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Abstract—The growing needs of public safety urgently require
scalable and low-cost techniques on detecting dangerous objects
(e.g., lethal weapons, homemade-bombs, explosive chemicals)
hidden in baggage. Traditional baggage check involves either high
manpower for manual examinations or expensive and specialized
instruments, such as X-ray and CT. As such, many public places
(i.e., museums and schools) that lack of strict security check are
exposed to high risk. In this work, we propose to utilize the fine-
grained channel state information (CSI) from off-the-shelf WiFi
to detect suspicious objects that are suspected to be dangerous
(i.e., defined as any metal and liquid object) without penetrating
into the user’s privacy through physically opening the baggage.
Our suspicious object detection system significantly reduces the
deployment cost and is easy to set up in public venues. Towards
this end, our system is realized by two major components: it
first detects the existence of suspicious objects and identifies the
dangerous material type based on the reconstructed CSI complex
value (including both amplitude and phase information); it then
determines the risk level of the object by examining the object’s
dimension (i.e., liquid volume and metal object’s shape) based
on the reconstructed CSI complex of the signals reflected by the
object. Extensive experiments are conducted with 15 metal and
liquid objects and 6 types of bags in a 6-month period. The results
show that our system can detect over 95% suspicious objects in
different types of bags and successfully identify 90% dangerous
material types. In addition, our system can achieve the average
errors of 16ml and 0.5cm when estimating the volume of liquid
and shape (i.e., width and height) of metal objects, respectively.

I. INTRODUCTION

The portable dangerous objects such as lethal weapons,
homemade bombs, and explosive chemicals have posed an
increasing threat to public security. In 2013, two homemade
bombs detonated near the finish line of the annual Boston
Marathon, causing 3 people dead and estimated 264 injured.
In 2017, a gunman opened fire on a crowd of concertgoers
at Harvest music festival on the Las Vegas Strip in Nevada,
resulting in 58 people dead and 546 injured. In the above
terrorist attacks, it is easy for the attackers to hide dangerous
objects in small baggage without drawing any attention in
public places. Due to the safety concerns following the recent
shooting at a Florida high school, which left 17 people dead in
April 2018, this high school now only allows the students to
carry clear and transparent backpacks on campus [1]. But such
measures also infringe the privacy of students, and may not be
effective on preventing future attacks. To reduce such threats
while preserving personal privacy, it is highly demanded of
a wide deployment for non-intrusive security checks at the
public places (e.g., museums, theme parks and schools).

Traditional in-baggage suspicious object detection involves

either manual examination (e.g., setting up checkpoint at every
entrance) or dedicated equipment (e.g., surveillance camera,
X-ray machine, ultra-wide-band scanner) [2]–[4] and incurs
high cost and deployment overhead, making them hard to
scale. Recently, RF signals (e.g., WiFi and 60GHz radar)
have shown their great potential in many non-intrusive sensing
applications. For example, WiFi signals can be utilized to
recognize human activities behind the wall [5] or perform
coarse-grained imaging [6]. The 60GHz radar can be utilized
to differentiate the objects (but cannot categorize the objects
by material types) or perform imaging with two drones [7],
[8]. However, these existing RF-based approaches involve high
overhead by requiring a large antenna array or specialized
signals. When a target object is placed in RF environments,
both the object’s inner (i.e., material content) and external (i.e.,
dimension and shape) properties contribute to the change of
the wireless signals. Although the existing work can detect,
track and image objects using RF signals, none of them
separates the two influencing factors or applies them to fine-
grained sensing applications, such as material detection and
shape imaging of the small objects in baggage.

Intuitively, most dangerous objects such as weapons, home-
made bombs and explosives, are usually metal or liquid, which
have significant interference (e.g., absorption, refraction and
reflection) to wireless signals, while baggage is usually made
of fiber, plastics or paper that allow wireless signals to pass
through. Such different impacts to wireless signals suggest
that it is possible to use wireless signals for detecting and
identifying suspicious objects hidden in baggage. In this work,
we leverage the fine-grained channel state information (CSI)
that is readily available in low-cost WiFi devices to detect
and identify suspicious objects hidden in baggage without
intrusion (e.g., opening the bag). The basic idea is to examine
the rich information of CSI complex, which includes both
amplitude and phase information of wireless signals, to capture
the various wireless interference caused by the materials and
shapes of objects. Our system can be easily deployed to
many places that still have no pre-installed security check
infrastructures (e.g., airport) and require high-manpower to
conduct security check such as theme parks, museums, sta-
diums, metro/train stations and scenic locations (e.g., Time
Square). It uses the commodity WiFi to enable a low-cost
and easy-to-scale solution, which provides the first-line of
defense for detecting hidden suspicious objects. Our solution is
timely as it demonstrates the possibility to reuse the prevalent
WiFi technology to perform suspicious objects detection at
every public area vulnerable to adversarial activities without

2018 IEEE Conference on Communications and Network Security (CNS)

___________________________________________________________________

This is the author's manuscript of the article published in final edited form as:
Wang, C., Liu, J., Chen, Y., Liu, H., & Wang, Y. (2018). Towards In-baggage Suspicious Object Detection Using Commodity WiFi. 2018 IEEE 
Conference on Communications and Network Security (CNS), 1–9. https://doi.org/10.1109/CNS.2018.8433142

https://doi.org/10.1109/CNS.2018.8433142


introducing the high-cost security-checking infrastructure. In
order to ensure that no dangerous item is carried through the
entrances, our system requires to achieve low false negative
rate of suspicious object detection. We focus on detecting
the in-baggage suspicious objects defined as metal and liquid
objects, which cover common dangerous items, and certain
materials that could be confused with the dangerous items.

