · e(ψ, ν · κ−ρ) ?

= e(σ, g) · e(κ−y, g) (2)

If Eq.2 holds, the client accepts the query result; otherwise, it
denies the result.

Correctness: We analyze the correctness of our construction
based on Eq.2:

e(η · gα
t+2QRST , κ) · e(ψ, ν · κ−ρ) (3)

= e(u
∑UI

i=LI
ci∗H(TB

mi
name||i), gε)

·e(gα
t+2(

∑UI

i=LI
ci∗(ri.at)mi), gε) · e(gf~w(α), gε(α−r))

= e(u
∑UI

i=LI
ci∗H(TB

mi
name||i), g)ε · e(g, g)f~B(α)ε

·e(gα
t+2(

∑UI

i=LI
ci∗(ri.at)mi), g)ε · e(g, g)−yε

= e(σ, g) · e(κ−y, g)

The correctness of our scheme is obvious by Eq.3.

B. Support of Other SQL Queries

1) Other Aggregation Queries: Based on our general
queries introduced in Section.III-A, we can construct many
other verifiable aggregation queries. Here, we give an example
of Variance Query, other queries can be flexibly supported
similarly.

Considering any k numbers ci, 1 ≤ i ≤ k, their variance is

calculated as V ari =
∑k

i=1
(ci−cm)2

k−1 and cm is the mean value
of the ci. Suppose a client wants to conduct variance query
Qry =“select V ari(ri.at) from TBname where L ≤ ri.a0 ≤
U” on databases outsourced to the cloud server. The client first
performs the completeness verification. Assume there are k
tuples satisfying the query condition, the client then performs
a query to get the mean value Vmean with integrity verification.
The verifiable query of the mean value am is just a special case
of our general query as “select SUM(ri.at) from TBname
where L ≤ at ≤ U” and divide the result with k, which is
known to the client. As (ri.at−Vmean)2 = (ri.at)

2+V 2
mean−

2Vmean ∗ ri.at, the query of (k − 1) ∗ V ari(ri.at) can be
decomposed of queries of SUM((ri.at)

2)−SUM(2Vmean ∗
ri.at) + SUM(V 2

mean) with the same query condition. The
client performs verifiable queries for Qrst′ = SUM((ri.at)

2)
and Qrst′′ = SUM(−2Vmean ∗ ri.at) separately with the

verified mean value obtained before. Finally, the client can
add up Qrst′

k−1 , Qrst
′′

k−1 and SUM(1
k−1V

2
mean) to get the verified

query result of V ari(ri.at).
2) Simple SQL Queries: Although we focus on aggregation

queries in this work, our proposed scheme can also be effi-
ciently applied to simple verifiable SQL queries supported in
existing works. Specifically, suppose a client needs to perform
a selection query Qrys = “select * from TBname where
L ≤ ri.a0 ≤ U” or a projection query Qryp =“select
a0, · · · , ak from TBname”, where 1 ≤ k ≤ s − 1. The client
first performs the completeness verification with the cloud
using Completeness−Prove and Completeness−V erify
algorithms. Then, the client sends the query message Qrys or
Qryp together with a random number r to the cloud. Based
on the query request, the cloud runs the Integrity − Prove
algorithm by setting {ci = ri}. In this case, the cloud does not
need to remove element from the coefficient like aggregation
query does. On receiving proof information from cloud server,
the client can finally check the integrity of all query results
by running the Integrity − V erify algorithm. Considering
join query, the only difference is the query results may come
from different tables with different table names TBname. As
our designed authentication tags of different tables can also
be aggregated, the client can still check integrity of all query
results together with our proposed scheme.

IV. ANALYSIS OF OUR PROPOSED SCHEME

A. Security Analysis

In this section, we give the security assumptions used in
our scheme and then sketch its security proof based on these
assumptions. Due to the space limitation, we leave the detailed
proof is in the full version of this paper.

Definition IV.1. Computational Diffie-Hellman (CDH) Prob-
lem [5]

Let x, y R← Z∗p . Given (g, gx, gy), it is computationally
intractable to compute the value of gxy , where G is a cyclic
group of order q and g is a generator of G.

Definition IV.2. Static Diffie-Hellman Problem [19]
Let a R← Z∗p . Given input as (g, ga) and h ∈ G, where g is a

generator of a cyclic group G of order q. It is computationally
intractable to compute the value ha.

Definition IV.3. t-Strong Diffie-Hellman (t-SDH) Problem
[3]

Let α
R← Z∗q . Given input as a (t + 1) − tuple

(g, gα, · · · , gαt) ∈ Gt+1, where g is the generator of a cyclic
group G of order q. For any probabilistic polynomial time
adversary (Adv), the probability Pr[Adv(g, gα, · · · , gαt) =

(c, g
1

α+c)] is negligible for any value of a ∈ Z∗q /−α.

