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Abstract—Android systems are widely used in mobile & wire-
less distributed systems. In the near future, Android is believed
to dominate the mobile distributed environment. However, with
the popularity of Android-based smartphones/tablets comes the
rampancy of Android-based malware. In this paper, we propose a
novel topological signature of Android apps based on the function
call graphs (FCGs) extracted from their Android App PacKages
(APKs). Specifically, by leveraging recent advances in graphlet
sampling, the proposed method fully captures the invocator-
invocatee relationship at local neighborhoods in an FCG without
exponentially inflating the state space. Using real benign app and
malware samples, we demonstrate that our method, ACTS (App
topologiCal signature through graphleT Sampling), can detect
malware and identify malware families robustly and efficiently.
More importantly, we demonstrate that, without augmenting the
FCG with any semantic features such as bytecode-based vertex
typing, local topological information captured by ACTS alone
can achieve a high malware detection accuracy. Since ACTS
only uses structural features, which are orthogonal to semantic
features, it is expected that combining them would give a greater
improvement in malware detection accuracy than combining non-
orthogonal semantic features.

Index terms—Android; graphlet sampling; mobile applica-
tions; mobile malware; smartphone

I. INTRODUCTION

Some rising trends in mobile systems, e.g., the wearable de-
vices, the medical devices and the intelligent vehicle systems,
are setup on Android platforms following the big success of it
on smartphone market. Since Android applications are specifi-
cally designed to have as few implementation dependencies as
possible, Android is believed to be adaptive to the new market
and dominate the mobile distributed environment soon.

As the use of Android continues to grow, so does the threat
of malware. Malicious behaviors observed in such malware
include the theft of private information stored on the device,
device fingerprinting, abusing premium service, and rooting
the device as a backdoor for further attacks [36]. Detecting
such malware is a critical task for the security research
community.

It is observed that variants of malware form families through
code sharing and their common lineage [36]. Therefore,
instead of identifying individual malware and extracting a
signature from it, we can identify the commonality within

the same malware family and generate signatures that capture
such commonality. Recently, various machine learning/data
mining (i.e., pattern mining) techniques are applied to detect
Android malware [1, 2, 10, 17, 30, 33] or closely related
tasks such as identifying repackaged apps [34, 35]. Beyond
the common pattern mining framework, these works differ
significantly in their selection and construction of features,
their quantification/metrication of such features, their choice
of pattern mining algorithms, and, in totality of these fine
points of design, their applicability, robustness, and efficiency
in detecting malware.

A number of different app representations have been studied
for malware detection. For example, Yamaguchi et al. propose
a compact representation of source code, the code property
graph, that combines abstract syntax trees, control flow graphs,
and program dependence graphs [30]. Other approaches do
not require the source, but instead focusing on features at
different abstract levels: from the low-level platform opcode
level [33], through the intermediate function call [10] and
Android framework API [1] level, to the high semantic level
that includes features such as network addresses and Android
specific artifacts such as permission and Intents [2]. Yet, other
works formulate malware detection as different pattern mining
tasks such as frequent subgraph mining [17].

Due to the availability of off-the-shelf obfuscation solutions
(such as the free ProGuard [27] and the commercial Dex-
Guard [26]) and the growing number of Android apps, it is
critical for any proposed malware detection algorithm to be
robust and efficient. Our first step towards robustness is to
extract from the app under investigation its function call graph
(FCG) [10], in which each vertex represents a Java method
and each edge represents a method invocation. We concur
with Gascon et al. [10] that FCG is at a proper abstraction
level for detecting malware: In addition to the non-essential
transformations mentioned above, it is also immune to, for
example, both lower-level opcode/instruction obfuscation or
higher-level content encryption.

Based on the extracted FCG, we propose an efficient
and robust Android app signature that faithfully captures
the invocator-invocatee relationship between several functions,
i.e., the topology of local neighborhoods on the FCG. Instead___________________________________________________________________
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of using vertices and edges (or extension to 1-hop neighbor-
hoods [10]) on the FCG “as is,” we leverage recent advances
in graph mining to efficiently sample graphlets [21, 22] on the
FCG. Graphlets are small (e.g., less than 6), connected, vertex-
induced embedded subgraphs in an underlying graph, which
is the FCG in our case. In the spectrum of purely local (e.g.,
individual vertices/edges and simple metrics such as degrees)
and fully global (e.g., betweenness centrality [4]) scope of the
FCG, our graphlet-based signature takes a unique position:
It faithfully captures local topological information at a fine-
grained granularity without exponentially inflating the state
space.

Given these characteristics, we call our graphlet-based sig-
nature a topological signature and, accordingly, name our
method ACTS (App topologiCal signature through graphleT
Sampling). In our experiments, ACTS achieves a cross-
validated accuracy as high as 87.9% . In comparison, the same
method with a purely local feature (i.e., degree frequency dis-
tribution (DFD) [7]) has an average cross-validated accuracy
of 75%. Since ACTS only uses structural features, which are
orthogonal to semantic features such as bytecode-based vertex
typing, it is expected that combining them would give a greater
improvement in malware detection accuracy than combining
non-orthogonal semantic features.

