
Technical Report

Department of Computer Science
and Engineering

University of Minnesota
4-192 Keller Hall

200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 15-002

 Separation of Benign and Malicious Network Events for Accurate Malware

Family Classification

Hesham Mekky, Aziz Mohaisen, Zhi-Li Zhang

January 29, 2015

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Separation of Benign and Malicious Network
Events for Accurate Malware Family Classification

Hesham Mekky∗, Aziz Mohaisen† and Zhi-Li Zhang∗
∗University of Minnesota. Email: {hesham,zhzhang}@cs.umn.edu

†VeriSign Labs. Email: {amohaisen}@verisign.com

Abstract—Labeling malware samples with their appropriate
malware family helps understand and track malware evolution
and develop mitigation techniques. Current malware analysis
techniques that use supervised machine learning rely on classifi-
cation models that are trained on malware traffic generated from
a sandbox environment. These models are then used to classify
future unseen observations. In practice, however, malware traffic
comes mixed with other legitimate “background” traffic from
host machines, such as user browsing and software update traffic.
Hence, the classifier’s accuracy to predict the correct malware
label on unseen (mixed) traffic is low. We propose a novel clas-
sification system that uses an Independent Component Analysis
(ICA) module that applies distribution decomposition to separate
the observed traffic into two components, malware traffic and
background traffic. We also use a random forest classifier module
to learn a classification model for every malware family, and then
use it to predict malware family labels using the output of the ICA
module. This system is thus capable of labeling malware traffic
after removing background artifacts (“noise”), which makes it
more efficient and accurate than current classification methods.
Our experiments on three malware family datasets show that the
performance of our system improves significantly after removing
the background traffic artifacts.

I. INTRODUCTION

Malware analysis, classification and labeling is a well-
investigated problem in the cyber security research community
and industry. Techniques used for malware analysis fall into
two main categories: static analysis and dynamic analysis.
Static techniques (a.k.a. binary analysis) utilize meta-data
associated with malware binaries, including specific patterns in
the binary itself (malware signatures), whereas dynamic tech-
niques utilize artifacts generated by the malware at runtime,
including memory access patterns, network traces, OS system
calls, file system changes, and registry modifications. Static
analysis is fast and scalable, since it searches for the precom-
puted signatures in the given binary (usually in the form of
regular expressions). However, it requires costly reverse engi-
neering efforts for obtaining these signatures and roles from
malware binaries. In addition, attackers can defend against
static analysis methods using code obfuscation techniques. On
the other hand, dynamic analysis methods are highly accurate,
and capable of detecting previously unseen malicious behavior,
while addressing code obfuscation, but they cost more time
and resources to run the given malware sample in the sandbox
environment [1]. In addition, one circumvention mechanism
utilized by malware authors is “behavior-poisoning” in which
the malware generates random noise as part of its execution
to disguise its real behavior.

A class of recently proposed methods leverages machine
learning models to produce labels (malware family labels)
for network traces based on statistical features extracted from
either static binaries [2–4], or from artifacts collected during
the execution of the binary [5, 6]. These traces and artifacts
come from executing the malware binary in a sandbox envi-
ronment to avoid any damage to the host machine, network or
external resources. Consequently, these statistical features are
based on “clean” traces that do not contain any “background”
traffic generated by a user machine such as user browsing, OS
update or other background software activities. This reduces
the classifier’s effectiveness in predicting malware family
labels, when applied to the same features extracted from mixed
traffic that is collected on user machines, since these machines
generate traffic containing both malware- and background-
related traffic.

Our proposed method aims at separating legitimate back-
ground traffic attributes generated by user activities, OS
updates, background software, etc. from the malware traf-
fic attributes. We utilize Independent Component Analysis
(ICA) [7] to separate the distributions of the features extracted
from mixed network traces into two estimated distributions:
an estimated malware traffic distribution and an estimated
background traffic distribution (“noise”) for every feature in
our set of features. Then, we use the estimated malware
feature distributions as input to our classifier to predict proper
malware family labels. This classifier learns from the feature
distributions extracted from the pure (i.e., not mixed) malware
traces collected in a sandbox environment. In other words, we
remove the noise in the feature distributions before applying
the classifier model. More specifically, our proposed system
is composed of two main modules: an ICA separation module
and a classifier module. We use these modules in two phases
as follows:

• Learning Phase: First, we use the network traces (PCAP
files) extracted from the execution of malware sam-
ples belonging to three different malware families in a
sandbox environment. We transform these lower level
network traces (packets) into higher level network events
to capture the higher level semantics of the malware
operation (§II-C). Second, we extract a set of feature
distributions that best represents each malware family
using n-gram analysis [8] on the higher level network
events. The n-gram analysis preserves the order of seen

events, which captures the semantics of ordering between
events for the given malware family in the feature set
(§IV). Third, we use our malware feature distributions to
build a random forest classifier model [9] for each mal-
ware family. In addition, using both malware traffic and a
background traffic dataset, we construct an ICA unmixing
function that separates a mixed feature distribution into
two estimated distributions: a malware distribution and a
background distribution (§III).

• Prediction Phase: We develop a supervised machine
learning framework to produce labels for unseen malware
samples using both the ICA unmixing function and the
random forest classifier model. First, the feature vector
is extracted from the malware sample. Then, the ICA
module estimates the malware feature distributions from
the mixed feature distributions, and finally the classifier
module predicts a malware family label using the esti-
mated distributions (§III).

We apply the proposed framework to real network traces
collected from executing malware samples belonging to three
different families, and show improvements over directly using
the network traces without removing the noise in the feature
distributions (§V).

