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Abstract—Building upon previous work on the relation be-
tween secrecy and channel resolvability, we revisit a secrecy proof
for the multiple-access channel (MAC) from the perspective of
resolvability. We then refine the approach in order to obtain some
novel results on the second-order achievable rates.

I. INTRODUCTION

A. Motivation

With an increasing number of users and things being

connected to each other, not only the overall amount of

communication increases, but also the amount of private and

personal information being transferred. This information needs

to be protected from various attacks. For some potential

applications, like e.g. emerging e-health technologies where

sensitive medical data is transmitted using a Body Area

Network, the problem of providing secrecy guarantees is a key

issue. As discovered by Csiszár [6] and later more explicitly

by Bloch and Laneman [4] and investigated by Yassaee and

Aref [22] for the multiple-access case, the concept of channel

resolvability can be applied to provide such guarantees; it can

further be of use as a means of exploiting channel noise in

order to convey randomness to a receiver, where the observed

distribution can be accurately controlled at the transmitter. In

this paper, we explore channel resolvability in a multiple-

access setting in which there is no communication between

the transmitters, yet they can control the distribution observed

at the receiver in a non-cooperative manner.

B. Literature

To the best of our knowledge, the concept of approximating

a desired output distribution over a communication channel

using as little randomness as possible at the transmitter

was first introduced by Wyner [21], who used normalized

Kullback-Leibler divergence to measure how close the actual

and the desired output distribution are. The term channel

resolvability for a similar concept was introduced by Han and

Verdú [11], who however used variational distance as a metric.

In particular, they showed the existence of a codebook that

achieves an arbitrarily small variational distance by studying

the expected variational distance of a random codebook.

Resolvability for MACs has been explored by Steinberg [17]

and later by Oohama [16]. Explicit low-complexity codebooks

for the special case of symmetric MACs have been proposed

by Chou, Bloch and Kliewer [5].

A stronger result stating that the probability of drawing an

unsuitable random codebook is doubly exponentially small
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is due to Cuff [7]. Related results were proposed before by

Csiszár [6] and by Devetak [8] for the quantum setting, who

based his work on the non-commutative Chernoff bound [1].

Further secrecy results based on or related to the concept of

channel resolvability are due to Hayashi [12], Bloch and Lane-

man [4], Hou and Kramer [14], and Wiese and Boche [20],

who applied Devetak’s approach to a multiple-access setting.

Cuff [7] also gave a result on the second-order rate; a related

result was proposed by Watanabe and Hayashi [19].

C. Overview and Outline

In this work, we revisit the proof in [20], while focusing on

channel resolvability. We use a slightly different technique as

in [7], which we extend to the multiple-access case to provide

an explicit statement and a more intuitive proof for a result

only implicitly contained in [20], and extend it by providing

a second-order result.

In the following section, we state definitions and prior

results that we will be using in our proofs in Section III.

II. NOTATION, DEFINITIONS AND PREREQUISITES

The operations log and exp use Euler’s number as a basis,

and all information quantities are given in nats. [·]+ denotes

the maximum of its argument and 0.

A channel W = (X ,Y,Z, qZ|X,Y ) is given by finite input

alphabets X and Y , a finite output alphabet Z and a collection

of probability mass functions qZ|X,Y on Z for each pair

(x, y) ∈ X ×Y . The random variables X , Y and Z represent

the two channel inputs and the channel output, respectively.

Input distributions for the channel are probability mass func-

tions on X and Y denoted by qX and qY , respectively. We

define an induced joint distribution qX,Y,Z on X ×Y ×Z by

qX,Y,Z(x, y, z) := qX(x)qY (y)qZ|X,Y (z|x, y) and the output

distribution qZ(z) :=
∑

x∈X

∑

y∈Y qX,Y,Z(x, y, z) is the

marginal distribution of Z .

By a pair of codebooks of block length n and rates R1

and R2, we mean finite sequences C1 = (C1(m))
exp(nR1)
m=1 and

C2 = (C2(m))
exp(nR2)
m=1 , where the codewords C1(m) ∈ Xn

and C2(m) ∈ Yn are finite sequences of elements of the

input alphabets. We define a probability distribution PC1,C2
on

these codebooks as i.i.d. drawings in each component of each

codeword according to qX and qY , respectively. Accordingly,

we define the output distribution induced by C1 and C2 on Zn

by

pZn|C1,C2
(zn) := exp(−n(R1 +R2))

·
exp(nR1)
∑

m1=1

exp(nR2)
∑

m2=1

qZn|Xn,Y n(zn|C1(m1), C2(m2)).
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Given probability distributions P and Q on a finite set A
with mass functions p and q, respectively, and positive α 6= 1,

the Rényi divergence of order α of P from Q is defined as

Dα (P ||Q) :=
1

α− 1
log
∑

a∈A

p(a)αq(a)1−α.