In summary, our contributions are:
• We propose a novel topological signature for Android

apps that fully captures the invocator-invocatee relation-
ship in an app’s FCG, which is otherwise lost in a global
topological metric such as betweenness centrality [4],
without exponentially inflating the state space as in n-
hop neighborhoods with n ≥ 3.

• By leveraging recent advances in graphlet sampling, we
make the generation of our proposed topological signa-
ture practically efficient without sacrificing its robustness.

• With experiments on real malware/benign app samples,
we demonstrate that local topological information cap-
tured by our method alone can achieve a high malware
detection accuracy, which can be further improved by
incorporating (orthogonal) semantic features.

In the rest of the paper, after the preliminaries (Section II),
we present our method (Section III) and experiment results on
real malware/benign app samples (Section IV). We then reflect
on our method (Section V) and conclude with a brief review
of related works (Section VI).

II. PRELIMINARIES

A. Function call graph

Function call graph (FCG) is a graph model for functions
and their invocation relationship, in which vertices represent
functions and a directed edge from vertex v1 to v2 represents
that v1 invokes v2. For an Android app, functions are Java
methods, and their invocation relationship can be statically
extracted from Java bytecode by searching for the invocation-
related opcodes, i.e., invoke-*.

ω3,1 ω3,2 ω3,3 ω3,4 ω3,5 ω3,6

ω3,7 ω3,8 ω3,9 ω3,10 ω3,11 ω3,12 ω3,13

Fig. 1: The 13 unique 3-graphlet types ω3,i (i = 1, 2, . . . , 13).

B. Graphlets

Pržulj et al. first consider a complete set of local graph
topologies with 3, 4, and 5 vertices and name them graphlets1

in their work on characterizing biological networks [20]. For-
mally, given a graph G, graphlets of G are small, connected,
non-isomorphic, and vertex-induced subgraphs of G. Although
earlier works [20, 21, 22] on graphlets focus on undirected
graphs, we consider directed graphlets to preserve the inherent
directionality of FCGs.

Figure 1 enumerates all the 13 unique types of (directed)
graphlets ω3,i

2 (i = 1, 2, . . . , 13) with 3 vertices (the 3-
graphlets): They are pair-wise non-isomorphic. These graphlet
types do not appear equally likely in an FCG. For instance,
although there are many cases in which a function invokes two
others (ω3,5) or two different functions invoke the same one
(ω3,6), 3 mutually recursive functions (ω3,13) are rare. Later,
we will discuss how we use this observation to improve the
performance of our method (Section III-C).

For vertices 4, 5, and 6, the number of graphlet types are
199, 9, 364, and 1, 530, 843, respectively [24]. We focus on
graphlets with less than 6 vertices in this work because larger
graphlet types require extra computations but provide little
value in capturing the structure of FCG. Figure 2 illustrates
our running example: A 4-graphlet g (the grey vertices and
their induced edges) embedded in a 6-vertex graph G.

C. Graphlet frequency distribution (GFD)

Graphlet frequency distribution (GFD) of a graph G is
the probability distribution of the frequencies of the different
graphlet types in G. For instance, since the number of 3-
graphlets in a (finite) FCG G is finite, we can, in principle,
enumerate all embedded graphlets in G and, for each such
embedded graphlet g, identify g with one of the 13 graphlet
types in Figure 1. At the end of the enumeration, suppose the
count (i.e., the frequency) of graphlet type ω3,i is f3,i (i ∈
{1, 2, . . . , 13}), the frequency distribution density d3,i at ω3,i

is f3,i/
∑13
i=1 f3,i. We call the vector (d3,1, d3,2, . . . , d3,13)

the 3-graphlet frequency distribution (3-GFD) of G. We can
compute n-GFD for any n with the same procedure, and
concatenate several n-GFDs with different n into a single

1Graphlet is also used to refer wavelet decomposition of graphs [28], which
is an unrelated concept to what we use in this work.

2The unique types of n-graphlets are enumerated as
ωn,1, ωn,2, . . . , ωn,N(n), with N(n) being the number of unique types for
n-graphlets.
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Fig. 2: Our running example: A 4-graphlet g (the grey vertices and their
induced edges) embedded in a 6-vertex graph G.

vector. We can call the concatenated vector a GFD of G if
there is no confusion on its constituents.

The above procedure only works in principle. In practice,
the fast growing number of apps, the size of real apps’ FCGs,
and the combined computation complexity of graphlet enu-
meration and identify graphlet types make the enumeration-
and-count procedure impractical to use. Nevertheless, GFD
is a step forward towards our goal: It is a metrication from
the (combinatorial) graphlet space into the (metric) Euclidean
space, where we can apply pattern learning techniques to
detect malware. In other words, GFD preserves the topological
information of local neighborhoods in an FCG. Later, after
giving a high-level overview of our method (Section III-A), we
will focus on how to estimate GFD efficiently (Section III-B).