In the following sections, we present the necessary prelim-
inaries (§II) and our datasets (§II-C). Then, we present our
system overview (§III), followed by our feature analysis and
extraction methods (§IV). Then, we show the effectiveness of
our method by applying it to three different datasets (§V), fol-
lowed by related work (§VI), and a discussion (§VII). Finally,
we conclude our paper and present future work (§VIII).

II. PRELIMINARIES

In this section, we present the preliminaries required
throughout the paper. We start by reviewing the basics of
behavior-based analysis for malware detection used in this
paper in §II-A. We follow that by a review of Independent
Component Analysis (ICA) in §II-B, which is the method used
for separating the malware traffic from the background traffic
in our system. Finally, we briefly present the process used for
collecting our malware datasets and transforming this data to
higher level network events in §II-C.

A. Behavior-based Analysis

Behavior-based approaches for malware analysis identify
and characterize malware by relying on artifacts generated
during the malware execution in a sandbox environment. They
characterize malware samples based on the way these samples
use the host file system, memory, registry, and network.
Techniques that utilize these approaches extract features from
different behavioral artifacts and footprint of various malware
samples based on their malware family association. These
approaches are known for their accuracy, since they address the
shortcomings of static analysis techniques such as obfuscation
and code repacking. They are also agnostic to the underlying
code, and thus can address code polymorphism. Moreover,
behavior-based approaches and the methods built on top of

Observed Traffic

Web

S/W Updates

Malware
Blend	
 All	
 Sources	

Fig. 1. Observed Traffic from a Host

them rely on features that are easier to understand in relation
with the studied malware’s context.

While generic behavior-based analysis techniques utilize a
large array of behavioral attributes (that belong to memory,
file system, registry, and network behavior), they come at a
high cost [10] due to the time and resources they require to
execute and save the large array of artifacts. To this end, and
motivated by the same motivation as in the prior lightweight
techniques, we focus only on network-related behavioral anal-
ysis and features. In particular, we use network events such as
connections, their sizes, types, and port attributes as the main
attributes for our malware behaviorial characterization (as we
will explain later in §II-C).

Ideally, our system should run along with other processes
that would generate the background traffic on the same host.
However, for testing purposes of our system and techniques
explored in it, we run our system building blocks, including
the behavior profiling part, in a supervised environment. We
use a similar setup to that used in [10] to run various malware
samples that belong to a given family, extract representative
features to the family, and collect artifacts associated with
the background traffic (as we will explain in §IV). We then
study the parameters of our system and their effectiveness in
identifying malware samples, and isolating background traffic
from the malware traffic.

B. ICA Primer

The traffic observed from a user host is a blend of different
types of traffic, as illustrated in Figure 1, where each “signal”
represents a different type of traffic, e.g., the blue signal
represents the software updates traffic. These types are mixed
together in the “observed” traffic (black signal). Consequently,
the accuracy of a method that uses the malware traffic (red
signal) only to extract features and build a classifier to predict
the malware label on unseen, mixed traffic will perform poorly,
as we will show in §V. Therefore, we need an algorithm that
learns the malware features (red signal), and extracts these
features from the mixed traffic features (black signal). ICA is
capable of doing this based on two main assumptions:
(1) Mixed signals are linearly mixed. This fits our application

since the distribution of a feature in the observed mixed
traffic is going to be a linear mix of the distributions
of the same feature in the input traffic sources, e.g., the

TABLE I
DATASETS

Family Samples
Darkness 534
Shady RAT (SRAT) 1,096
Zeus 1,025

distribution of the number of successful DNS requests in
the mixed traffic is a linear sum of the distributions of the
same feature in the input sources.

(2) Mixed signals are statistically independent. Here, we as-
sume that the malware traffic is independent from other
types of traffic such as software updates, user activity, etc.
For instance, we assume that the number of failed DNS
requests for the malware is independent from the number
of failed DNS requests in the background traffic.

In a nutshell, ICA decomposes a multivariate signal into
additive components assuming statistical independence. As-
suming m independent source signals S = [S1, ..., Sm]T ,
then we observe the mixture X = [X1, ..., Xm]T given by
X = A · S, where A is called the mixing matrix. The goal
of ICA is to find an unmixing matrix W (≈ A−1) such that
Y = W · X ≈ S will be the best approximation for S.
Therefore, when ICA learns the unmixing matrix for a specific
feature (from the malware and background traffic), it will be
able to decompose future unseen mixed traffic and extract the
feature distribution for the malware component.

ICA algorithms rely on independence to recover the original
signals from the mixture. For instance, given two signals X
and Y : (i) Entropy H(X) is a measure of uncertainty in X ,
i.e., the lower the entropy, the more information we have
about X , (ii) Conditional entropy H(X|Y) is the amount of
uncertainty in X after observing Y , (iii) Mutual information,
I(X;Y) = H(X)−H(X|Y), is the reduction of uncertainty
in X after observing Y .

Therefore, by having an algorithm that minimizes the
mutual information between the estimated components [11],
we are looking for latent variables that are maximally inde-
pendent, i.e., in our application system, we are looking for
the two underlying independent distributions (malware and
background distributions) in the mixed feature distribution.

C. Datasets

Our datasets are composed of three malware families: (a)
the Darkness malware family [12], which infects machines to
carry out DDoS attacks, (b) the Shady RAT (SRAT) malware
family [13], which infects machines to target high profile
organizations (credentials stealing, DDoS attacks, etc), and
(c) the Zeus malware family [14], which is a banking Trojan
that is used by attackers to run a botnet to steal money,
credentials, and system resources from the infected victims and
their machines. These families cover a wide range of network
behavior for our evaluation purposes. Each malware sample is
labeled manually using an operational product at VeriSign [1].

