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Abstract—Traffic Collision Avoidance Systems (TCAS) are
safety-critical systems required on most commercial aircrafts
in service today. However, TCAS was not designed to account
for malicious actors. While in the past it may have been
infeasible for an attacker to craft radio signals to mimic TCAS
signals, attackers today have access to open-source digital signal
processing software, like GNU Radio, and inexpensive software
defined radios (SDR) that enable the transmission of spurious
TCAS messages. In this paper, methods, both qualitative and
quantitative, for analyzing TCAS from an adversarial perspective
are presented. To demonstrate the feasibility of inducing near
mid-air collisions between current day TCAS-equipped aircraft,
an experimental Phantom Aircraft generator is developed using
GNU Radio and an SDR against a realistic threat model.

Index Terms—TCAS, collision avoidance, aviation security,
unauthenticated ranging, safety critical systems

I. INTRODUCTION

Aviation remains the safest way to travel because of the
various safety-critical systems operating at any given moment
on the aircraft [|1]. One such on-board safety feature is known as
the Traffic Collision Avoidance System (TCAS), internationally
known as the Airborne Collision Avoidance System (ACAS),
that prevents the mid-air collisions of transponder-equipped
aircraft. In the event of a Near Mid-air Collision (NMAC)
where Air Traffic Control (ATC) towers cannot react in time,
TCAS is critical for warning pilots to change course and prevent
a mid-air collision. Many aviation regulatory bodies mandate
the use of TCAS on larger commercial aircraft [2].

Recent technology, such as Software Defined Radio (SDR),
enables the manipulation of TCAS through software-defined
wireless signals designed to appear like one or more aircraft
on a collision course with a target aircraft. TCAS was never
intended to perform under adversarial conditions which are
entirely feasible for a malicious actor to create in today’s
environment of inexpensive, powerful computers. If an attacker
were to compromise TCAS, they could bypass the safety
benefits granted by TCAS equipage. Worse, under certain
conditions, a TCAS-equipped aircraft could have a higher
chance of mid-air collision than an unequipped aircraft.

Most prior work into the security of the Mode S transpon-
der has been limited to Automated Dependent Surveillance-
Broadcast (ADS-B) message spoofing [3], [4] or pilot responses
to erroneous TCAS messages but does not specify the technical
requirements to spoof TCAS [5]]. This paper represents the
first research into accurately spoofing TCAS messages, and
the danger of induced near mid-air collisions as a result of
the aforementioned spoofed messages. TCAS and ADS-B are
closely linked because both messages are transmitted through
the Mode S (Selective Aeronautical telecommunication; able to
be interrogated) transponder. While works on ADS-B, propose
some defenses against spoofing attacks, ADS-B is not part of
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any safety-critical systems on an aircraft, negating the need
for sweeping and expensive security changes. If TCAS is also
shown to be vulnerable to attack, then the safety of onboard
passengers would be compromised, providing a more significant
motivator to institute system changes and improvements. Due to
the safety implications of this research, our work was originally
done in conjunction with a primary manufacturer of TCAS and
with notification to Department of Homeland Security (DHS).

In this paper, we demonstrate that the TCAS transactions are

vulnerable to attack. We explore TCAS vulnerabilities using the
weakest possible attack model using only open-source software,
publicly-accessible knowledge about TCAS, and a low cost
SDR. We hope that our explorations motivate further research
into the defense of TCAS and Mode S transponders. In this
work, we make the following contributions:

« We show that a safety-focused design approach for safety-
critical systems does not result in a safe system in an
adversarial environment.

« We take an analytical approach to find vulnerabilities in,
and explore the effect of failures of, TCAS II through an
attack tree.

o We develop a Phantom Aircraft attack, where we use open-
source software to spoof critical TCAS II components
(e.g., a Mode S Transponder) enabling an attacker to
masquerade as a collision-bound aircraft.

II. BACKGROUND

We provide background on TCAS and methods for attack
construction to aid understanding and evaluation of the Phantom
Aircraft attack provided in the subsequent sections.