Furthermore, we define the variational distance between P
and Q (or between their mass functions) as

‖p− q‖TV :=
1

2

∑

a∈A

|p(a)− q(a)| =
∑

a∈A

[p(a)− q(a)]
+
.

Given random variables A, B and C distributed according

to rA,B,C , we define the (conditional) information density as

i(a; b) := log
rB|A(b|a)
rB(b)

, i(a; b|c) := log
rB|A,C(b|a, c)
rB|C(b|c)

.

The (conditional) mutual information is the expected value of

the (conditional) information density.

The following inequality was introduced in [3] and [10]; we

use a refinement here which follows e.g. from [2].

Theorem 1 (Berry-Esseen Inequality). Given a sequence

(Ak)
n
k=1 of i.i.d. copies of a random variable A on the reals

with EA = 0 and finite EA2 = σ2 and E |A|3 = ρ, define

Ā := (A1 + · · · + An)/n. Then the cumulative distribu-

tion functions F (a) := P(Ā
√
n/σ ≤ a) of Ā

√
n/σ and

Φ(a) :=
∫ a

−∞ 1/(2π) exp(−x2/2)dx of the standard normal

distribution satisfy for all real numbers a

|F (a)− Φ(a)| ≤ ρ

σ3
√
n
.

We further use variations of the concentration bounds intro-

duced in [13].

Theorem 2 (Chernoff-Hoeffding Bound). Suppose A =
∑n

k=1 Ak , where the random variables in the sequence

(Ak)
n
k=1 are independently distributed with values in [0, 1]

and EA ≤ µ. Then for 0 < δ < 1,

P(A > µ(1 + δ)) ≤ exp

(

−δ2

3
µ

)

.

This version can e.g. be found in [9, Ex. 1.1]. We will

also be using an extension of the Chernoff-Hoeffding bound

for dependent variables due to Janson [15, Theorem 2.1], of

which we state only a specialized instance that is used in this

paper.

Theorem 3 (Janson [15]). Suppose A =
∑n

k=1 Ak, where the

random variables in the sequence (Ak)
n
k=1 take values in [0, 1]

and can be partitioned into χ ≥ 1 sets such that the random

variables in each set are independently distributed. Then, for

δ > 0,

P(A ≥ EA+ δ) ≤ exp

(

−2
δ2

χ · n

)

.

III. MAIN RESULTS

Theorem 4. Suppose W = (X ,Y,Z, qZ|X,Y ) is a channel,

qX and qY are input distributions, R1 > I(X ;Z|Y ) and

R2 > I(Y ;Z). Then there exist γ1, γ2 > 0 such that for large

enough block length n, the codebook distributions of block

length n and rates R1 and R2 satisfy

PC1,C2

(

‖pZn|C1,C2
− qZn‖TV > exp(−γ1n)

)

≤ exp (− exp (γ2n)) . (1)

Observing that this theorem can be applied with the roles

of X and Y reversed and that time sharing is possible, we

obtain the following corollary.

Corollary 1. Theorem 4 holds for all interior points in the

convex closure of

{(R1, R2) :(R1 ≥ I(X ;Z|Y ) ∧R2 ≥ I(Y ;Z))

∨ (R1 ≥ I(X ;Z) ∧R2 ≥ I(Y ;Z|X))}.
Theorem 5. Given a channel W = (X ,Y,Z, qZ|X,Y ), input

distributions qX and qY , ε ∈ (0, 1), let the central second

and absolute third moment of i(X ;Z|Y ) be V1 and ρ1,

respectively; analogously, we use V2 and ρ2 to denote the

central second and absolute third moment of i(Y ;Z). Suppose

the rates R1, R2 depend on n in the following way:

R1 = I(X ;Z|Y ) +

√

V1

n
Q−1(ε) + c

logn

n
(2)

R2 = I(Y ;Z) +

√

V2

n
Q−1(ε) + c

logn

n
, (3)

where Q := 1 − Φ with Φ as defined in the statement of

Theorem 1, and c > 1. Then, for any d ∈ (0, c− 1), we have

PC1,C2

(

‖pZn|C1,C2
− qZn‖TV >

(µ1 + µ2)

(

1 +
1√
n

)

+
3√
n

)

≤ 2 exp

(

−2min(µ2
1, µ

2
2)

n
exp(nmin(R1, R2))

)

+ 2 exp

(

n(log|Z|+ log|Y|)− 1

3
nc−d−1

)

,

where for both k = 1 and k = 2,

µk := Q
(

Q−1(ε) +
d logn√
nVk

)

+
ρk

V
3

2

k

√
n

tends to ε for n → ∞.