Each sample is executed in a controlled environment for

TABLE II
NETWORK EVENTS

Network Event Description
Connection TCP, UDP, RAW

Size request quartiles, response quartiles
DNS A, NS, MX, CNAME, SOA, PTR

Request type GET, POST, HEAD
Response type 200’s, ..., 500’s

Ports 80, 8080, 53, and others

a predefined amount of time to collect network artifacts
generated solely by each malware family in the form of
PCAP traces. Details of each dataset are shown in Table I.
In addition to the malware families, we have another dataset
that resembles the background traffic behavior generated from
regular hosts such as web browsing, OS updates, etc.

We use the PCAP trace generated by each sample to create
a profile for each malware sample based on the ordering of
events in the packet trace [10]. Profiles are based on network
events seen in the packets, e.g., an outbound packet using
UDP on port 53 is mapped to “A0A2A5”, where A0 refers
to the outbound event occurrence, A2 refers to the UDP
protocol usage, and A5 refers to the usage of port number
53. Consequently, the word “A0A2A5” in a malware sample
profile indicates an outbound DNS query over UDP. We apply
the same mapping to all packets in the trace. After this process,
each malware sample is represented as a sequence of words,
where each word is a meaningful network event. This results
in good features that ICA can use to learn to unmix the traffic,
and the classifier can use to predict the malware family label as
shown in §IV and §V. Table II summarizes all network events
we consider in our analysis. Request and response quartiles are
normalized sizes over all samples, i.e., we compute the largest
request/response size and normalize all other request/response
sizes into one of the four quartiles (0–25, 26–50, 51–75, and
76–100). This event captures the loudness of a malware family,
e.g., if the majority of requests is in the fourth quartile, then
this family sends big requests in most of its connections. The
rest of the events in the table is self-explanatory.

III. SYSTEM OVERVIEW

Our system consists of two main modules: an ICA sep-
aration module and a malware classification module. An
illustration of the system is shown in Figure 2. The system
takes the traffic artifacts of a malware sample collected from
a user host (malware and background traffic) as input, and
ultimately determines the label of a malware family association
for the sample. Our system marginalizes the noise due to
the background traffic and learns the features to be fed into
the malware classification module. The classification module
uses a knowledge base of known malware families with
respect to the studied features, and assigns a probability that
the examined malware sample belongs to each family. The
decision component then decides the family to which the
malware sample belongs based on these probabilities. In the

following, we explain what each module does in each of two
phases: learning and prediction.

A. ICA Separation Module

Learning Phase: In this phase, we build the ICA unmixing
matrix that is capable of separating the two underlying distri-
butions of a given mixed feature distribution as discussed in
§II-B. For each feature in the top discriminating features be-
tween a malware family and the background traffic, ICA learns
the unmixing matrix from the mixed feature distribution. From
§II-B, it is clear that ICA can learn many unmixing matrices
for the same mixed distribution. We leverage the knowledge
of the malware family distribution (i.e., ground-truth malware
samples) to learn a good unmixing matrix. For instance, in
Figure 1, we feed the observed traffic feature distribution (blue
signal) into ICA and learn the unmixing matrix to find the
malware feature distribution (red signal). Then, we compute
the Kullback-Leibler Divergence[15] between the estimated
distribution and the ground-truth distribution. If this distance
is below a certain threshold, then we use this unmixing matrix
for that feature, otherwise, we run ICA again to learn a better
unmixing matrix. The performance of ICA in estimating the
feature distributions is evaluated in §V-A.

Prediction Phase: Given an unseen mixed sample, we
extract the feature distributions corresponding to each malware
family in our system. Then, we feed these mixed distributions
to the learned ICA model. The output of this model is the
estimated underlying malware families feature distributions,
which we use later in the classification module. In Figure 2,
the box labeled ICA contains all the unmixing functions for
different malware families learned previously. Thus, the output
of the “ICA” box to “Malware1 Classifier” box is the estimated
malware 1 feature distributions that are then used to check if
this sample belongs to this malware family.

B. Classification Module

Learning Phase: We utilize the ground-truth of our three
malware families, and use the top discriminating features to
build a random forest classifier [9] for each malware family
using these features. Then, we use these classification models
in the prediction phase to assign proper labels to future, unseen
traffic.

Prediction Phase: Here, the classifier uses the output of
the ICA module (i.e., estimated features for different malware
families), and applies the learned classifier model for malware
family i on the estimated feature distributions for malware
family i. The output of each classifier model is a probability
that the estimated features of the studied malware sample
belongs to a certain family. The decision function determines
the family that the malware sample belongs to by selecting
the label with the maximum classification probability obtained
from the classifier. Notice that we only use a single family
association, and our system provides excellent operational
results based on this decision. However, this component may
also generate a set of labels (e.g., top-k or labels with an
over-threshold probability). These labels for a sample can be

Decision
Function

score

ICA

Malware 1
Classifier

Malware 2
Classifier

Malware 3
Classifier

score

score

Malware
Variant

(yes/no)
label

Fig. 2. Malware Labeling Process

used to establish similarities among families with respect to
the studied features, as well as a behavior-based relationship
between different malware families.

While we only study three malware families in this paper
to demonstrate the concept and highlight the capabilities of
ICA, our classifier and ICA modules are vertically scalable,
i.e., depending on the knowledge base of malware families,
we can easily augment both modules to accommodate them.