In particular, to identify different materials, we exploit
the WiFi signals transmitting through or bypassing the ob-
ject, which result in different characteristics (i.e., absorption,
refraction and reflection) in the CSI complex values from
antennas and their differences. Additionally, we extract the
signal reflected by the object from CSI to estimate its shape
(e.g., width and height) or volume based on the finding that
the strength of the reflected signal is proportional to the
reflection area of the object. Compared to existing work, our
approach uniquely separates the wireless interference caused
by two influencing factors of objects (i.e., material and shape)
by exploiting different signal beams contained in the CSI
complex. Our system only requires a WiFi device with 2 to
3 antennas and can be integrated into existing WiFi networks
with low costs and deployment efforts, making it more scalable
and practical than the approaches using dedicated instruments
(e.g., X-ray and 60GHz radar).

A number of challenges need to be addressed to achieve the
proposed system using off-the-shelf WiFi. First, the measured
CSI from WiFi signals can be affected by a set of object’s
physical properties (e.g., material, shape, size and position),
thus it is difficult to distinguish the different influences and
identify the object’s material and shape separately. Second,
WiFi signals are not very suitable for object imaging due
to its relative long wavelength comparing to the size of the
target objects, which causes strong diffraction resulting in
low imaging resolution. Third, detecting hidden objects in
baggage needs to mitigate the effects of various types of
bags. To address these challenges, we develop two system
approaches specially designed for separating the refraction
signals and the reflection signals from the CSI complex, and
recognizing the object’s material and shape, respectively. Our
system eliminates the raw phase noise in CSI and reconstruct
the CSI complex, which can robustly capture the dominant
interference caused by material of suspicious objects even
when the objects are hidden in the baggage. We also derive
the reflection channel from CSI complex, which enables us to
estimate the object’s shape and volume at a finer level using
the long-wavelength WiFi signals.

We summarize our main contributions as follows:
• We demonstrate that the readily available WiFi sig-

nals from low-cost devices can penetrate vision-blocked
baggage and facilitate suspicious object detection and
identification without dedicated devices or signals.

• We exploit the rich information in CSI complex to
detect suspicious in-baggage objects and identify their
categories (i.e., metal and liquid).

• We develop reflection-based risk level estimation method
to determine the risk level of suspicious objects based on
the estimated volume for liquid and the shape imaging for
metal. We show that the pure reflection from the object
can be extracted from the imperfect CSI (affected by
unpredicted shift) in the WiFi device without requiring
large antenna array or modifying the transmissions.

• Extensive experiments with 15 representative objects, 6
types of bags/boxes are conducted over a 6-month period.
We show that our system can achieve over 95% and
90% accuracy for identifying the suspicious object and
determining its material type and achieve an average error
of 16ml and 0.5cm for estimating liquid volume and
metal object’s shape.

II. RELATED WORK

Recently, there have been increasing security concerns at
many public scenarios (e.g., security checkpoint of entrances)
where object detection is urgently required. As traditional
approaches, the vision-based techniques [2], [9] use infrared
or regular cameras to identify objects according to their color,
shape, texture, and temperature. These approaches, however,
are sensitive to the environmental light intensity and either
require a clear line-of-sight (LOS) between the object and
cameras or require the target objects to have a relatively high
temperature to be detected.

Moreover, a couple of studies adopt dedicated devices
(e.g., [3], [7], [10]) to recognize target objects when the
LOS is blocked. For instance, X-ray imagery [3] and CT
volumetric imagery [10] have been used to obtain a 2D and 3D
image of the baggage/parcel item for dangerous objects (e.g.,
firearms) detection, respectively. RadarCat [7] uses Frequency
Modulated Continuous Wave (FMCW) radar operating in 60
GHz band to recognize different objects. Ultra-wide band
phased array radar can also be used to image objects by
seeing through the wall [4]. However, these approaches rely on
expensive and specialized equipment, which do not facilitate
the wide deployment in practice. Recently, RF-based sens-
ing has drawn considerable attention. TagScan [11] deploys
cheap RFID tags to identify the material type and image the
horizontal profile of a target, but it requires a specialized
tag reader, and it is not known whether it can be applied
to in-baggage object detection. RF-Capture [12], [13] could
capture the human figure (i.e., a coarse skeleton) leveraging the
reflected RF signals through a wall with specialized devices,
but it is dedicated for large human body and is questionable
on identifying the materials of small objects. Dinesh et.al. [14]
aims to utilize everyday commodity radios (i.e., smartphone)
to detect and locate hidden objects leveraging the backscatter
signal measurements, but it is hard to separate the influence
of the object’s material and size only from backscatter signal.