D. Metropolis-Hastings (M-H) algorithm

Markov chain Monte Carlo (MCMC) [11] is a class of
algorithms for sampling from a probability distribution. Given
an intended sampling distribution p(x) over a sample space X ,
the idea behind general Markov chain Monte Carlo (MCMC)
methods (in which the M-H algorithm is a specific method)
is to construct a Markov chain over X whose stationary
distribution equals to p(x): After the Markov chain mixes (i.e.,
reaches its stationary distribution and, hence, “forgets” where
it begins), the subsequently visited states of the chain can be
used as samples from the intended distribution P (x).

Metropolis-Hastings (M-H) algorithm [18] is a specific
MCMC method that we use for estimating GFD (Sec-
tion III-B). In the M-H algorithm, the transition between two
consecutive states x and x′ in the chain consists of two stages:
proposals and acceptance/rejection. Correspondingly, there is
a proposal distribution q(x′|x) (the probability of proposing x′

as the next state given the current state x) and an acceptance
distribution a(x′|x) = min(1, A(x′|x)) (the probability of
accepting x′ as the next state given the current state x), in
which:

A(x′|x) = p(x′)q(x|x′)
p(x)q(x′|x)

. (1)

Intuitively, for each iteration of the sampling process, we
first randomly pick x′ with a probability of q(x′|x), and
then either accept x′ (by sampling x′) with a probability of
a(x′|x) or reject x′ (by sampling x again) with a probability
of 1− a(x′|x).

III. METHOD

In this section, after a brief overview of our method (Sec-
tion III-A), we zoom in on two technical points: Efficient GFD
estimation (Section III-B) and FCG-specific GFD dimension
reduction heuristics (III-C) that distinguish our method.

A. Overview

Given an Android app’s APK (Android PacKage) binary
package, we:
• extract an FCG from the APK,
• estimate the GFD of the FCG (Section III-B), and
• project the estimated GFD to a lower dimensional space

to reduce the GFD’s dimensions (Section III-C).
The projected GFD, which is a vector, is a signature of the

app. To stress that this signature preserves detailed topological
information on an app’s FCG, we call it the topological
signature (TS) of the app.

Given a pool of both malware and benign app samples, we
train a classifier on their TSs to detect malware: If the TS of an
app is classified as a malware, the app is flagged as malware.

B. Efficient GFD estimation

Suppose we have a uniform sampler of the FCG, we can
approximate the whole FCG’s GFD with our samples’ GFD.
The more samples we take, the closer the approximation is.
Given the large sample space and the (relatively small) number
of bins (i.e., unique graphlet types) for n-graphlets with n < 6,
we only need to sample a tiny fraction of the sample space to
get a close approximation.

This apparently solve the GFD estimation problem. How-
ever, the real problem is that we need to uniformly sample
graphlets from the FCG without enumerating the sample
space. Fortunately, two recent advances on graph mining,
GRAFT [21] and GUISE [22], show that GFD can be es-
timated without enumerating all graphlets. Inspired by these
works, we use MCMC to sample the directed FCG.

1) Sample space and intended distribution: Since our goal
is to uniformly sample from all the embedded graphlets in the
FCG:
• The sample space X consists of all the embedded

graphlets in the FCG.
• The intended distribution p(x) over X is the uniform

distributions, i.e., p(x) = p(x′) for any x, x′ ∈ X .
Suppose we have just sampled graphlet g in the sampling

process, the M-H algorithm (Section II-D) says that, if we pro-
pose to sample graphlet g′ next with a probability of q(g′|g),
an acceptance probability of a(g′|g) = min(1, A(g′|g)) (in
which A(g′|g) is defined by Equation (1)) will eventually
lead to a sampling process that have the desired sampling
distribution p(x).

2) FCG-induced graphlet graph and graphlet neighboring
relationship: To define the proposal distribution q(x′|x), we
consider the FCG-induced graphlet graph GG of the FCG G.
The FCG-induced graphlet graph GG is an undirected graph
with vertices being all the embedded graphlets in the FCG,
and edges defined by the graphlet neighboring relationship



between the vertices. The graphlet neighboring relationship is
a symmetric relationship between two graphlet embeddings g1
and g2 in the FCG: g1 and g2 are graphlet neighbors if and
only if they differ by share all but one vertex. In particular,
self-neighboring is excluded by this definition because there
is no vertex difference, which is required by the definition.
Since graphlets on G and vertices on GG have a one-to-one
map, we identify a graphlet g on G with the vertex on GG
that it maps to, and also denote that vertex with g if there is
no confusion in the context.

For example, in Figure 2, g’s neighbors on GG are3 all the
3-graphlets (e.g., {v2, v3, v4}, {v3, v4, v5}, etc.), 4-graphlets
(e.g., {v1, v2, v3, v4}, {v0, v2, v4, v5}, etc.), and 5-graphlets
({v1, v2, v3, v4, v5} and {v0, v2, v3, v4, v5}) that share all but
one vertex with it. Conversely, 1) {v1, v2, v3} is not a neighbor
of g because it does not contain both v4 and v5, which are
in g; 2) {v0, v1, v2, v3} is not a neighbor of g because it does
not contain g’s vertices v4 and v5 (and g does not contain its
vertices v0 and v1); 3) {v0, v1, . . . , v5} is not a neighbor of g
because g does not contain its vertices v0 and v1.