IV. FEATURES ANALYSIS

Based on the discussion in §II-C, each malware or back-
ground traffic sample is represented as a sequence of words,
where each word indicates the occurrence of a particular
network event, e.g., a successful DNS query. Consequently,
the words in a malware sample correspond to the two-way
communication of the malware with the remote C&C server,
or the entity being attacked, e.g., DDoS or botnet infected
node. In this section, we present the feature extraction method
used to select discriminating features between the malware
and background traffic for all malware families (§IV-A), then
we present our feature interpretation (§IV-B), and our feature
evaluation criteria (§IV-C).

A. Feature Extraction

We use n-gram analysis [8] on the final representation of
the data, i.e., words that represent network events, to capture
relevant network events in both malware and background traf-
fic. We choose n-gram analysis since it captures the ordering
of events presented in the given malware sample, e.g., the
distribution of the frequencies for a triple gram (w1, w2, w3)
indicates the prevalence of these three events in the data,
where (w1, w2, w3) may correspond to the occurrence of a
DNS resolution followed by an HTTP GET request, then an
HTTP GET response. Therefore, n-gram analysis can pinpoint
interesting network events that can be used as distinguishing
features between malware and background traffic. For each
malware family, we generate n-gram frequencies for different
values of n as our initial feature set for that malware family.
Then, we eliminate the less discriminating features using
recursive feature elimination [16], and we use the top features
to learn the ICA unmixing function, and to train the random
forest classifier in the Learning Phase as discussed in §III. We
present performance results for different values of n in §V.

��
����
����
����
����
����
����
����
����
����
��

�� ��� ��� ��� ��� ���� ���� ���� ���� ����

�
�
�

������������

��������
�����

(a) Darkness

��
����
����
����
����
����
����
����
����
����
��

�� ��� ��� ��� ��� ���� ���� ���� ����

�
�
�

������������

����
�����

(b) Srat

����

����

����

����

����

����

����

����

����

��

�� �� �� �� �� ��

�
�
�

������������

����
�����

(c) Zeus

Fig. 3. A selected discriminating feature from each malware family, where the malware behavior is governing the background behavior. Each subfigure is
the CDF for a specific n-gram frequencies over all malware and background traffic samples.

Our analysis unveiled three classes of discriminating features:
malware discriminating features, background discriminating
features, and common features in both malware and back-
ground traffic.

Malware Discriminating Features: We observed a set of n-
gram distributions, where the malware behavior is governing
over the background behavior, i.e., these specific n-grams show
up more frequently in the malware data. For instance, Fig-
ure 3a shows the CDF distribution for the n-gram frequencies
for a specific n-gram feature in the Darkness malware. The
x-axis is the frequency of this n-gram in the Darkness data
(i.e., the number of occurrences of this n-gram in malware
samples belonging to the Darkness family), and the y-axis is
the percentage of samples that have less than or equal to that
frequency. We can see that 90% of the background data has
less than 10 occurrences of this feature, while only 0.05% of
the malware data has less than 10 occurrences, which indicates
that this n-gram occurs frequently in the Darkness malware
family. Figure 3b and Figure 3c show the existence of similar
n-gram features in the Srat and Zeus malware datasets, e.g.,
in Figure 3c 50% of the background data does not contain
this n-gram, while only 0.04% of Zeus does not have this n-
gram. We present some of the interpretations for these n-gram
features later in this section, which give some insights about
the malware families behavior.

Background Discriminating Features: Similarly, we ob-
served a set of n-gram distributions, where the background
behavior is governing over the malware behavior, i.e., they
show up more frequently in the background data. For instance,
more than 90% of the malware traffic has 0 occurrence of
the n-gram feature in Figure 4, while 90% of the background
traffic has at most 20 occurrences of the same n-gram feature.
Similar features exist for Srat and Zeus, but are not presented
for space limitations.

Common Features in Malware and Background: We found
features that co-exist in both malware and background, which
is due to the nature of TCP/IP stack operation. We leave
eliminating these features as a job for the recursive feature
elimination [16] algorithm, and therefore these features will
be ranked at the bottom during the features ranking process,
and thus will not be used by our system, since we use the top

discriminant features only, as discussed in §V.

B. Feature Interpretation

As discussed in the previous section, our analysis unveiled
different classes of features. In this section, we present the
interpretation of one feature from the malware discriminat-
ing and background discriminating classes for the Darkness
malware family, which are shown in Figure 3a and Figure 4,
respectively.

Darkness Malware Discriminating Feature: Figure 3a
shows a uni-gram feature that is dominant in the Darkness
malware family, where more than 50% of the malware samples
contain at least 120 occurrences of this feature. This uni-gram
feature represents the number of occurrences of outbound
HTTP POST requests over port 80, where the outbound size is
in quartile 4 (i.e., large requests). We believe that the malware
samples could be trying to launch DDoS attacks, which is
the nature of the Darkness malware family, or they are trying
to send aggregate information regarding the infected host to
the C&C server. Currently, we are digging deeper in the
payload to confirm our intuition. It is clear that this kind of
behavior is not frequent in normal user machines, where users
normally send small HTTP POST requests, and most requests
are HTTP GET. In addition, software updates normally fetch
content from the CDN server using HTTP GET requests.
Consequently, this feature performs well in distinguishing
between the Darkness traffic and the background traffic.

Background Traffic Discriminating Feature: Figure 4 shows
a tri-gram feature that is dominant in the background traffic
compared to the Darkness malware samples, where 60% of
the Darkness samples does not contain any occurrence for
this tri-gram, while 60% of the background traffic samples
contain at least 10 occurrences of this tri-gram feature. This
tri-gram feature represents the number of occurrences of three
consecutive outbound HTTP GET requests over port 80 in
the same TCP connection, where the outbound request size
is in quartile 1 (i.e., small requests). This perfectly matches
the operation of modern web browsers, where HTTP requests
are pipelined to the web server, e.g., a web server will send a
batch of HTTP requests to different objects in the HTML page
instead of sending them one-by-one. In this case, this is not

��
����
����
����
����
����
����
����
����
����
��

�� �� ��� ��� ��� ���

�
�
�

������������

��������
�����

Fig. 4. N-gram feature from the Darkness malware, where background
behavior is governing over malware behavior

prevalent in the malware family samples. Thus, this feature can
discriminate between background traffic and malware samples.