A. Traffic Collision Avoidance System (TCAS)

TCAS is designed to reduce the risk of Near Mid-air
Collisions (NMAC) between aircraft. It operates independently
of ATC to notify/instruct pilots when a protected volume
of airspace around the aircraft is intruded upon by other
aircraft. It uses an onboard transponder (transmitter/receiver)
to facilitate air-to-air communications between aircraft. Each
TCAS interrogates nearby aircraft on the 1030 MHz frequency
band and all aircraft reply on the 1090 MHz frequency band.
TCAS uses these transactions to track nearby aircraft and
monitor for intrusions in nearby airspace. Figure [I| shows the
protected region generated by TCAS defined by altitude and
the remaining time until an intruder reaches its Closest Point
of Approach (CPA) [6], [7]. TCAS is designed to operate
independently of ATC and other tracking systems in order to
mitigate collision risk regardless of the operational state of
other systems or ground based information relayed to the pilot.

TCAS System Components. TCAS requires that aircraft be
equipped with a transmitter/receiver known as a Mode S
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Fig. 1. The region protected by TCAS [6].

transponder. TCAS itself consists of three main components
illustrated in Figure
o TCAS CPU: A computer that performs interrogations,
surveillance, tracking, threat declaration, etc.
o Antennas: There are three required antennas and one
optional antenna. However, many implementations choose
a shared antenna design to save costs.
o Cockpit displays: Information on intruding aircraft and
suggested responses are visually and aurally announced
to pilots.

TCAS: Request-Response. Generally, TCAS behaves within
a request-response architecture. A TCAS CPU uses the
1030 MHz channel to request information from an intruder.
This action is called an interrogation. The Mode S transponder
on an intruding aircraft is responsible for responding to
interrogations [8]], [9]. Each plane has a unique 24-bit address
called its International Civil Aviation Organization (ICAO)
address [8], [10]. All interrogations are addressed to the aircraft
receiving the interrogation. ICAO addresses are combined
using an exclusive-or function with a unique Mode S cyclic
redundancy check (CRC) calculation to form the Address/Parity
(AP) field [11]]. The data encoded in interrogation is referred
to as an Uplink Format (UF) message. UF messages have a
fixed-length 5-bit header, and its value indicates what type
of UF message it is. Replies are broadcast on the 1090 MHz
frequency band and only happen if an interrogations decoded
AP field matches the ICAO address of the receiving aircraft.
The data encoded in a reply is referred to as a Downlink Format
(DF) message. The DF headers value will always match the
UF headers value of the message that started the transaction.

TCAS advisories. There are two types of advisories (i.e.,
responses to intrusions) that TCAS can produce.

e A Traffic Advisory (TA) is intended to help a pilot
visually locate an intruding aircraft; it is issued first.

o A Resolution Advisory (RA) will recommend maneuvers
or positional holds in order to increase the separation
between the aircraft and intruder [7]).

In a coordinated maneuver, the aircraft that announces its
RA first controls the maneuvers of the second aircraft. In
other words, the aircraft that makes the first decision will
coordinate the possible maneuvers the other aircraft can do.
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Fig. 2. TCAS System Components [7]]

In the event of simultaneously received RA coordination, the
lower ICAO identification number receives precedence. An
attacker can control this within the spoofed message to always
assert primacy. Then, the TCAS will choose the maneuvers
sense and strength [7]. A sense is the direction the aircraft
will maneuver. After a sense selection, TCAS will choose a
maneuver strength. A strength can either be positive or negative.
Upon receipt of a RA, the pilot is obliged to follow the RA
maneuver guidance if possible, giving higher priority to the RA
than ATC guidance. Related work has shown that pilots will
follow an RA even if they believe the system to be behaving
inappropriately or “crying wolf” [5].

TCAS Operating Modes. TCAS can be operated in three
modes, which are controlled by the pilot [[7]. The level of
functionality TCAS provides is defined by its Sensitivity Level
(SL). These levels are:

e (SL 1) Standby: No TCAS tracking or “squitters” (a non-
solicited Mode S transmission of aircraft tracking data
to alert nearby transponders of the aircraft’s presence).
Mode S transponder will respond to interrogations.

e (SL 2) TA Only: TCAS will track intruding aircraft, but it
will only announce a TA to the pilot. Mode S transponder
transmits squitters and responds to interrogations.

e (SL 3+) TA-RA: TCAS will automatically select the best
SL for the altitude.