The significance of the graphlet neighboring relationship on
GG is that it can be efficiently generated by local information
on the FCG G without enumerating the whole G. Specifically,
given an embedded graphlet g of G, the neighbors of g on GG
can be generated by removing, changing, or adding exactly
one vertex in g. Hence, we can efficiently compute the degree
dg of g in GG by generating and counting g’s neighbors.

3) Proposal and acceptance distributions: Let d(g) and
N(g) be graphlet g’s degree and neighbors in GG, respectively.
Suppose the last graphlet we have sampled is g, our proposal
strategy q(g′|g) is to uniformly sample one of its neighbors in
GG, i.e.,

q(g′|g) =
{ 1

dg
if g′ ∈ N(g),

0 otherwise.
(2)

Since dg can be efficiently computed without enumerating the
graph (see above), q(g′|g) can also be efficiently computed
since it only requires computing dg .

By Equations (1) and (2), the resulting acceptance strategy
a(g′|g) is:

a(g′|g) =

{
min(1,

dg
dg′

) if g′ ∈ N(g),
0 otherwise.

(3)

By Equations (2) and (3), the probability s(g′|g) of sam-
pling g′ next given the current sample g is:

s(g′|g) =


min( 1

dg
, 1
dg′

) g′ ∈ N(g),
1−

∑
h∈N(g) min( 1

dg
, 1
dh
) g′ = g,

0 otherwise.
(4)

The intuition behind the sampling strategy in Equation (4)
can be understood in the following two cases.
Case 1. If g is a graphlet that has the highest degree among
its neighbors in GG, i.e., dg ≥ dg′ for any g′ ∈ N(g),

3Given that graphlets are vertex-induced subgraphs, we use a vertex set to
represent the (unique) embedded graphlet having those vertices here.

Algorithm 1 Estimate GFD for the FCG G from t samples.
1: I C: all the distinct n-graphlet types for n ∈ {3, 4, 5}
2: I fc: frequency counter for graphlet type c ∈ C
3: I dc: frequency density estimation for graphlet type c ∈ C

Input: G: the FCG; t: number of iterations
4: function ESTIMATE-GFD(G, T )
5: g ← a random (initial) graphlet I bootstrap the sampling process
6: NEXT-SAMPLE(G, g, T ) I obtain the vector (fc|c ∈ C)
7: for c ∈ C do I for each graphlet type c ∈ C
8: dc ← fc/

∑
c∈C fc I estimate its graphlet density

9: end for
10: return (dc|c ∈ C) I (dc|c ∈ C) is a vector ordered by C
11: end function
Input: G: the FCG; g: current graphlet sample; k: remaining iterations
12: procedure NEXT-SAMPLE(G, g, k)
13: N(g)← g’s neighbors in GG I Section III-B2
14: choose a g′ ∈ N(g) with an equal probability of 1/dg I Equation (2)
15: a← a number uniformly sampled from [0, 1]
16: if a ≤ min(1, dg/dg′ ) then I accepting g′

17: g ← g′

18: else I rejecting g′

19: end if
20: c← C(g) I identify (the new) g’s type
21: fc ← fc + 1 I increase g’s count
22: if k > 0 then I if there are remaining iterations
23: NEXT-SAMPLE(G, g, k − 1) I we continue the sampling process
24: end if
25: end procedure

then min(1/dg, 1/dg′) = 1/dg and, hence, by Equation (4),
s(g|g) = 1 − dg( 1

dg
) = 1 − 1 = 0, i.e., the next sample will

not be g but one of its neighbors.
Case 2. If g is a graphlet with a relatively low degree among its
neighbors in GG, s(g′|g) in Equation (4) will be greater than 0.
The greater the degree differences are, the greater s(g′|g) will
be. In an extreme case in which g has a single neighbor g′ with
a degree of 100 (i.e., dg = 1 and dg′ = 100), s(g′|g) = 0.01
and s(g|g) = 0.99: If the current sample is g, 99 out of 100
times, the next sample will still be g.

In other words, the sampling process (i.e., the consecutive
states of the Markov chain) is more eager to move away from
the more popular graphlets (i.e., the ones with higher degrees
in GG) and to stay at the less popular ones: The former has
a better chance than the latter of being revisited later. This
results in a fair (i.e., uniform) sampling of all the embedded
graphlets in the FCG G.

4) GFD estimation algorithm: Finally, we estimate the
GFD for the FCG G from t samples by evaluating ESTIMATE-
GFD(G, t) in Algorithm 1. In our experiment, we evaluate
multiple t and choose 100, 000 for having both low variance in
the sampling result and acceptable efficiency. Note that, given
the average size of an FCG G (thousands of vertices) and,
hence, the sample space GG (for a 1, 000-vertex G, GG has
a worst-case size of O(1, 0003)), 100, 000 iterations are quite
small. Indeed, for the largest app in our dataset (the Facebook
app, with 47, 539 vertices and 77, 900 edges), ESTIMATE-
GFD(G,T ) for T = 100, 000 only takes only about 34
seconds on our desktop workstation with high convergence
across multiple runs.