Again, observing that this theorem can be applied with the

roles of X and Y reversed, we have

Corollary 2. Theorem 5 holds with (2) and (3) replaced by

R1 = I(X ;Z) +

√

V1

n
Q−1(ε) + c

logn

n

R2 = I(Y ;Z|X) +

√

V2

n
Q−1(ε) + c

logn

n



and V1, ρ1, V2 and ρ2 redefined to be the second and third

moments of i(X ;Z) and i(Y ;Z|X), respectively.

Remark 1. The question of how the achievable second-order

rates behave near the line connecting the two corner points

should be a subject of further research.

In the proofs of these theorems, we consider two types of

typical sets:

T n
1,ε := {(xn, yn, zn) : i(xn; zn|yn) ≤ n(I(X ;Z|Y ) + ε)}

T n
2,ε := {(yn, zn) : i(yn; zn) ≤ n(I(Y ;Z) + ε)}.

We split the variational distance in atypical and typical parts

as follows, where Patyp,1, Patyp,2 and Ptyp(z
n) are defined

by (4), (5) and (6) shown on the next page.

‖pZn|C1,C2
− qZn‖TV

=
∑

zn∈Zn

qZn(zn)

[

pZn|C1,C2
(zn)

qZn(zn)
− 1

]+

≤Patyp,1 + Patyp,2 +
∑

zn∈Zn

qZn(zn) [Ptyp(z
n)− 1]

+
. (7)

Remark 2. The denominator of the fraction is almost surely

not equal to 0 as long as the numerator is not equal to 0. We

implicitly let the summation range only over the support of

the denominator, as we do in all further summations.

So the theorems can be proven by considering typical and

atypical terms separately. But first, we prove two lemmas to

help us to bound the typical and the atypical terms.

Lemma 1 (Bound for typical terms). Given a block length n,

ε > 0, 0 < δ < 1, random variables A, B and C on finite

alphabets A, B and C respectively with joint probability mass

function rA,B,C , a rate R and a codebook C = (C(m))
exp(nR)
m=1

with each component of each codeword drawn i.i.d. according

to rA, for any bn ∈ Bn and cn ∈ Cn, we have

P̌ := PC





exp(nR)
∑

m=1

exp(−nR)
rCn|An,Bn(cn|C(m), bn)

rCn|Bn(cn|bn)

· 1(C(m),bn,cn)∈T n
ε
> 1 + δ





≤ exp

(

−δ2

3
exp(−n(I(A;C|B) + ε−R))

)

,

where the typical set is defined as

T n
ε := {(an, bn, cn) : i(an; cn|bn) ≤ n(I(A;C|B) + ε)}.

(8)

Proof. We have

P̌ = PC





exp(nR)
∑

m=1

exp(−n(I(A;C|B) + ε))

· rC
n|An,Bn(cn|C(m), bn)

rCn|Bn(cn|bn) · 1(C(m),bn,cn)∈T n
ε

> exp(−n(I(A;C|B) + ε−R))(1 + δ)



 .

By the definition of T n
ε in (8), the summands are at most 1,

and furthermore, the expectation of the sum can be bounded

as

EC





exp(nR)
∑

m=1

exp(−n(I(A;C|B) + ε))

· rC
n|An,Bn(cn|C(m), bn)

rCn|Bn(cn|bn) 1(C(m),bn,cn)∈T n
ε





≤
exp(nR)
∑

m=1

exp(−n(I(A;C|B) + ε))

· EC

(

rCn|An,Bn(cn|C(m), bn)

rCn|Bn(cn|bn)

)

= exp(−n(I(A;C|B) + ε−R)).

Now applying Theorem 2 to the above shows the desired

probability statement and completes the proof.