Due to the prevalence of WiFi devices, a recent study [6]
explores the feasibility of achieving computational imaging
by leveraging WiFi signals. The researchers operate Universal
Software Radio Peripheral (USRP) at 2.4 GHz band to image
objects such as leather couches and metal shapes. But this
method requires a large antenna array and is not sufficient
to identify objects in a fine granularity manner, such as
distinguishing the material of the objects. Furthermore, a set
of studies use WiFi signals to sense minute human body
movements to recognize/track human activities [5] and walk-
ing directions [15]. While these approaches mainly focus on
exploiting the changes of fine-grained WiFi measurements
(i.e., Channel State Information (CSI)) to sense human body
movements, using WiFi signals to recognize small objects
(e.g., water bottles, beverage cans, and knives) and different
materials remains open.
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(a) Static objects’ interference (b) Moving objects’ interference

Fig. 1. Different objects’ interference to the Wi-Fi signal (in CSI amplitude).

In this work, we conduct the first study to explore the
feasibility of using low-cost off-the-shelf WiF devices to dif-
ferentiate materials and types of the objects hidden in personal
luggage or package boxes, which involves more challenges
such as the different small objects in unknown positions of
various bags or boxes. By exploring the rich context of CSI
affected by the target object, we demonstrate that our approach
can accurately estimate the inner nature (i.e., material) and
outline properties (i.e., dimension/shape) of the hidden objects.

III. PRELIMINARIES & SYSTEM DESIGN

A. Preliminaries

Existing work has shown that the wireless channel of a
stable WiFi environment could be easily changed by adding
an object, for instance, a person, a bag or a cup. The intuition
behind this is that interferences caused by the additional
object, including absorption, reflection, and refraction of WiFi
signals, largely change the multi-path effect of the existing
WiFi environment and result in a different wireless channel. In
this work, we find that such wireless channel changes caused
by the additional object could be different due to different
materials and shapes of the objects. To illustrate this intuition,
we conduct some preliminary studies by respectively placing
5 common objects (i.e., a kitchen knife, a bottled water, a
stuffed animal, a plastic cube, and a metal can) at the same
position between a WiFi transmitter and a receiver that are
one meter apart. Figure 1(a) presents the CSI amplitudes
across 30 subcarriers corresponding to these objects. We can
see that the CSI amplitude at each subcarrier is affected by
the objects differently due to the object’s different physical
properties (e.g., material, size and shape). However, we find it
is difficult to further distinguish the materials, shapes or sizes
of different objects by examining the CSI amplitudes. Thus it
is necessary to separate the wireless channel changes caused
by objects’ materials, shapes and sizes and explore more useful
information from CSI in addition to its amplitude.

In addition, we notice that moving the object to multiple
positions with a single-antenna setup can imitate the large
antenna arrays [12], which could be exploited to perform
object imaging. We illustrate this potential by conducting an
experiment in which we move a metal box along a rail that
is perpendicular to the line of sight (LOS) between a pair
of single-antenna WiFi transmitter and receiver. Figure 1(b)
shows the CSI amplitudes of 30 subcarriers collected while
we move the metal box. We find that the metal box causes
the strongest decrease in the amplitude when it blocks LOS,
mainly because metal hardly let WiFi signals go through it.
Such signal attenuation could be exploited to determine one
dimension of the object (e.g., width or height). In addition, the
repetitive peaks and valleys at all subcarriers on both sides of
the LOS show the Fresnel Zones [16], which correspond to
an object’s reflection capability and can be utilized to estimate
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Fig. 2. System overview.

its’ reflection surface area (related to both height and width).
Ideally, we can estimate the dimension of an object by moving
it crossing the LOS of a wireless channel like this. However,
the strongest attenuation area due to the blocked LOS could
be interfered by the diffraction of the WiFi signal at the small
object (the strengthened signal in blocked LOS in Figure 1(b)).
And estimating the dimension of an object directly using the
peaks and valleys in Fresnel zone is not reliable because they
are largely affected by the object’s position and multi-path
signals. Thus we need to seek solutions to extract the real
reflection signal and reduce the influence of diffraction caused
by the object to facilitate imaging the object.

B. Threat Model

Our work targets an adversary who intentionally or un-
intentionally carries dangerous items (e.g., lethal weapons,
home- made bombs, combustibles) to public venues. Unlike
tight security-checking areas (e.g., airports), there are two
major types of areas vulnerable to adversarial activities: Places
not having pre-installed security check infrastructures and
employing high-manpower to perform security checks, such
as theme parks, museums and stadiums, and the other kind
even not having regulated checking process in place such as
metro/train stations and scenic locations (e.g., Time Square).
To launch an adversarial activity, the attacker usually hides the
dangerous item in his bag or metal/plastic container to avoid
being easily detected. In this work, we focus on detecting
the suspicious objects including metal and liquid objects,
which cover most of the dangerous objects that people could
carry in baggage. More specifically, the metal objects such as
aluminum cans, laptops, batteries and metal boxes can be used
for homemade bombs, while the kitchen knives, guns and steel
pipes can be directly used as weapons. Moreover, the liquids
such as water, acid, alcohol and other chemicals in retainers
might cause explosions.

C. System Design

System Requirements. Our system aims to automatically
detect the suspicious objects in the aforementioned places. To
achieve this goal, the design requirements of our system in-
clude: 1) A low false negative classification rate of suspicious
objects in order to ensure adversaries cannot carry dangerous
objects passing the security check; 2) A low system cost that
is necessary to enable wide deployment at the places, which
is lack of pre-installed security check infrastructures (e.g.,
museums, schools, stadiums, and train stations);3) Capability
of identifying small objects that could be hidden in baggage;
4) Identifying both material and shape simultaneously.
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apart to identify material closely to capture reflected signal

Fig. 3. Two experimental setups for object material identification and risk
level estimation.