C. FCG-specific GFD dimension reduction heuristics

The curse of dimensionality [13] plagues many machine
learning tasks. Theoretically, by confining the n-graphlets we
sampled to n ∈ {3, 4, 5}, the GFD vectors we obtain from
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Fig. 3: The 5 3-graphlet types that have a greater-than-2% frequency density in the GFD of at least one app in our experiment, sorted by their average
frequency density across all malware/benign app samples in our experiment.
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Fig. 4: The 20 4-graphlet types that have a greater-than-2% frequency density in the GFD of at least one app in our experiment, sorted by their average
frequency density across all malware/benign app samples in our experiment.

Algorithm 1 are of 9, 576 (13 + 199 + 9, 364; Section II-B)
dimensions. Reducing the dimensions of these vectors is
desirable.

Fortunately, as briefly discussed in Section II-B, not all
graphlet types are equally likely to appear in a real FCG.
Figures 3 and 4 show all 3-graphlet and 4-graphlet types (5-
graphlet types are omitted for space constraints) that have more
a greater-than-2% frequency density in the GFD of at least one
of the (more than 1, 400) apps (including both malware and
benign apps) in our experiment: There are 5 3-graphlet types,
20 4-graphlet types, and 71 5-graphlet types, respectively.

Note that, as we discuss in Section II-B and is verified here,
graphlet types ω3,5 (outgoing invocations) and ω3,6 (incoming
invocations) rank among the most frequent 3-graphlet types,
while the mutually recursive type (ω3,13) is not. Moreover,
except for a few cases of mutual recursion, loops among a
few functions of are rare. This suggests that: 1) either inter-
function loops have a long chain of invocations, 2) or most
functions have a clear invocator-invocatee relationship that is
not reciprocal.

These observations suggest that we can significantly cut
down the dimensions of GFDs by projecting the GFD vectors
onto the most frequent dimensions. Indeed, this is what we do
in our method after obtaining the full-spectrum (i.e., 9, 576-
dimensional) GFD estimation.

IV. EXPERIMENT RESULTS

A. Datasets

In our experiment, we use the benign app samples from
PlayDrone [29] and use the malware samples from the Android
Malware Genome Project (AMGP) [36].

For the benign app portion of our datasets, we download the
dataset of PlayDrone. There are total 49000 benign samples
in 9 different archives. To test the scalability and robust of our

algorithm, we randomly and repeatedly choose sets from the
PlayDrone and each set has thousands of benign samples. We
also check the package name, the version code and the MD5
message of each sample to prevent the duplicate in it.

For the malware portion of our datasets, the AMGP lists
1, 249 malware samples of 49 families. The top 9 malware
families that have over 40 samples are: DroidKungFu3 (303
samples), AnserverBot (185 samples), BaseBridge (118 sam-
ples), DroidKungFu4 (96 samples), Geinimi (69 samples),
Pjapps (56 samples), KMin (52 samples), GoldDream (47
samples), and DroidDreamLight (46 samples).

B. Procedure

We first use Androguard [15] Android app reverse engineer-
ing toolkit to extract FCGs from the APK samples. Specif-
ically, we use the androgexf.py script to extract a GEXF4-
format file that encodes the Java methods and their invocation
relations in the APK.

We implement our GFD estimation algorithm (Algorithm 1)
to generate a GFD vector for all n-graphlet types for n ∈
{3, 4, 5}. The majority of dimensions have a frequency of
0; hence, we use the FCG-specific GFD dimension reduction
heuristics (Section III-C) to reduce these 9, 576-dimensional
vectors to 96-dimensional ones, which only contain the di-
mensions that have a frequency density over 2% in at least
one of the apps in our datasets. These 96-dimensional vectors
are the topological signatures of their corresponding apps.

We then use the LIBSVM [5] support vector machine
(SVM) library for classification; the details are mentioned
below along with corresponding results.

C. Results

4GEXF (Graph Exchange XML Format); http://gexf.net/format/.
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Fig. 5: Malware detection accuracy of SVM-GFD (SVMs with GFD-based
signature; dark) and SVM-DFD (SVMs with DFD-based signature; grey) us-
ing C-SVC (C-support vector classification) SVMs (support vector machines)
with different kernels: RBF (radial basis function), linear, polynomial, and
sigmoid.

TABLE I: Malware detection false positives (FPs) and false negatives (FNs):
SVM-GFD vs. SVM-DFD with different kernels.

RBF linear
FP FN FP FN

GFD 11.53% 12.78% 19.30% 19.55%
DFD 13.03% 27.07% 17.54% 27.82%

polynomial sigmoid
FP FN FP FN

GFD 20.80% 20.55% 22.01% 20.55%
DFD 21.30% 33.08% 26.57% 32.08%

1) Malware detection performance: To understand how
the local-topology-preservation property of GFD helps in
enhancing malware detection performance, we compare our
method with another method in which both the (preceding)
FCG extraction phase and (subsequent) learning phase are
the same. The only difference is the feature we extract from
FCG. Specifically, we use the degree frequency distribution
(DFD) for comparison. In DFD, vertices with the same degree
frequencies are binned together and counted. DFD is the
probability distributions of element counts over these bins. In
other words, the only difference between the two methods is
whether local topology information of FCG is used in the
subsequent learning phase: Our GFD-based method uses this
information, while the DFD- based method does not.