Lemma 2 (Bound for atypical terms). Given a channel W =
(X ,Y,Z, qZ|X,Y ), input distributions qX and qY , some set

A ⊆ Xn × Yn × Zn, δ > 0, µ ≥ P((Xn, Y n, Zn) ∈ A) as

well as rates R1 and R2 and codebooks distributed according

to PC1,C2
defined in Section II, we have

P̂ := PC1,C2

(

∑

zn∈Zn

exp(−n(R1 +R2))

exp(nR1)
∑

m1=1

exp(nR2)
∑

m2=1

qZn|Xn,Y n(zn|C1(m1), C2(m2))

1(C1(m1),C2(m2),zn)∈A > µ(1 + δ)

)

≤ exp(−2δ2µ2 exp(nmin(R1, R2))).

Proof. We have

P̂ =PC1,C2





exp(nR1)
∑

m1=1

exp(nR2)
∑

m2=1

∑

zn∈Zn

qZn|Xn,Y n(zn|C1(m1), C2(m2))1(C1(m1),C2(m2),zn)∈A

> exp(n(R1 +R2))(µ + µδ)

)

≤PC1,C2





exp(nR1)
∑

m1=1

exp(nR2)
∑

m2=1

∑

zn∈Zn

qZn|Xn,Y n(zn|C1(m1), C2(m2))1(C1(m1),C2(m2),zn)∈A

> exp
(

n(R1 +R2)
)(

P((Xn, Y n, Zn) ∈ A) + µδ
)

)



Patyp,1 :=
∑

zn∈Zn

exp(−n(R1 +R2))

exp(nR1)
∑

m1=1

exp(nR2)
∑

m2=1

qZn|Xn,Y n(zn|C1(m1), C2(m2))1(C1(m1),C2(m2),zn)/∈T n

1,ε
(4)

Patyp,2 :=
∑

zn∈Zn

exp(−n(R1 +R2))

exp(nR1)
∑

m1=1

exp(nR2)
∑

m2=1

qZn|Xn,Y n(zn|C1(m1), C2(m2))1(C2(m2),zn)/∈T n

2,ε
(5)

Ptyp(z
n) :=

exp(nR1)
∑

m1=1

exp(nR2)
∑

m2=1

exp(−n(R1 +R2))
qZn|Xn,Y n(zn|C1(m1), C2(m2))

qZn(zn)
1(C2(m2),zn)∈T n

2,ε
1(C1(m1),C2(m2),zn)∈T n

1,ε

(6)

≤ exp

(

−2
exp(2n(R1 +R2))µ

2δ2

exp(nmax(R1, R2)) exp(n(R1 +R2))

)

= exp(−2δ2µ2 exp(nmin(R1, R2))),

where the inequality follows from Theorem 3 by observ-

ing that the innermost sum is confined to [0, 1], the two

outer summations together have exp(n(R1 + R2) summands

which can be partitioned into exp(n(max(R1, R2)) sets with

exp(nmin(R1, R2)) independently distributed elements each,

and the overall expectation of the term is exp(n(R1 +
R2)P((X

n, Y n, Zn) ∈ A).

Proof of Theorem 4. In order to bound Patyp,1, we observe

that for any α > 1, we can bound PXn,Y n,Zn((Xn, Y n, Zn) /∈
T n
1,ε) as shown in (18) to (21) in the appendix, where the

inequality in (21) holds as long as β < (α− 1)(I(X ;Z|Y ) +
ε − Dα

(

PX,Y,Z ||PX|Y PZ|Y PY

)

). We can achieve this for

sufficiently small β > 0 as long as α > 1 and I(X ;Z|Y ) +
ε − Dα

(

PX,Y,Z ||PX|Y PZ|Y PY

)

> 0. In order to choose an

α > 1 such that the latter requirement holds, note that since

our alphabets are finite, the Rényi divergence is also finite

and thus it is continuous and approaches the Kullback-Leibler

divergence for α tending to 1 [18], which is in this case equal

to the mutual information term.

We apply Lemma 2 with A = (Xn ×Yn ×Zn) \ T n
1,ε and

δ = 1 to obtain

PC1,C2
(Patyp,1 > 2 exp(−nβ))

≤ exp(−2 exp(n(min(R1, R2)− 2β))). (9)

Proceeding along similar lines of reasoning including another

application of Lemma 2 with A = Xn × ((Yn × Zn) \ T n
2,ε)

and δ = 1, we show that if β > 0 is small enough,

PC1,C2
(Patyp,2 > 2 exp(−nβ))

≤ exp(−2 exp(n(min(R1, R2)− 2β))). (10)