System Overview. To facilitate the suspicious object de-
tection and identification, we design a novel system leveraging
CSI measurements readily available in existing WiFi devices.
As illustrated in Figure 2, our system takes the CSI from a
pair of WiFi transmitter and receiver as input. The system
then performs CSI Phase Adjustment and Complex CSI Recon-
struction, which correct the CSI phase drifting and reconstruct
the CSI complex including amplitude and corrected phase to
describe the channel in an appropriate manner. Our system
then performs Noise Removal to mitigate the interference
of environmental noises. After that, the preprocessed CSI
measurements would go through two main components: 1)
Two-step Material Classification focuses on analyzing the
material type to detect the suspicious objects in the black box
while decreasing the influence factors including the object’s
size, shape and position; 2) Signal Reflection-based Object
Risk Estimation can extract the reflected signal off the object
from the CSI to perform shape imaging and volume estimation
to estimate the risk level of the suspicious objects.

More specifically, Two-step Material Classification Method
is performed to first identify existence of the suspicious objects
by leveraging the CSI complex values and then derive the CSI
complex difference between antennas to further distinguish
the suspicious objects to be metal or liquid by capturing
their minute differences. KNN-based Feature Selection is
performed to select the good subcarriers for the CSI complex
and CSI complex difference. Given the material identified,
Signal Reflection-based Object Risk Estimation is performed
to further estimate the suspicious object’s risk level based
on extracted reflections from the CSI complex. In particular,
the object’s risk level is determined by performing the shape
imaging for the metal and the volume estimation for liquid
in containers. This is because the liquid would have a higher
risk level if its volume exceeds the permissible limit and metal
piece is more suspicious if it has a similar shape to weapons.

Two WiFi-antenna Setups. Two uniquely setups (as
shown in Figure 3) are designed for Material Classifica-
tion and Object Risk Estimation respectively, by meeting
the various requirements of the two different goals. When
identifying the object’s material, our system requires to focus
only on the material influence on the CSI and reduce the
influencing factors caused by the object’s shape, size and
position. In setup one (Figure 3(a)), the object is placed close
to the transmitting antenna, while the receiving antenna is
placed apart. By blocking much more spherical area of the
transmitting signal, the object close to the antenna heavily
affects the transmitting signals. Thus the signal beams passing
through the object or bypassing the object’ surface dominate
the signal beams arriving at the receiver (except the multi-
path from permanent furniture), which are more related to the
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Fig. 4. The CSI before and after phase adjustment in the complex plane.

object’s material influence. Moreover, due to the transmitting
antenna’s small elevation angle (e.g., 40 degree for 6dbi omni-
antenna), the signals are more focused to a small area on
the object, which reduces the influence caused by object’s
size and shape. Additionally, the object blocks more inner
Fresnel zones near the transmitter [16], which further weakens
the arriving diffraction and reflection signals and reduce the
influence of sizes, shapes and positions. Thus we can focuses
on the object’s material influence to CSI. Differently, the setup
two (Figure 3(b)) amplifies the influence caused by the object’s
shape and size by placing the object away from the closely
settled transmitter and receiver. It is good for imaging object’s
front face based on reflection and avoid the reflection from the
short object’s upper face. Note that these two setups can be
combined in practical scenarios. For example, we can deploy
two WiFi device pairs along a conveyor belt in most entrance
check points to facilitate material identification and shape
imaging in sequence automatically.

IV. CSI COMPLEX VALUE RECONSTRUCTION

To facilitate the object detection and identification leverag-
ing WiFi signals, we exploit CSI, the fine-grained description
of the wireless channel, to capture the minute differences
of the channel state change introduced by different objects.
Specifically, the CSI with respect to each subcarrier is ex-
pressed as a complex value as follows:

H( fk) = |H( fk)|e
j∠H( fk), (1)

where H( fk) describes the channel response for the subcarrier
with central frequency fk, |H( fk)| and ∠H( fk) denote the corre-
sponding amplitude and phase, respectively. It describes how
the signal propagation is affected and reveals the impact of
multipath effects between a pair of transceivers. The wireless
channel will experience various impacts such as absorption,
reflection and refraction by any object in the surrounding
wireless environment, resulting in the changes of the CSI
amplitude and phase at each subcarrier. However, the raw
CSI extracted from WiFi signals could be distorted by the
unpredicted phase shift and time lag caused by the non-
synchronized transmitter and receiver [17]. Most studies thus
only use the CSI amplitude instead of the complex CSI value
to characterize the wireless channel. Figure 4(a) shows the raw
CSI complex values for 5 randomly chosen subcarriers across
1000 packets. We find that the raw CSI complex show the
"doughnut" shape for each subcarrier because their amplitudes
keep constant but the phases are much random. Thus the CSI
phase needs to be adjusted for a more accurate description of
the wireless channel.