For reasons that will be explained shortly, in this exper-
iment, we randomly and repeatedly pick 1200 samples from
the benign dataset to compare with the 1200 malware samples.
In each comparison, we use the 10-fold cross-verification
method, which means that each time 120 benign samples and
120 malware samples are randomly chosen as test set, other
samples will be feed as training set and the result shows the
overall average accuracy. Then we compare malware detection
performance of SVMs with GFD-based signature (SVM-GFD)
and SVMs with DFD-based signature (SVM-DFD) using all 4
built-in SVM kernel functions in LIBSVM: RBF (radial basis
function: eγ|u−v|

2

), linear (u′ ·v), polynomial ((γu′ ·v)3), and

sigmoid (tanh(γu′ · v)), in which u and v are feature vectors,
γ = 1/N , and N is the feature vector dimension. Figure 5
shows the accuracy (the samples that are correctly labeled by
the SVMs) comparison and Table I shows the detailed false
positives/negatives (the samples that are incorrectly labeled
by the SVMs). We do observe similar results on the repeated
experiments but we just choose to report one due to the space
constraint.

The reason we use a 1:1 ratio between malware and benign
app dataset is that a skewed dataset may give misleading
performance results. Later in this part we will also present
the influence of sample bias. In both Figure 5 and Table I,
the performance of SVM-GFD and SVM-DFD appear to be
consistent across learning kernels. The high accuracy of the
two algorithms implies that both of them could successfully
capture topological features and the information is helpful to
Android malware detection.

Comparing these two algorithms, SVM-GFD always give
better results (by average 6% margin over the SVM-DFD
algorithm, to over 80% accuracy). A recent study [2] on com-
mercial anti-virus scanners’ (AntiVir, AVG, BitDefender, Cla-
mAV, ESET, F-Secure, Kaspersky, McAfee, Panda, Sophos)
performance on the AMGP dataset shows that, except for two
outliers (23.68% and 1.12%), the commercial AV scanners
have accuracy ranging from 84.23% to 98.90%. SVM-GFD
attains a comparable accuracy of 87.85% on the full AMGP
dataset using only the structural features without any semantic
augmentation.

Figure 5 suggests that RBF kernel could give a better result
than other three kernels both for SVM-GFD and SVM-DFD.
SVM-GFD could perform a 78% or higher results on different
kernels, while SVM-DFD show 70% accuracy when choosing
polynomial or sigmoid kernel. So the SVM-GFD seems more
robust than SVM-DFD. Table I shows that they have different
performance among false positives (FP) and false negatives
(FN). Because the dataset is 1:1 ratio, FP and FN achieving
a nearly 1:1 ratio means the SVM could successfully divide
the hyperplane. From Table I we can see that these two
SVM methods tend to give high accuracy under the specified
circumstances. And SVM-GFD often have a same FP or FN
percentage as SVM-DFD while the other is much better. Also
there is a trade-off between FP and FN. Taking the result of
SVM-GFD with linear kernel as an example, it has the slightly
higher FP than the SVM-DFD while the FP is relative low.
In other words, comparing with SVM-DFD, SVM-GFD with
linear kernel is an aggressive malware detector that misses less
malware at the cost of flagging more benign apps as malicious.
The mechanism behind this calls for further research.

2) Malware family labeling accuracy: To further under-
stand the significance of capturing local topology in FCG for
malware detection, we compare our SVM-GFD together with
the SVM-DFD in their malware family labeling accuracy on
the 8 malware families that have over 40 samples in the AMGP
dataset (Section IV-A). Specifically, we take the family labels
on the malware samples in the AMGP dataset as the ground
truth, and compare the two methods’ accuracy in assigning the



TABLE II: Pair-wise malware family label accuracy (in percentage) of SVM-GFD (GFD) vs. SVM-DFD (DFD) with the linear kernel of the 8 malware
families that have over 40 samples in the AMGP dataset: DroidKungFu3 (DKF3; 303 samples) AnserverBot (AB; 185 samples), BaseBridge (BB; 118
samples), DroidKungFu4 (DKF4; 96 samples), Pjapps (P; 56 samples), KMin (KM; 52 samples), GoldDream (GD; 47 samples), and DroidDreamLight (DDL;
46 samples). Since this matrix is symmetric, we only show the upper half of it.