Theorem IV.4. If there is a probabilistic polynomial time
adversity Adv that can convince the client with an invalid
query result in terms of completeness and integrity, by follow-
ing ref.[18], we can construct a probabilistic polynomial time

algorithm B using the Adv to break the CDH problem, the
t-SDH problem or the Static Diffie-Hellman problem.

Proof: Denote the forged completeness proof in-
formation Prf ′ra = {UI ′, LI ′, ψ′ra, σ′ra, y′ra, r′LI−1.a0,
r′LI+1.a0, r

′
UI−1.a0, r

′
UI+1.a0}, forged integrity proof infor-

mation as Prf ′ = (ψ′, σ′, y′) and invalid query result as
QRST ′, where Prf ′ra 6= Prfra, Prf 6= Prf ′ and QRST ′ 6=
QRST . In each forged proof information, there is at least one
element different from the valid proof information. Therefore,
we can conduct case analysis for each element in integrity
proof information first. Based on the CDH problem and static
Diffie-Hellman problem, σ′ = σ can be proved. Using t-SDH
problem, y′ = y and ψ′ = ψ can be proved. Similar to the un-
forgeability of integrity proof information, the unforgeability
of completeness proof information Prfra can also be proved.
Afterwards, it is easy to prove that QRST ′ = QRST .

B. Performance Evaluation

In this section, we numerically evaluate the performance of
our proposed scheme in terms of computational complexity,
communication complexity and storage overhead. We compare
our proposed scheme with ref.[16] and show the results in
Table.1. For simplicity, we denote the complexity of one
multiplication operation and one exponentiation operation on
Group G as MUL and EXP1 respectively.

1) Computational Cost: In our scheme, KeyGen and
Setup are database preparation processes, which can be
conducted by the database owner off-line. In the KeyGen
algorithm, the data owner performs (s + 3) EXP operations
to generate keys for the system, where s is the number of
attributes in each tuple. To setup the system, the database
owner needs (s + 2)nq EXP and snq MUL operations for
each table, where n is the number of tuples in the table and
q is the highest degree required in polynomial queries. Note
that, these preparation processes are one-time cost and will
not affect the later real-time query performance. In the Query
process, as the client only needs to generate a query request
and choose the corresponding coefficient generation functions,
the computational cost in this process is negligible. To generate
the completeness proof information, the cloud server performs
(4+s+1) EXP and (4+s) MUL operations. The verification
of completeness of the query result costs the client 4 EXP, 4
MUL and 4 Pairing operations. In order to generate integrity
proof information, the cloud server conducts (k+s−1) MUL
and (s+ k) EXP operations, where k is the number of tuples
that satisfy the query condition. To finally check integrity of
the query result, the client only needs 4 EXP, 4 MUL and 4
Pairing operations. This property is interesting because such
a constant verification cost on clients can be affordable to
many contemporary client side devices such as mobile phones.
Notably, ref.[16] introduces k EXP operations for a client to
verify the query result. For large databases or queries over

1When the operation is on the elliptic curve, EXP means scalar multiplication
operation and MUL means one point addition operation.

Computational Cost Communication Cost Storage Overhead
Our Scheme 8 EXP+8 MUL+8 Pairing 4|G|+ 10|λ| qne|G|

Ref.[16] k EXP k|G| ne|G|

Table.1 Complexity Summary: in this table, e is the number of tables in the database, n is number of tuples in a table, q is the highest degree required in
polynomial queries, |G| is the size of a group element and |λ| the size of security parameter of the system; EXP and MUL are one multiplication operation
and one exponentiation operation on Group G respectively, Pairing is a bilinear pairing operation.

large ranges, k can be extremely large and the introduced EXP
operations means a formidable burden to clients.

2) Communication Cost: According to Section.III-A,
the communication cost in our scheme is mainly at-
tributed to two random numbers and two query message
Qryra and Qry in the challenging message, the com-
pleteness proof information prfra = {UI, LI, ψra, σra,
yra, rLI−1.a0, rLI+1.a0, rUI−1.a0, rUI+1.a0} and the in-
tegrity proof information Prf = {σ, ψ, y}. In the query
procedure, only two random numbers are needed as additional
communication cost. In the proof information, we only in-
troduce 4 group elements, two polynomials, 4 indexes and
4 data attributes. Therefore, the total communication cost
introduced by our completeness and integrity checking design
is approximately 4|G| + 10|λ| bits, where |G| is the size of
a group element and |λ| the size of security parameter of the
system. Different from our scheme, the communication cost in
ref.[16] is linear to the number of tuples satisfying the query
condition, and thus greatly limiting its scalability.

3) Storage Overhead: To enable the integrity checking, our
scheme requires the cloud server to store authentication tags
for all tuples in the database. Therefore, the storage overhead
is qne|G| bits and e is the number of table in the database.
Compared with ref. [16], our scheme achieves the same storage
overhead to support same functionality (q = 1). Assuming the
size of an authentication tag is 1024 bits in consistence with
previous work [17], [18], a database with 8,000,000 tuples will
introduce about 1GB storage overhead using our scheme. In
real life, such storage overhead only costs $0.095/month on
Amazon S3 as of when this paper was written.