Existing studies utilize the phase difference between adja-
cent subcarriers [18] or antennas [19] to remove the unknown
phase shift, which may lose some useful information from
the original CSI phase. In this work, we adopt the phase
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Fig. 5. Combined channel and reflection channel.

unwrapping [20] and the linear transformation method (similar
to [17]) to adjust the raw CSI phase. In particular, we first
unwrap the raw phase across all the subcarriers of each packet,
which is wrapped within the range [−pi, pi]. Then a linear
transformation is applied to the unwrapped phase to remove
the phase shift offset at each subcarrier and thereby derive the
adjusted phase ∠Ĥ( fk) as:⎧⎪⎨

⎪⎩
b =

∠H( f30)−∠H( f1)
f30− f1

,

a = 1
30 ∑30

k=1 ∠H( fk),
∠Ĥ( fk) = ∠H( fk)−b fk −a

(2)

where k,k = 1,2, ...,30 is the index of the 30 subcarriers and
fk, fk = −28,−26, ...,28 is the frequency point index of the
real OFDM subcarrier [21](Table 7-25f).

Given the adjusted CSI phase, we reconstruct the complex

form of CSI as Ĥ( fk) = |H( fk)|e
j∠Ĥ( fk), where ∠Ĥ( fk) is the

adjusted CSI phase. The reconstructed CSI complex Ĥ( fk)
accurately depicts the frequency response of each subcarrier
in term of both amplitude and phase as shown in Figure 4(b),
where the CSI complex of different subcarriers form their
respective clusters in the complex plane. In a static wireless
environment, both the CSI phase and amplitude maintain con-
stant accordingly, which thus facilitates our two major system
components to analyze the channel state changes introduced
by the target objects with different materials, shapes and sizes.

V. TWO-STEP MATERIAL CLASSIFICATION BASED ON

CSI COMPLEX VALUE

In this section, we focus on the materials identification
with our two-step method with the reconstructed CSI complex
in Section IV, because the material (i.e., metal, liquid and
unsuspicious) directly reflects whether the target object is
suspiciously dangerous or not. The basic idea is to capture
the wireless channel differences caused by different materials
of target objects leveraging the CSI information. Different
materials have different attributes on absorbing and refracting
the WiFi signal, and such differences are reflected as the
changes on CSI measurements. For example, 1) paper, cloth
and plastics allow large portion of signal to penetrate; 2) the
metal objects reflect a large portion of wireless signal and have
the rest of signal scattered along its surface; 3) the liquid such
as water has medium reflection but in the meanwhile allow a
portion of signal to pass through.

A. Examining the Material’s Impact on Channel State

We first examine how different materials influence the
CSI complex. Figure 6 (a) shows the CSI complex values
with respect to one subcarrier with 9 different objects in
Setup One (Figure 3(a)), where each object was tested three
times with slight position and orientation changes. We can
observe that the suspicious objects such as metal and water
have their CSIs clustered together. In comparison, the CSIs
corresponding to other objects such as fiber, books and plastics
form another different cluster overlapped with the cluster
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when there is no object present (i.e., yellow dots). This is
because these unsuspicious objects have little interference to
the wireless channel due to their electric-insulated attributes
and low density. Moreover, the metal objects and the water
containers of different sizes are all significantly different from
the unsuspicious objects in term of CSI complex. Therefore,
regardless of the sizes and shapes, the suspicious objects
can be distinguished effectively from the unsuspicious objects
based on the reconstructed CSI complex. Note that the most
bags/boxes showing at the theme park, museum entrance are
made of the non-dangerous material such as fiber, paper and
plastics, and thus they have little impact to the wireless chan-
nel. Accordingly, the hidden suspicious objects could dominate
the interference to CSI complex and be easily detected.

B. CSI Complex Difference between Receiving Antennas

With the capability to tell suspicious materials from unsus-
picious ones, the CSI complex alone is still hard to further dis-
tinguish the different types of suspicious materials. For exam-
ple, as shown in Figure 6(a), the CSI clusters corresponding to
liquid and metal objects are close to each other. This is because
these suspicious materials all heavily interfere the wireless
channel. Thus we need to further distinguish their minute
difference by resorting to more in-depth information such as
the relative spatial information from multiple antennas. For
example, different materials have different scattering effects
on the RF signals when passing through the object. Therefore,
we propose to leverage the CSI complex differences between
any two receiving antennas to capture the minute difference
of the signal scattering at multiple antennas. Assuming that
the transmitter emits a symbol x at antenna t1, the symbols
received by the two antennas r1 and r2 of the receiver would
be h11x and h12x (as shown in Figure 5(a)), where h11 and
h12 are the CSI for the t1-r1 and the t1-r2 antenna pair. Then
the combined input y1 at the two receiving antennas could
be defined as y1 = (h11 +αh12)x. By choosing α = −1, we
define the combined channel Ht1,r1r2 between t1 and r1,r2 as,

Ht1,r1r2 = h11 − h12, (3)

Under the presence of an object, the combined channel Ht1,r1r2

measures the difference between the two channel states, which
removes the common factors (e.g., permanent furniture influ-
ence) at two receiving antennas, and also amplifies the minute
differences on scattering effects caused by different materials.
As illustrated in Figure 6(b), the metal and water could be
differentiated by the CSI complex difference regardless of their
sizes. We then utilize the CSI complex difference to identify
the types of suspicious materials.