DKF3 AB BB DKF4 P KM GD DDL Benign
GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD

DKF3 - - 92.6 60.09 71.63 67.77 75.94 71.08 84.40 77.38 85.35 78.08 86.82 78.96 86.82 79.14 76.73 71.78
AB - - - - 76.14 58.29 84.04 62.03 80.58 69.46 94.54 70.30 80.17 71.38 80.17 71.60 84.86 81.62
BB - - - - - - 77.78 53.90 68.18 61.94 83.72 62.88 72.29 64.09 72.29 64.34 81.25 56.25

DFK4 - - - - - - - - 63.15 58.20 87.16 59.17 67.61 60.43 67.61 60.63 71.88 53.13
P - - - - - - - - - - 76.85 51.25 54.90 52.38 54.90 52.58 81.58 76.32

KM - - - - - - - - - - - - 89.80 51.31 86.73 51.58 72.12 60.58
GD - - - - - - - - - - - - - - 57.61 52.97 73.40 63.83

DDL - - - - - - - - - - - - - - - - 75.00 67.39
Benign - - - - - - - - - - - - - - - - - -
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Fig. 6: Accuracy response to different malware/benign-app ratios: SVM-GFD
(full line) vs SVM-DFD (dotted line) vs the naive strategy. Percentage on the
x axis is the ratio of malware over benign apps in the dataset; y axis is the
malware detection accuracy.

correct family labels for the test data sets. We also compare
each family with a dynamic benign dataset that has the same
number of samples as the malware family to show the accuracy
of malware detection in one certain family. Table II shows the
pair-wise malware family labeling accuracy of SVM-GFD vs.
SVM-DFD.

SVM-GFD outperforms SVM-DFD in all pairs of
malware families by a margin from 2.32% (P/Pjapps
vs. DDL/DroidDreamLight) to 38.49% (KM/KMin vs.
GD/GoldDream). The malware and benign software classifica-
tion result in each family also shows SVM-GFD could achieve
3.24% (AB/AnserverBot vs. Benign) to 25% (BB/BaseBridge
vs. Benign) higher performance. Note again, the additional
local topological information on FCG captured by GFD, alone,
takes the credit for this improvement in accuracy.

Given that we accept the manual labels as the ground
truth, malware family labeling accuracy can be interpreted
as a measure of how close two malware families are due to,
for example, code sharing. For instance, in Table II, on the
row of DKF3/DroidKungFu3, DKF4/DroiKungFu4 has a low
accuracy (75.94%). This lower labeling accuracy may derive
from the higher similarity between DKF4 to DKF3 due to their
common lineage in the DroidKungFu mega-family.

3) Performance against sample bias: In Section IV-C1, we
mention the peril of sample bias: If the ratio between positive
and negative samples (i.e., benign app and malware samples)
is skewed, even a naive strategy can give a misleadingly high
accuracy without actually identifying malware from benign
apps. In real-world malware detection, positive/negative sam-
ples rarely comes in evenly: It is highly likely we have to
work with a skewed dataset.

Therefore, we study how SVM-GFD responds to sample
bias. In order to avoid the influence of the dataset’s size, we
first fix the total number of benign and malicious softwares
to 1000. Then we perturb the ratio between malware and
benign app samples, and study the accuracy response of SVM-
GFD/SVM-DFD with the linear kernel. The 10-fold cross-
validation method is also employed in this experiment. Fig-
ure 6 shows the results and indicates that SVM-GFD get higher
accuracy among all kinds of malware and benign software
combination. SVM-GFD has a variance of 4.1 while SVM-
DFD has a variance of 11.4. We conclude that SVM-GFD is
more robust than SVM-DFD against sample bias, especially
when malware or benign software accounts a small proportion.
When the ration between malware and benign software is 2:8,
as mentioned above it is a common real-world situation, SVM-
GFD outperforms 7% accuracy but SVM-DFD is just the same
as the naive strategy.

4) Most frequent graphlets: To understand why malware
detection accuracy improves only by replacing DFD with
GFD, we study the most frequent graphlets that appear in
benign apps and in malware. Figures 7 and 8 show the top 5
most frequent graphlet types for all benign app and malware
samples in our datasets, respectively. “Most frequent” in this
case means that these graphlet types have the highest average
GFD densities in that category (benign app or malware).

It is interesting to note that, in addition to different average
density values, the types of the most frequent graphlets are
different. For example, while ω3,5 (outgoing invocations; Fig-
ure 1) ranks the first and w3,6 (incoming invocations) ranks
the third for malware, ω3,5 ranks the third and ω3,6 ranks the
first for benign apps. In both cases, these two graphlet types
have a graphlet frequency density gap of 0.1 or more between
them. And it also happens when a function invokes/is invoked
by 3 or more other functions. This suggests that incoming
invocations to a same function is more frequent than outgoing
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Fig. 7: The top 5 most frequent graphlet types for benign apps, i.e., the ones
that have the highest average graphlet frequency densities across all benign
apps.
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Fig. 8: The top 5 most frequent graphlet types for malware, i.e., the ones that
have the highest average graphlet frequency densities across all malware.

invocations from a single function in benign apps, while the
reverse is true for malware. The mechanism behind this calls
for further research.