As for the typical term, we first observe that for any fixed yn

and zn, we can apply Lemma 1 with A = X , B = Y , C = Z
and δ = exp(−nβ) to obtain

PC1
(Ptyp,1(y

n, zn) > 1 + exp(−nβ))

≤ exp

(

−1

3
exp(−n(I(X ;Z|Y ) + ε+ 2β −R1))

)

, (11)

where we used

Ptyp,1(y
n, zn) :=

exp(nR1)
∑

m1=1

exp(−n(R1))

· qZ
n|Xn,Y n(zn|C1(m1), y

n)

qZn|Y n(zn|yn) 1(C1(m1),yn,zn)∈T n

1,ε
. (12)

We define a set of codebooks

Czn :=
⋂

yn∈Yn

{C1 : Ptyp,1(y
n, zn) ≤ 1 + exp(−nβ)} (13)

and bound for arbitrary but fixed zn

P̃ := PC1,C2
(Ptyp(z

n) > 1 + 3 exp(−nβ) | C1 ∈ Czn)

in (22) to (25) in the appendix, where (22) follows from the

law of total probability, (23) is a consequence of the condition

C1 ∈ Czn , (24) results from an application of the law of total

probability and the assumption that n is sufficiently large such

that exp(−nβ) ≤ 1. Finally, (25) follows from Lemma 1 with

A = Y , C = Z , B a deterministic random variable with only

one possible realization and δ = exp(−nβ).

We can now put everything together as shown in (26) to (28)

in the appendix, where (27) follows from (7) and the union

bound and (28) is a substitution of (9), (10), (11) and (25).

What remains is to choose γ1 and γ2 such that (1) holds.

First, we have to choose ε and β small enough such that the

terms min(R1, R2)− 2β, R1− 2β− ε− I(X ;Z|Y ) and R2−
2β−ε− I(Y ;Z) are all positive. Since there have so far been

no constraints on β and ε except that they are positive and

sufficiently small, such a choice is possible provided R1 >
I(X ;Z|Y ) and R2 > I(Y ;Z). The theorem then follows for

large enough n by choosing γ2 positive, but smaller than the

minimum of these three positive terms, and γ2 < β.

Proof of Theorem 5. We consider the typical sets T n
1,ε1 and

T n
2,ε2 , where for k = 1, 2, we choose εk > 0 to be

εk :=

√

Vk

n
Q−1(ε) + d

logn

n
. (14)

The definitions (4), (5) and (6) change accordingly.

In order to bound Patyp,1, we use Theorem 1 to obtain



PXn,Y n,Zn((Xn, Y n, Zn) /∈ T n
1,ε1)

= PXn,Y n,Zn

(

1

n

n
∑

k=1

(i(Xk;Zk|Yk)− I(X ;Z|Y )) > ε1

)

≤ Q
(

ε1

√

n

V1

)

+
ρ1

V
3

2

1

√
n
= µ1.

An application of Lemma 2 with δ = 1/
√
n yields

PC1,C2

(

Patyp,1 > µ1

(

1 +
1√
n

))

≤ exp

(

−2µ2
1

n
exp(nmin(R1, R2))

)

. (15)

Reasoning along similar lines shows

PY n,Zn((Y n, Zn) /∈ T n
2,ε2) ≤ µ2

so that a renewed application of Lemma 2 gives

PC1,C2

(

Patyp,2 > µ2

(

1 +
1√
n

))

≤ exp

(

−2µ2
2

n
exp(nmin(R1, R2))

)

. (16)

For the typical term, we use the definitions (12) and (13) with

the typical set T n
1,ε1 , and observe that for any fixed yn and zn,

we can apply Lemma 1 with A = X , B = Y , C = Z and

δ = 1/
√
n to obtain

PC1

(

Ptyp,1(y
n, zn) > 1 +

1√
n
)

)

≤ exp

(

− 1

3n
exp(−n(I(X ;Z|Y ) + ε1 −R1))

)

. (17)

Now proceeding in a similar manner as in (22) to (25) shows

PC1,C2

(

Ptyp(z
n) > 1 +

3√
n

| C1 ∈ Czn

)

≤ exp

(

− 1

3n
exp(−n(I(Y ;Z) + ε2 −R2))

)

,

where there is no assumption on n because 1/
√
n ≤ 1 for all

n ≥ 1.