C. Two-step Method Implementation

Based on the above observations, we develop a two-step
material identification method to classify the object’s material
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Fig. 7. The reflection channel state information in response to different
objects’ reflections.

within Setup One. In particular, 1) we first differentiate the
suspicious objects from unsuspicious ones by leveraging the
reconstructed CSI complex values as features to perform
classification; 2) we next identify whether the material of
the dangerous objects is metal or liquid by deriving the CSI
complex differences between two receiving antennas as the
features for further categorization. At each step, we apply a
learning-based method to build the material profiles. During
the training phase, we first apply the KNN-based feature
selection method to choose CSI-based features from good
subcarriers and antenna pairs. In particular, we cluster the
CSI-based features with respect to each subcarrier based on
KNN; then k-fold cross validation is applied to the KNN-based
clusters to determine the good subcarriers and antenna pairs
which show lower K-fold loss ratio than a predefined threshold
when differentiating the materials at each step. Next, a learning
method, such as SVM or deep learning, is adopted to train the
material profile at each step. Note that, to identify the object
within different baggage, we pick several representative types
of bags/boxes with the target objects enclosed to build the
CSI profiles. During the testing process, the CSI and CSI
complex difference of target objects are compared with the
pre-defined profiles for classification. As long as their material
belongs to the three types (i.e., metal, liquid and unsuspicious),
our system can identify them accurately. Moreover, most
bags/boxes are made of unsuspicious material such as fiber, the
hidden dangerous objects, if any, could dominate the impact
on the CSI, which can be easily captured by our proposed
system. Therefore our system can differentiate the materials
of hidden target objects wrapped by various bags/boxes.

VI. OBJECT RISK ESTIMATION LEVERAGING SIGNAL

REFLECTION-BASED OBJECT IMAGING

It is not sufficient to determine the risk of the suspicious
objects by identifying the material only. For instance, the
volume of the liquid less than a certain limit (e.g., 100ml) is
less risky and is usually allowed to be carried on flights; the
metal pieces with similar shapes as the weapons (e.g., kitchen
knife and soda-can bomb) are usually more dangerous. WiFi
signals from off-the-shelf devices are not specifically designed
for the small object imaging due to its long wavelength
(e.g., 12cm for 2.4GHz and 6cm for 5Gz), which would
induce strong diffraction and thereby significantly decrease
the imaging resolution [8]. To mitigate the effects of signal
diffraction for better imaging resolution, we focus on the
signals reflected from the target object to perform metal object
imaging and liquid volume estimation.

A. Extracting Reflected Signals from CSI Complex

We first introduce how to extract the signal reflected by
the target object from the CSI complex based on Setup Two
(i.e., Figure 3(b)). As shown in Figure 5(b), two transmitting
antennas (i.e., t1 and t2) and one of the receiving antennas
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(e.g., ri) are considered for illustration. The channel response
capturing the signals reflected from the target object only,
defined as Reflection Channel Ht1t2,ri, can be represented as:

Ht1t2,ri = h1i +β h2i, β =−
ĥ1i

ĥ2i

, (4)

where h1i and h2i are the estimated channel states (i.e., CSI)
for two antenna pairs (i.e., from transmitting antenna t1 and

t2 to receiving antenna ri respectively). The weight β =− ĥ1i

ĥ2i

is calculated by ĥ1i and ĥ2i, which are the channel states with
no target object presented in the area of interest. When no
object is placed, the signals from the transmitting antenna t1
and t2 are combined linearly to null the reflection paths to
the receiving antenna ri. Therefore the LOS and the reflected
paths from the permanent furniture [22] are eliminated in the
channel state information. But when an object is placed in
the area, the reflected paths will become in-negligible, and
the amplitude of reflected channel information Ht1t2,ri implies
the object’s reflecting capability. Figure 7 shows an example
of the amplitudes of the reflected channel state information
(reflection CSI) perceived by receiving antenna r1 with differ-
ent objects presented. In particular, empty environment renders
close to zero amplitude for all subcarriers of Ht1t2,ri amplitudes
(i.e., black dash line), whereas the unsuspicious objects such
as book and stuffed animal result in none zero amplitudes but
much lower than metal objects. Moreover, we also find the
sizes of the metal objects are proportional to the reflected
CSI amplitudes of all subcarriers, and different subcarriers
also have different sensitivity when they are reflected from
the objects. The above observations confirm the effectiveness
of our proposed method on capturing the signals reflected from
target objects by eliminating the LOS and multipath signals.
We next leverage the captured reflected signals to estimate the
liquid volume and perform metal object imaging.

B. Volume Estimation for Liquid Objects in Baggage

To estimate the liquid volume, we conduct some exper-
iments under Setup Two (i.e., Figure 3(b)), which involves
a small bottle as the target object with 5 different water
volumes ranging from empty to full. The amplitudes of the
reflected CSI (i.e., Ht1t2,r1) corresponding to different water
volumes are shown in Figure 8(a). It is easy to find that
the larger the water volume, the greater the reflected CSI
amplitude across all 30 subcarriers due to the increasing
reflecting surface. To further quantify the relationship between
the water volume and the amplitude of reflection CSI, we
select 15 different water heights in three cylindrical containers
of different diameters (i.e., large, medium and small). As
shown in Figure 8(b), we observe that the amplitude of the
reflected CSI is linearly proportional to the water heights for
all three containers. Moreover, the larger container has faster
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Fig. 10. Using the WiFi reflections extracted from CSI to image the metal objects in baggage.

growth rate on the CSI amplitude due to the larger reflecting
surface under the same water height. Therefore, as long as
the container’s diameter is determined, the liquid’s volume
can be derived by following a linear regression model. In this
work, we assume the liquid is kept in the nonmetal cylindrical
containers such as plastic or glass bottle. If the liquid is in
metal containers, it would be identified as metal objects based
on our material identification method in Section V.