5) GFD estimation efficiency: In our experiment on a desk-
top workstation (8-core Intel Core i7-3820 CPU at 3.60GHz
with 12GB RAM) with 100, 000 sampling iterations (at which
point, the GFD estimation has already converged), our GFD
estimation algorithm (Algorithm 1) takes less than 3 seconds
to complete for many apps whose FCGs have less than 1, 000
vertices. For apps whose FCGs have less than 20, 000 vertices,
GFD estimation takes an average of less than 10 seconds.
For the most complex app in our data set, Facebook, which
has 47, 539 vertices and 77, 900 edges, GFD estimation takes
about 34 seconds on average with about 2 seconds variance.
While the GFD estimation just takes seconds of work to ana-
lyze each single app, the total calculation time mainly depends
on the size of the dataset. Because each apps and their FCGs
are independent, the topological features extraction work is
absolutely convenient for distributed computing system. An-
alyzing single extraction work, we note that GFD estimation
is dominated by the generation of 1-hop neighborhood on GG
and the graphlet-type identification, which are independent to
the size of the graph unless the graph is dense.

By contrast, the DFD calculation needs to traverse every
edge and employ a sorting algorithm to the vertices. So it
takes more time to do the DFD calculation especially on the
complex networks. For instance, DFD calculation takes about
41 seconds for the Facebook application, 7 seconds longer than
the GFD estimation. Therefore, GFD estimation, and hence
ACTS, is practically efficient and accurate (Section I).

V. FURTHER DISCUSSION

In order to verify the effectiveness of the graphlet-based
analysis and to better understand why the topological fea-
tures used in ACTS could result in good performance of
benign/malicious software classification, we conducted a few
case studies using dynamic analysis that based on semantic
features [25].

In detail, we obtain the critical API calls with the help of
online analysis tools, such as Andrubis and SanDroid. These
critical calls are represented as edges in the FCG. And if a
function invokes one or more times of the critical API calls,
we label the mapping vertex as a critical vertex. Instead of
taking the full FCG graph into account, now we can just focus
on the graphlets that contain the critical vertices.

Our experiment were taken on four APK files randomly
chosen from four different malware families, TapSnake [19],
SndApps [14], NickySpy [12] and LoveTrap [16]. The result
shows that for each particular malware, its top-2 graphlets with
critical vertices are always the same as the top-2 graphlets in
GFD generated by ACTS. And obviously, they are different
from the top-2 graphlets generated from the benign softwares.
It implies that the most frequent graphlets of malware gen-
erated by ACTS in Section IV-C4 always contain the critical
API calls. ACTS catches the critical API calls by counting
the graphlet distribution, which uses a different route from
dynamic analysis but achieves the similar result in malware
detection.

We also in-depth analyzed one application com.typ3studios.
airhorn in the malware family SndApps [14]. There are just
four critical graphlets that were obtained through dynamic
analysis tools. After embedding the 3-node graphlets in 4&5-
node graphlets, we find that there are only 2 kinds of 3-
node graphlets that contain the critical API calls, ω3,5 and
ω3,1 in Figure 1, while the possible 3-node graphlets has
13 types. Also, ω3,5 (outgoing invocations) is included but
w3,6 (incoming invocations) is not. It supports the result in
Figure 8 of Section IV-C4 that outgoing invocations to a same
function is more frequent than incoming invocations from a
single function in malware.

In the future, we plan to firmly combine ACTS with the
dynamic analysis methods. Both the graphlet frequency and
the semantic features will be analyzed to reveal the hidden
mechanisms of malware.

VI. RELATED WORKS

The present work follows a line of recent works [1, 2,
10, 17, 30, 33] that apply advances in machine learning
and data mining for Android malware detection. One main
focus is on extracting learning features at the different app
representation levels: Droid Analytics [33] focuses on the
low-level platform Dalvik opcode level; Gascon et al. study
function call graphs [10]; DroidAPIMiner [1] extracts features
from Android API calls; Drebin [2] extracts string features
from multiple Android-specific sources, e.g., intent/permission
requests, API calls, network addresses. Martinelli et al. for-



mulates the malware detection problem as a subgraph mining
problem[17].

Pržulj et al. first propose and coin the term graphlet [20].
Two recent advances on graph mining, GRAFT [21] and
GUISE [22], inspire our use of GFD as a robust and efficient
topological signature for apps.

A related problem to malware detection is app repackaging,
in which an app is transformed for a similar but different app
through repackaging [34]. Repackaged apps are often seen
on alternative Android app market, and is a major vector
for carrying and propagating malware. Zhou et al. propose
a system called AppInk that applies watermarking to prevent
app repackaging [35].

Tainting analysis (e.g., TaintDroid [8] and FlowDroid [3, 9])
and Android app analysis frameworks (e.g., DroidScope [31]
and CopperDroid [23]) can be used to further analyze malware
families identified by ACTS.

VII. CONCLUSION

In this paper, we propose GFD as a feature for Android
malware detection and adapt recent advances in graph mining
to make GFD estimation robust and efficient. We demonstrate
that local topological information (captured by graphlets) is
attributed to improvement in malware detection accuracy and
efficiency. This provides a new angle to Android malware
detection research, and suggests that finding structural features
(e.g., graphlets) on a graphical representation of Android apps
(e.g., the FCG) that situates between local and global scope
as a fertile ground for future research.
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