The theorem then follows from (29) to (32) in the appendix,

where (30) results from (7) and the union bound, (31) follows

by substituting (15), (16) and (17), and (32) follows by substi-

tuting (2), (3) and (14), as well as elementary operations.
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APPENDIX

PXn,Y n,Zn((Xn, Y n, Zn) /∈ T n
1,ε) = PXn,Y n,Zn

(

qZn|Xn,Y n(Zn|Xn, Y n)

qZn|Y n(Zn|Y n)
> exp(n(I(X ;Z|Y ) + ε))

)

(18)

= PXn,Y n,Zn

( (

qZn|Xn,Y n(Zn|Xn, Y n)

qZn|Y n(Zn|Y n)

)α−1

> exp(n(α− 1)(I(X ;Z|Y ) + ε))

)

(19)

≤ EXn,Y n,Zn

(

(

qZn|Xn,Y n(Zn|Xn, Y n)

qZn|Y n(Zn|Y n)

)α−1
)

· exp(−n(α− 1)(I(X ;Z|Y ) + ε)) (20)

= exp(n(α− 1) · (Dα

(

PX,Y,Z ||PX|Y PZ|Y PY

)

− I(X ;Z|Y )− ε)) ≤ exp(−nβ) (21)

P̃ =
∑

Ĉ2

PC2
(C2 = Ĉ2)PC1,C2





exp(nR2)
∑

m2=1

exp(−nR2)
qZn|Y n(zn|C2(m2))

qZn(zn)
1(C2(m2),zn)∈T n

2,ε

Ptyp,1(C2(m2), z
n) > 1 + 3 exp(−nβ) | C1 ∈ Czn , C2 = Ĉ2





(22)

≤
∑

Ĉ2

PC2
(C2 = Ĉ2)PC1,C2





exp(nR2)
∑

m2=1

exp(−nR2)
qZn|Y n(zn|C2(m2))

qZn(zn)
1(C2(m2),zn)∈T n

2,ε

>
1 + 3 exp(−nβ)

1 + exp(−nβ)
| C1 ∈ Czn , C2 = Ĉ2





(23)

≤ PC2





exp(nR2)
∑

m2=1

exp(−nR2)
qZn|Y n(zn|C2(m2))

qZn(zn)
1(C2(m2),zn)∈T n

2,ε
> 1 + exp(−nβ)



 (24)

≤ exp

(

−1

3
exp(−n(I(Y ;Z) + ε+ 2β −R2))

)

(25)

PC1,C2

(

‖pZn|C1,C2
− qZn‖TV > 7 exp(−nβ)

)

(26)

≤PC1,C2
(Patyp,1 > 2 exp(−nβ)) + PC1,C2

(Patyp,2 > 2 exp(−nβ))

+
∑

zn∈Zn

(PC1
(C1 /∈ Czn) + PC1,C2

(Ptyp(z
n) > 1 + 3 exp(−nβ) | C1 ∈ Czn)) (27)

≤2 exp(−2 exp(n(min(R1, R2)− 2β))) + |Z|n|Y|n exp

(

−1

3
exp(−n(I(X ;Z|Y ) + ε+ 2β −R1))

)

+ |Z|n exp
(

−1

3
exp(−n(I(Y ;Z) + ε+ 2β −R2))

) (28)

PC1,C2

(

‖pZn|C1,C2
− qZn‖TV > (µ2 + µ1)

(

1 +
1√
n

)

+
3√
n

)

(29)

≤PC1,C2

(

Patyp,1 > µ1

(

1 +
1√
n

))

+ PC1,C2

(

Patyp,2 > µ2

(

1 +
1√
n

))

+
∑

zn∈Zn

(

PC1
(C1 /∈ Czn) + PC1,C2

(

Ptyp,1(C2(m2), z
n) > 1 +

3√
n

| C1 ∈ Czn

)) (30)

≤ exp

(

−2µ2
2

n
exp(nmin(R1, R2))

)

+ exp

(

−2µ2
2

n
exp(nmin(R1, R2))

)

+ |Y|n|Z|n exp
(

− 1

3n
exp(−n(I(X ;Z|Y ) + ε1 −R1))

)

+ |Z|n exp
(

− 1

3n
exp(−n(I(Y ;Z) + ε2 −R2))

) (31)

≤ 2 exp

(

−2min(µ2
1, µ

2
2)

n
exp(nmin(R1, R2))

)

+ 2 exp

(

n(log|Z|+ log|Y|) − 1

3
nc−d−1

)

(32)


	I Introduction
	I-A Motivation
	I-B Literature
	I-C Overview and Outline

	II Notation, Definitions and Prerequisites
	III Main Results
	References
	Appendix