We only presented one discriminating feature for each class
of features in the Darkness malware family, while similar
features exist for the other two malware families and they
are left out due to space constraints. It is worth mentioning
that our system uses a set of features to predict the malware
family labels since using one feature only would result in a
large number of false positives.

C. Feature Evaluation

In our system, relying on recursive feature elimination [16]
alone is not enough for the system to perform well, since
recursive feature elimination ranks all the features, and we are
responsible for selecting the top F features. In addition, the
different values for n in selecting the n-grams affect the feature
selection process as well as the whole system’s performance.
Therefore, we vary the number of features and the length of
n-grams used, and evaluate the ICA and classifier modules for
the given values. Then, we select the parameters that work well
for each malware family. More specifically, for each malware
family, we use the top F features using n-grams length up to
n, and we build the corresponding ICA and classifier models
for the learning phase using a subset of the data. Then, we
evaluate the performance on the remaining samples. For ICA,
we mix the background and malware features using a linear
sum of the two distributions, which resulted in the best results
for our datasets. We report performance results in §V.

V. EVALUATION

We evaluate the performance of our proposed system in
recovering the underlying malware feature distribution from
the mixed distribution, in addition to predicting the proper
malware family labels by testing it on the three datasets de-
scribed earlier in §II-C. We start by evaluating the performance
of ICA in recovering the original malware feature distribution
in §V-A, then we show the performance of the overall system
under different parameter settings for the number of selected
features and the length of n-grams in §V-B.

A. ICA Performance

ICA Estimating Feature Accuracy. As illustrated in Figure 2,
ICA is the first stage in our system’s operation, where ICA
estimates a distribution for each n-gram feature from the input
mixed traffic, which contains both malware and background
components. There are efficient off-the-shelf implementations
for ICA, and we use the FastICA [17] implementation in our
system. To evaluate the ICA estimates for the features, we
use the ground-truth feature distributions from the malware
traffic, and compare them with the ICA approximations. For
instance, Figure 5a shows three normalized CDF distributions
for an n-gram feature in the Darkness malware family. The red
line shows the distribution of the malware feature that does
not contain background component (i.e., ground-truth), the
blue line shows the distribution of the same feature including
the background component (i.e., mixed distribution), and the
dotted red line shows the distribution of the same feature
after ICA estimates the malware feature distribution from
the mixed feature. The figure shows that the dotted red line
approximately follows the red line (distribution-wise). The
other two plots in Figure 5 show similar distributions for
features in Srat and Zeus. This shows the power of ICA in
extracting a feature of interest from a mixed feature with a
background component. In the following, we evaluate ICA
across all n-gram features and malware families empirically.
ICA Experimental Results. To evaluate ICA across all n-
gram features and malware families, we use Kullback-Leibler
(KL) divergence [15] to measure the information lost when
we use ICA estimated feature distributions to represent
their corresponding actual malware distributions. The KL
divergence across all features and for the different malware
families ranges from a minimum of 0.0665 to a maximum
of 1.6744 with an average of 0.4188. An average of 0.4188
means that ICA performs well in estimating the majority of
our features, while some of the features are distorted. These
features are the lowest ranked features in the top features
selected by the recursive feature elimination step. We achieve
similar results for different ICA mixing functions, which we
discuss next.

ICA Mixing Function. In our ICA experiments, we mix the
malware features with their corresponding background features
using a linear sum, since ICA relies on a linear mixing function
to work properly, i.e., F (mixed) = w1 ∗ F (malware) +
w2 ∗ F (background), where F (mixed), F (malware), and
F (background) are the n-gram distributions in the mixed,
malware, and background traffic, respectively. The parameters
w1 and w2 are the weights used in the mixing function. We
perform our experiments using different weights and achieve
similar results to the linear sum. In practice, this assumption
aligns well with the nature of network traffic, since if we see
the occurrence of a specific n-gram x times in the malware
traffic PCAP and y times in the background traffic PCAP, then
we expect the occurrence of that n-gram to be a linear function
of x and y in the mixed traffic PCAP. However, the interleaving

��
����
����
����
����
����
����
����
����
����
��

�� �� �� �� �� �� �� �� �� ��

�
�
�

�������

��������
���
�����

(a) Darkness Feature

��
����
����
����
����
����
����
����
����
����
��

�� �� �� �� �� �� �� �� ��

�
�
�

�������

��������
���
�����

(b) Srat Feature

��
����
����
����
����
����
����
����
����
����
��

�� �� �� �� �� �� �� ��

�
�
�

�������

��������
���
�����

(c) Zeus Feature

Fig. 5. Each plot is the normalized CDF distribution comparison between the exact feature distribution without background traffic, feature with background
traffic, and ICA approximated distribution

events and their “timing” in the mixed traffic PCAP might
change the order of events we see in the clean malware PCAP,
and therefore, change the number of occurrences of that n-
gram in the mixed traffic. This issue can be addressed easily
using k skip n-gram (refer to §VII for details). A k skip n-
gram is a length n subsequence from a larger sequence, where
the components occur at distance at most k from each other.
This resolves the effect of timing in the mixed trace.