Based on our preliminary study, the liquid volume estima-
tion consists of two steps, diameter determination and liquid
height estimation. To determine the diameter of the liquid
container, we adopt the same method of determining the metal
object’s width as in Section VI-C. Once the liquid container
diameter is obtained, we apply two different methods, the
linear regression method and the neural network-based method,
to estimate the liquid height by leveraging the frequency
selection property across multiple subcarriers. Specifically, the
linear regression method aims to build the linear regression
relationship between the CSI amplitude and liquid height for
each subcarrier, and integrate the prediction results from all
subcarriers to derive the liquid height. The neural network-
based method predict the unknown height of the liquid in
containers by building a neural network model, which takes
the amplitudes of all subcarriers with respect to different liquid
heights as the training feature vector. At last, the liquid volume
is easily obtained based on the estimated container diameter
and the liquid height.

C. Shape Imaging for Metal Objects in Baggage

Unlike the existing studies relying on large antenna arrays
to determine the shape of metal objects, we propose to image
the in-baggage metal objects using commercial WiFi devices
with a limited number of antennas while the baggage is moved
by the conveyor belt, which is available at many entrance
check points. Figure 9 shows the reflection channel response
Ht1t2,r1 when the target object is in an opaque baggage, which
moves along the track in parallel with the antenna array.
The rectangular box and the water bottle are covered with
tinfoil to imitate the metal objects of different shapes that
are similar to homemade bombs. We find that the reflected
channel response is greater when the target object is close to
the central line between the transmitter and receiver, where
strong reflection is usually incurred by the object. Moreover,

as shown in Figure 9(a) and (b), both the width and position
of the target object hidden in the baggage or box can be
clearly identified from the reflected CSI amplitude (e.g., red
color). Furthermore, when there are multiple objects in the
same baggage, such as the metal object together with clothes
as shown in Figure 9(c), the metal object dominates the
reflection signals and can still be distinguished and imaged.
Note that our system can detect the existence of suspicious
objects even if liquid and metal objects are in the same
baggage and the object imaging includes both objects. We
therefore develop a threshold-based approach to capture the
outline of the metal objects and separate them from other non-
suspicious objects, including the baggage. We first estimate
object’s width, which is proportional to the object moving
distance that cause reflections above a threshold by using
d = γ d̂, where d̂ is the estimated width from reflection CSI
amplitude and γ is the ratio, which is related to the short
wavelength of WiFi signal. Once the width of the object is
determined, we proceed to estimate the object’s height based
on the fact that the reflection CSI amplitude is proportional to
the reflection area. The estimation of the metal object’s height
is similar to the method in Section VI-B. Figure 10 shows
the final imaging results of the metal objects based on the
reflection CSI amplitude of Figure 9. It is encouraging to find
that the metal object’s outlines can be well recognized, which
are very close to the actual shape of the target objects even
when it is hidden with other objects in the baggage.

VII. PERFORMANCE EVALUATION

A. Experimental Methodology

Experimental Setup. We implement our system on a
pair of laptops, which are equipped with IWL 5300 wireless
cards and three 6dBi omnidirectional dual band rubber ducky
antennas. The two laptops are placed upon a wooden table in
a typical indoor room, and we employ two setups as shown
in Figure 3 to perform material identification and risk level
estimation, respectively. The laptops are running Ubuntu 10.04
LTS with the kernel 2.6.36, and the WiFi card works at 5GHz
frequency band with the transmission rate 100pkt/sec. During
data collection, two people are in the room standing by the
table to imitate the practical scenarios.

Target Objects. We evaluate our system with the combina-
tion of 15 different target objects in three categories (i.e. metal,
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(a) Fifteen objects in 3 categories (b) Six different bags and boxes

Fig. 11. Various target objects and bags/boxes in the experiment.

liquid and non-dangerous) and 6 representative bags/boxes
in three categories (i.e., backpack/handbag, cardboard boxes,
thick plastic bag) as shown in Figure 11. For the material
identification, we put each of the 15 objects in 6 bags/boxes
respectively and experiment under Setup1 in Figure 3. Each
experiment is repeated 5 times while slightly changing the
object’s position and orientation. For dangerous object risk
level estimation, we place the metal objects across multiple
positions under Setup2 (i.e., Figure 3(b)) to estimate the size
(i.e. width and height). Moreover, we have the three different
size containers (i.e., large, medium and small) filled with
different volumes of liquid to estimate liquid volume. Overall,
over 800 experimental data traces are collected during a 6-
month period to evaluate our proposed system.

Evaluation Metrics. To evaluate the material identifica-
tion method, we defineIdentification Accuracy as the ratio of
the correctly identified objects over all the tested objects, and
define Detection Rate as the ratio of correctly identified objects
over the total objects of the same material. A high detection
rate of the suspicious object reflects a low false negative rate,
which guarantees that few suspicious objects could pass the
security check. To evaluate the risk level estimation, we utilize
Size Estimation Error (cm) to measure the estimation of the
metal object’ width and height and Volume Estimation Error
(ml) for the estimation of the liquid volume.