V. CONCLUSION

In this work, we present an efficient and publicly verifi-
able aggregation query scheme in the setting of outsourced
databases in cloud. Our proposed scheme not only allows
the cloud server to perform most computational tasks for the
query verification, but also aggregates the proof information
to achieve constant communication cost. Compared with ex-
isting solutions, our proposed scheme significantly reduces
the expensive computational operations (e.g., exponentiation
operation) on the client side from linear level to constant level.
Besides the simple SQL query types supported in existing
schemes, our proposed scheme also allows many powerful
aggregation queries such as polynomial queries of any degrees,
variance query and many other linear queries. Moreover, our
proposed polynomial based authentication tag can be used as
an independent technique for other related applications, such
as database auditing, encrypted key word search, etc.

REFERENCES

[1] “Amazon web service. summary of the amazon ec2 and
amazon rds service disruption in the us east region,”
http://aws.amazon.com/message/65648/.

[2] “Dropbox. dropbox forums on data loss topic,”
http://forums.dropbox.com/tags.php?tag=data-loss.

[3] D. Boneh and X. Boyen. Short signatures without random oracles.
In Proceedings of the 23nd international conference on Theory and
applications of cryptographic techniques, EUROCRYPT’04 pages 56–73,
2004.

[4] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably
encrypted signatures from bilinear maps. In Proceedings of the 22nd
international conference on Theory and applications of cryptographic
techniques, EUROCRYPT’03, pages 416–432, Berlin, 2003.

[5] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans.
Inf. Theor., 22(6):644–654, Sept. 1976.

[6] D. Boneh and M. K. Franklin, “Identity-based encryption from the weil
pairing,” in Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, ser. CRYPTO ’01. London, UK,
UK: Springer-Verlag, 2001, pp. 213–229.

[7] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authen-
ticated index structures for outsourced databases. In Proceedings of the
2006 ACM SIGMOD international conference on Management of data,
SIGMOD ’06, pages 121–132, New York, NY, USA, 2006. ACM.

[8] K. Mouratidis, D. Sacharidis, and H. Pang. Partially materialized digest
scheme: an efficient verification method for outsourced databases. The
VLDB Journal, 18(1):363–381, Jan. 2009.

[9] E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and integrity
in outsourced databases. Trans. Storage, 2(2):107–138, May 2006.

[10] M. Narasimha and G. Tsudik. Authentication of outsourced databases
using signature aggregation and chaining. In Proceedings of the 11th
international conference on Database Systems for Advanced Applications,
DASFAA’06, pages 420–436, Berlin, Heidelberg, 2006. Springer-Verlag.

[11] G. Nuckolls. Verified query results from hybrid authentication trees. In
Proceedings of the 19th annual IFIP WG 11.3 working conference on Data
and Applications Security, DBSec’05, pages 84–98, Berlin, Heidelberg,
2005. Springer-Verlag.

[12] B. Palazzi, M. Pizzonia, and S. Pucacco. Query racing: Fast complete-
ness certification of query results. In S. Foresti and S. Jajodia, editors,
Data and Applications Security and Privacy XXIV, volume 6166 of Lecture
Notes in Computer Science, pages 177–192, 2010.

[13] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying complete-
ness of relational query results in data publishing. In Proceedings of the
2005 ACM SIGMOD international conference on Management of data,
SIGMOD ’05, pages 407–418, New York, NY, USA, 2005. ACM.

[14] H. Pang, J. Zhang, and K. Mouratidis. Scalable verification for
outsourced dynamic databases. Proc. VLDB Endow., 2(1):802–813,2009.

[15] G. Timothy and M. M. Peter. The nist definition of cloud computing.
NIST SP - 800-145, September 2011.

[16] Q. Zheng, S. Xu, and G. Ateniese. Efficient query integrity for
outsourced dynamic databases. In Proceedings of the 2012 ACM Workshop
on Cloud computing security workshop, CCSW ’12, pages 71–82, New
York, NY, USA, 2012. ACM.

[17] J. Yuan and S. Yu, “Proofs of retrievability with public verifiability and
constant communication cost in cloud,” in Proceedings of the 2013 inter-
national workshop on Security in cloud computing, ser. Cloud Computing
’13. Hangzhou, China: ACM, 2013, pp. 19–26.

[18] J. Yuan and S. Y, “Secure and constant cost public cloud storage auditing
with deduplication,” in IEEE Conference on Communications and Network
Security 2013 (IEEE CNS 2013), Washington, USA, Oct. 2013.

[19] D. R. L. Brown and R. P. Gallant, “The static diffie-hellman problem,”
Cryptology ePrint Archive, Report 2004/306, 2004.