B. Classifier Performance

The capabilities of the proposed system are demonstrated
by two aspects: its power of separating mixed traffic, and the
effect of that on the accuracy of the classifier built on top
of the estimated malware traffic. To this end, we demonstrate
the effectiveness of our system in separating mixed signals
and classifying malware samples based on the estimated
features extracted by the ICA module. We first define the
evaluation measures and experimental setup, and follow that
with experimental results.
Experimental Setup. We use the Random Forest [9] classifier
for the classification stage. For our evaluation, we use 10-fold
cross validation to evaluate the performance of ICA and the
classifier. In this setting, each dataset is split into 10 folds,
where 9 folds are used for training the ICA and the classifier
models, and the 10th fold is used for testing (prediction). For
the testing fold, we use the mixed feature distributions as
input to the ICA model, then the estimated ICA distributions
are used as input to the classification stage. We re-run the
experiment by alternating the testing fold each time among
the 10 folds and compute the evaluation metrics each time.
Finally, we average our results across all 10 folds. We report
the following metrics:

1) Accuracy = (TP + TN) / (P + N), i.e., how well the system
predicts both sets of samples (samples containing a cer-
tain malware family, and samples containing clean/benign
samples).

2) Precision = TP / (TP + FP), i.e., the percentage of pre-
dicted malware samples that are truly malware samples.

3) Recall = TP / (TP + FN), i.e., the percentage of predicted
malware samples from all true malware samples.

4) F1 score = geometric mean between precision and recall.

In the above metrics, P represents the positives (malware),
and N represents negatives (background), TP represents the
true positives, TN represents the true negatives, FP represents
the false positives, and FN represents the false negatives.
Figure 6 reports these metrics for the three malware families
used in this study under three different experimental setups.
In the following, we elaborate on these results and findings.

Experimental Results. Figure 6a shows the classification
results for the Darkness malware family, where we compare
three different setups. First, the blue bars shows the classifica-
tion results without using ICA or mixing the features, i.e.,
the input to the classifier is the ground-truth malware and
background features, which is the best performance achievable
since there is no noise in the malware features. Second, the
hashed red bars show the results for the classifier when the
input is the noisy features, i.e., after mixing the malware
features with their corresponding background features but
without using our ICA module. Third, the hashed green bars
show the classifier results when we use ICA to clean the
mixed features from the background noise, and then use these
cleaned features as input to the classifier. From the figures,
it is clear that ICA effectively cleans the features so that one
can achieve high accuracy in labeling the malware families,
even outperforming the related literature utilizing the same
dataset [10]. The classifier suffers when the mixed features
are used without ICA. For example, we note that the accuracy,
which summarizes the performance of the classifier is about
0.75 when using the noised features, whereas applying ICA
to clean those features, and then applying the classifier results
in an accuracy of 0.95, with 20% improvement over using
the noised features. Note that these results are based on using
the top 15 features and n-grams where n is up to 5. Table III
lists the absolute numbers for TP, TN, FP, FN, and the false
positive rate (FPR) for one of the 10 test folds in the three
malware families. FPR is the percentage of background traffic
that does not contain malware that is predicted by our system
as malware (i.e., false alarms).

Effect of Changing the Number of Features and Length
of n-grams. Next, we evaluate our system against different
numbers of features and different values of n for the n-grams.
We perform this experiment in order to select the best number

����

����

����

����

����

����

����

����

��

�������� ��������� ������ ��

�������
�����
������

(a) Darkness

����

����

����

����

����

����

����

����

��

�������� ��������� ������ ��

�������
�����
������

(b) Srat

����

����

����

����

����

����

����

����

��

�������� ��������� ������ ��

�������
�����
������

(c) Zeus

Fig. 6. Each plot shows the classifier results for a different malware, where we compare without using ICA, without using ICA but the traffic is mixed, and
using ICA to clean the mixed traffic

TABLE III
ABSOLUTE NUMBERS FOR RESULTS PRESENTED IN FIGURE 6 FOR THE

GREEN HASHED BARS (W/ ICA)

Darkness Srat Zeus
True Positives (TP) 50 88 92
True Negatives (TN) 51 89 83
False Positives (FP) 2 4 10
False Negatives (FP) 3 5 1
False Positive Rate (FPR)
FPR = FP/(FP + TN)

0.056 0.053 0.012

of features, and the best value of n for the n-grams for each
malware family to achieve the highest effectiveness in labeling
a malware family empirically. We report the true positive rate
(TPR), i.e., Recall, and the false positive rate (FPR). Basically,
this experiment is a Receiver Operating Characteristic (ROC)
analysis [18] to tune our parameters.

Figure 7 reports the results, where Figure 7a shows the
results while varying the number of features, and Figure 7b
shows the results for different values of n for the extracted
n-grams. Each plot reports the TPR and FPR for the three
different malware families. From the figures, we can see that
after reaching 15 features, where n = 5 for the n-grams, the
performance starts to stabilize and no gain in performance is
achieved. We preferred using n = 5 in order to be able to
interpret the n-gram features and to avoid overfitting the data.