B. Material Classification

We first evaluate our material identification of the object
hidden in various bags, especially when different number of
bags are used for training the profile. Figure 12 shows that our
system can achieve high accuracy in identifying the object’s
material when they are put in different bags. In particular,
given the combination of all the 15 objects and the 6 bags in
our profile, Figure 12(a) shows that our system can achieve
99% accuracy in classifying dangerous objects from non-
dangerous (step1) and 97% accuracy to further differentiate the
dangerous objects to be metal and liquid (step2). Figure 12(b)
further shows that the overall detection rate for the dangerous
material, metal and liquid are 99%, 98% and 95%. Moreover,
we find that the material identification accuracy reduces a
little bit as the number of bags used for profile training
decreases. For example, when using half of the bags (i.e.,
one bag/box from each of three categories) for training, the
step1 and step2 accuracy of our material classification method
fall to 95% and 90% while the detection rate of dangerous
objects decreases to 94%. The overall detection rate for metal
and liquid objects fall to 90% and 92%. This is because
the bags and boxes, though made of non-dangerous material,
still induce slightly different interferences on the wireless
channel, thereby resulting in the errors in material detection.
But because the bags used in testing phase have the similar
material with the bags/boxes used in building training profile,
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baggage in profile.

our system still achieves high material identification accuracy.
Additionally, regardless of the number of bags used in training
phase, our system can keep over 93% accuracy of detecting
the dangerous material as shown in Figure 12(b).

Figure 13 presents a more challenging scenario, where only
half of the objects in each of the three object categories are
trained to build the profile. Figure 13(a) shows that in this
scenario, if all the bags are used for training, we can achieve
over 95% accuracy for step1 and 90% for step2. The overall
detection rate for the dangerous materials is 96%, and the
detection rate for metal and liquid objects fall to 82% and
91% as shown in Figure 13(b). Furthermore, we find that the
material identification accuracy also reduces with decreasing
number of bags used for training, due to the different bags’
slight different interference. In particular, when half of the
objects and half of the bags are used for training the profile,
our system can achieve 91% and 85% accuracy for step1 and
step2 of our material classification and the detection rates for
the dangerous, metal and liquid are around 90%, 78% and
85%. The results show that our system can efficiently identify
the object made of dangerous material and further classify the
dangerous material types in the more complex scenarios. In
an extreme case, when half of the objects and only one bag
are chosen for training, the detection rate for all dangerous
materials is still over 89%. The results confirm that our system
can efficiently recognize the object by its material regardless
of their shapes and sizes or what bags they are hidden in.

C. Risk Level Estimation based on Object Imaging

We next evaluate the performance of our system on esti-
mating the risk level of the objects through object imaging
(i.e., metal object size and liquid volume).

Metal Object Size Estimation. Figure 14(a) shows the
results of our system on estimating the sizes of different metal
objects. We find that our system can achieve cm-level accuracy
on the size estimation of metal objects. In particular, over
80% estimation error of the metal object’s widths and heights
are within 0.7cm and 90% within 1cm. The average errors
for estimating the metal object’s width and height are 0.3cm
and 0.5cm, respectively. The results show that our system can
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estimate the metal objects’ size accurately, which is good to
perform accurate object imaging and infer whether the metal
object is suspicious to be deadly weapons or bombs.

Liquid Volume Estimation. The performance of liquid
volume estimation is presented in Figure 14(b), where we
apply two different methods, linear regression and neural
network for the volume estimation respectively. We find that
both methods can achieve high accuracy on liquid volume
estimation. The neural network-based method achieves even
higher accuracy with the median error as small as 16ml.
Moreover, over 80% estimation errors are within 35ml. The
results validate that our system can accurately estimate the
liquid volume, and provide significant information to derive
the risk level of liquid objects.

VIII. CONCLUSION

This paper explores the feasibility of using off-the-shelf
WiFi signals to detect suspicious objects (i.e., metal and
liquid objects) hidden in baggage without penetrating into the
user’s privacy. Our solution is timely as it demonstrates the
possibility to reuse the prevalent WiFi technology to perform
suspicious objects detection at every public area vulnerable
to adversarial activities without requiring the installation of
high-cost security-checking infrastructures. The designed sys-
tem can also estimate the risk level of the target object
through object imaging to estimate the shape/volume of the
metal/liquid objects. Specifically, we deploy two different
system setups for separating the refraction signals and the
reflection signals from the CSI complex and recognizing the
object’s material and shape, respectively. Our system removes
the raw phase noise in CSI and reconstructs the CSI complex,
which can robustly capture the dominant interference caused
by the suspicious material even when the object is hidden in
the baggage. We also derive the reflection channel from CSI
complex that can enable us to estimate the object’s shape and
volume at a fine level using the long-wavelength WiFi signals.
Extensive experiments are conducted with 15 objects and 6
bags over a 6-month period. The results show that our system
can detect over 95% dangerous objects in different types of
bags and successfully identify 90% dangerous material types.
In addition, our system can achieve the average errors of
16ml and 0.5cm when estimating the shape/volume of the
metal/liquid object, respectively.
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