VI. RELATED WORK

Machine learning based algorithms for classifying malware
families have a lot of proposals in the literature, which can
be categorized as either signature-based, or behavior-based
algorithms. Our system belongs to the behavior-based cate-
gory, since we use features that rely on network events seen
while executing the malware sample. Related to our work is
CHATTER [10], where the authors classify malware samples
using n-gram features based on network events. However, there
are two major differences between our system and CHATTER.
First, CHATTER relies on fine-grained events, since attributes
extracted from one packet are treated as different events,
e.g., inbound, DNS, and port number are treated as different
network events. On the other hand, our system uses coarse-
grained groups, e.g., inbound, DNS, and port number from

��

����

����

����

����

��

�� �� �� �� ��� ��� ��� ���

�
��
�

��������

������������
������������

��������
��������
��������
��������

(a) Features Performance

��

����

����

����

����

��

�� �� �� �� �� �� ��

�
��
�

������

������������
������������

��������
��������
��������
��������

(b) N-grams Performance

Fig. 7. Classifier performance across different number of features in (a), and
as the value of n increases for n-grams in (b)

one packet are treated as one network event. Therefore, our
system can capture events like a DNS request followed by an
HTTP GET request, while CHATTER cannot do that for the
aforementioned operational difference. Second, we use ICA
to clean the mixed network traffic from background attributes,
while CHATTER assumes clean malware data is in use. In
addition, while similar to CHATTER in this aspect, our system
is different from other recent related work in an important
aspect concerning the order of events. We use n-grams to
capture the order of events, which exposes richer information
about the operation of the underlying malware. In addition,
we use highly accurate labels for our malware samples, since
these labels are manually vetted by malware analysts at our
institution. Other proposals rely on Anti-Virus labels, which
are known to have pitfalls and inconsistencies [1].

Beside CHATTER, there have been other methods in the
literature related to this work in many aspects. In [2], the

authors used behavior graph matching to identify and classify
families of malware samples. However, their technique comes
at a high cost due to the high cost of graph generation. In
addition, some of those proposals rely on payload analysis,
which is a costly operation. Related to our use of network fea-
tures is the line of research on traffic analysis for malware and
botnet detection [19] and for the particular families of malware
that use fast flux [20, 21]. Some other methods are related to
our use of the DNS features for malware analysis [22–24].
However, none of these studies are concerned with behavior-
based analysis and classification of malware beyond the use
of remotely collected network features for inferring malicious
activities and intent. Thus, although they share some similarity
with our work in its purpose, they are different in the utilized
techniques.

Our system is different from previous systems that use n-
grams and the order of events for malware classification in the
following aspects. First, a group of other methods investigated
extracting features from executables (e.g., sequence of bytes
in the binary [3]), or streams of communication traffic [4],
but not the sequence of events happening while executing a
malware sample. Examples of such systems include [4, 25–
27]. Second, our system is different from others that use
network artifacts for identifying malicious activity [19, 28–
31], like botnets, in the way we group these events into
features using n-grams. Third, using the order of events in
characterizing OS processes was first explored by Forrest et al.
in their seminal work [32], where they show that a process-
level intrusion can be detected using the order in which system
calls happen as a sequence. Our system is different in the
following aspects: we are interested in malware classification
not detection, and we use network artifacts not system calls.
Finally, using machine learning techniques to classify malware
traffic is heavily studied in the literature, and the reader can
refer to recent surveys [33] for a comprehensive study.

VII. DISCUSSION

As shown by our system, using n-grams on higher level
network events helps understand the underlying operation of
the malware, and provides a good feature set for classification.
In addition, ICA improves the performance by estimating
the malware feature distribution in the mixed traffic. In this
section, we present the challenges and limitations of our
system due to using n-grams and ICA.

N-grams Challenges: As the length of our n-grams “n” in-
creases, interpreting the features becomes harder. This happens
since we have to understand the meaning of longer sequences
of network events. With the help of malware analysts at
VeriSign, we are exploring other discriminant features in order
to gain insight into the main differences in the behavior
between the malware and background traffic, as well as the
underlying malware operation. This will also help us provide
better solutions that detect malware families.

ICA Challenges and Limitations: The two main assumptions
that ICA relies on are independence of the two underlying
distributions, and the use of a linear mixing function to

produce the mixed traffic. In this paper, we assumed that
the background traffic such as web browsing, OS updates, or
peer-to-peer traffic are independent from the malware traffic
running on the same machine. Our ICA performance analysis
shows that in the three malware families we have studied,
this assumption holds. ICA also requires only one Gaussian
distribution, and we used normality tests to confirm that
malware feature distributions are not Gaussian. Consequently,
ICA can only work on malware families that do not exhibit
any Gaussianity in their features. Our work cannot be applied
to malware families that have similar properties to the back-
ground traffic (e.g., both are following the normal distribution
or both are dependent). Exploring the extent to which our
system is affected by violation of these properties is left as a
future work.

The second assumption is linearity of mixing, i.e., the
mixed distribution is a linear function of the malware and
background distributions. Due to the nature of network traffic,
this assumption is not violated, which was validated by our
results. For instance, the distribution of a uni-gram feature such
as the number of HTTP GET requests in the mixed traffic is
going to be the sum of both the malware and background
traffic. To learn the ICA unmixing function, our system mixes
the pure malware feature distributions from the ground-truth
data, with their corresponding features in the background
traffic to train the ICA model to split them as we discussed
earlier in §V-A. In practice, some n-grams in the mixed traffic
may be missing in the plain malware or background traffic due
to timing changes. Therefore, we can use a skipping factor k
to skip over words in the mixed data profiles, e.g., considering
“w1 w2 w3 w4” as a sequence of words, then with a skipping
factor k = 1, we generate the following bi-grams {(w1 w2),
(w1 w3), (w2 w3), (w2 w4), (w3 w4)}. This helps improve the
features selected by our system, but increases the computation
cost to select such features. We faced two challenges when
working with ICA: scaling and ordering. The output of ICA
is on a different scale from the input. We solved this issue
by mapping both the input and output feature distributions
to the same scale. Also, ICA outputs are not tagged, i.e.,
we do not know which of the two estimated distributions is
the malware distribution. To fix this issue, we measured the
distance between the ground-truth distribution, and the two
estimated distributions. Then, we used the closer distribution
to the ground-truth. We found that these two fixes worked well
in our system.

VIII. CONCLUSION

In this paper, we have proposed a novel supervised machine
learning based classification system that accurately predicts
the malware family for a given mixed network traffic for an
infected host. Unlike other existing state-of-the-art classifica-
tion methods, our system is able to separate the mixed traffic
into malware and background traffic using ICA, which we
have shown in the experimental results that it improves the
performance of the classifier. We used n-gram frequencies
as features in our random forest classifier, which preserve

the ordering of network events. Our classification system is
generic in purpose, and it can meet many needs in multiple
applications. For example, traffic analysis and identification is
a generic problem related to services profiling, and our system
can be used for that.

In our future work, we are planning to look into extending
this system to address problems in other domains with similar
contexts. This includes user identification and profiling. We
will also look into gaining operational experience and mea-
surements based on a real deployment for applications built
using our system.

REFERENCES

[1] A. Mohaisen and O. Alrawi, “AV–Meter: An Evaluation
of Antivirus Scans and Labels,” in DIMVA, 2014.

[2] Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel,
“Fast malware classification by automated behavioral
graph matching,” in ACM CSIIR Workshop, 2010.

[3] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic
analysis of malware behavior using machine learning,”
Journal of Computer Security, 2011.

[4] C. Wressnegger, G. Schwenk, D. Arp, and K. Rieck, “A
close look on n-grams in intrusion detection: anomaly
detection vs. classification,” in ACM workshop on Artifi-
cial intelligence and security, 2013.

[5] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov,
“Learning and Classification of Malware Behavior,” in
DIMVA, 2008.

[6] D. Kong and G. Yan, “Discriminant Malware Distance
Learning on Structural Information for Automated Mal-
ware Classification,” in ACM SIGKDD, 2013.

[7] T.-W. Lee, Independent Component Analysis. Springer,
1998.

[8] N–gram Models, “http://en.wikipedia.org/wiki/N-gram,”
Dec 2014.

[9] L. Breiman, “Random Forests,” Machine learning, 2001.
[10] A. Mohaisen, A. G. West, A. Mankin, and O. Alrawi,

“Chatter: Exploring classification of malware based on
the order of events,” in IEEE CNS, 2014.

[11] A. J. Bell and T. J. Sejnowski, “An Information-
Maximization Approach to Blind Separation and Blind
Deconvolution,” Neural computation, 1995.

[12] A. Mohaisen, O. Alrawi, A. G. West, and A. Mankin,
“Babble: Identifying malware by its dialects,” in IEEE
CNS, 2013.

[13] D. Alperovitch et al., Revealed: operation shady RAT.
McAfee, 2011.

[14] A. Mohaisen and O. Alrawi, “Unveiling Zeus: Automated
Classification of Malware Samples,” in World Wide Web
companion, 2013.

[15] J. M. Joyce, “Kullback-Leibler Divergence,” in Interna-
tional Encyclopedia of Statistical Science, 2011.

[16] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene
Selection for Cancer Classification using Support Vector
Machines,” Machine learning, 2002.

[17] A. Hyvarinen, “Fast and Robust Fixed-point Algorithms
for Independent Component Analysis,” IEEE Transac-
tions on Neural Networks, 1999.

[18] J. A. Hanley and B. J. McNeil, “The meaning and use
of the area under a receiver operating characteristic (roc)
curve.” Radiology, 1982.

[19] G. Gu, J. Zhang, and W. Lee, “Botsniffer: Detecting
botnet command and control channels in network traffic,”
in NDSS, 2008.

[20] T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling,
“Measuring and detecting fast-flux service networks,” in
NDSS, 2008.

[21] J. Nazario and T. Holz, “As the net churns: Fast-flux
botnet observations,” in MALWARE, 2008.

[22] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Ex-
posure: Finding malicious domains using passive dns
analysis,” in NDSS, 2011.

[23] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and
N. Feamster, “Building a dynamic reputation system for
dns,” in USENIX Sec. Symposium, 2010.

[24] M. Antonakakis, R. Perdisci, W. Lee, N. V. II, and
D. Dagon, “Detecting malware domains at the upper dns
hierarchy,” in USENIX Sec. Symposium, 2011.

[25] R. Perdisci, A. Lanzi, and W. Lee, “Mcboost: Boosting
scalability in malware collection and analysis using sta-
tistical classification of executables,” in ACSAC, 2008.

[26] J. Z. Kolter and M. A. Maloof, “Learning to detect and
classify malicious executables in the wild,” The Journal
of Machine Learning Research, 2006.

[27] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo,
“Data mining methods for detection of new malicious
executables,” in IEEE Security and Privacy, 2001.

[28] W. T. Strayer, D. E. Lapsley, R. Walsh, and C. Livadas,
“Botnet detection based on network behavior,” in Botnet
Detection, 2008.

[29] G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee,
“Bothunter: Detecting malware infection through ids-
driven dialog correlation,” in USENIX Sec. Symposium,
2007.

[30] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer:
clustering analysis of network traffic for protocol- and
structure-independent botnet detection,” in USENIX Sec.
Symposium, 2008.

[31] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clus-
tering of http-based malware and signature generation
using malicious network traces,” in USENIX NSDI, 2010.

[32] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff, “A sense of self for unix processes,” in IEEE
Security and Privacy, 1996.

[33] R. Sommer and V. Paxson, “Outside the closed world: On
using machine learning for network intrusion detection,”
in IEEE Symposium on Security and Privacy, 2010.

	15-002_cover
	Separation_of_Network_events