In some instances ATC towers can partially control TCAS.
Specifically, ground controllers can place TCAS into SL 2 or
greater [[7], [8], [10]]. Only after repeated TCAS malfunctions
will a pilot degrade the SL [5].

B. Software-defined Radio

A Software-defined radio (SDR) does not use dedicated
hardware circuits for signal processing but instead conducts
radio-relevant processing in software providing flexibility in
terms of modulation, filtering, operating frequency, and frame
format [12]]. GNU Radio is a free and open-source development
platform for SDR that uses a graphical approach to radio design
and supports development in C++ or Python [13]. It is often
used in a simulation environment to support real-world radio
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systems and wireless communications research [[14]. GNU
Radio Companion (GRC) is a graphical application packaged
with GNU Radio [13].

C. Attack Tree and Fault Tree Analysis

An attack tree is a graphical representation of an attack
including simply a series of What if ... questions that result is
an extensive list of known attack vectors to the system [15].
Fault Tree Analysis (FTA) is a tool that safety engineers use
to inform decision making concerning design revision with
respect to some undesired event [[16]. FTAs are created to
model failure in very complex systems and can show how a
series of events can lead to a larger undesired failure event
using probability, Boolean algebra, etc. Similar to the attack
tree, the root of an FTA starts from a goal (i.e., starting from
the desired failure to investigate) and then deduces the specific
components that could cause the failure.

III. TCAS ATTACK TREE

We consider an attacker who aims to induce an NMAC.
The attack tree of this work shares two major components
with the TCAS fault tree; the major components identified
are shown as the top of the attack tree in Figure |3| The left
event represents unresolved NMAC attacks (e.g., two planes are
already on a collision course, and the pilots fail to maneuver
the planes in a way that avoids NMAC), and the right event
represents the induced NMAC attacks (e.g., two planes that
were not previously on course towards NMAC are maneuvered
into an NMAC). The central event accounts for any attacks on
people like social engineering [|I7]. Our particular interest is
the induced component of NMAC because it is antithetical to
the design goals of TCAS and implies that an attacker could
intentionally redirect two nearby planes into each other.

Induced NMAC Attacks. Induced NMAC attacks are reliant
on fooling TCAS into generating an RA that, if followed,
would induce an NMAC. A section of the induced NMAC
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Fig. 5. Planned Phantom Aircraft attack against two nearby intruders

attack is shown in Figure (4| Attacks that would induce an
NMAC require that the expected Mode S messages are obeyed
to trick a TCAS into a false track, i.e., following a non-existent
Phantom Aircraft course, whose purpose is to cause the target
aircraft to maneuver onto a probable collision course with
another aircraft. TCAS implicitly trusts that responses to its
interrogations originate from an actual aircraft and that the
aircraft will travel in a certain manner. If an attacker can
respond to TCAS’s interrogations and appear to move like a
plane, then the false track should be successfully created and
maintained. The foundation of the Phantom Aircraft starts with
an accurate spoofer of Mode S signals; it must also consistently
fool the range measurements that TCAS performs [S§]], [[18]]. The
induced NMAC attacks are reliant on two threats being near
in altitude to increase the probability of a successful attack.

IV. PHANTOM AIRCRAFT ATTACK

We develop a particular induced NMAC attack: the Phantom
Aircraft attack. First, we define the threat model and outline
the attack model. This represents a specific example of a TCAS
attack. The design of any attack in the attack tree of Section
would follow similar steps to the procedure shown.

Threat Model. The attacker’s goal is to induce an NMAC
between two aircraft without any modification to the TCAS
on the aircraft. The attack therefore requires replying to
relevant interrogations as well as emulating distance closing
signal behavior, in which the Round Trip Time (RTT) range
estimation of TCAS is fooled with proper response timing into
believing that an aircraft is intruding. The attacker launches
the attack using GNU Radio [[13] and a relatively low-cost
SDR hardware from Ettus Research [19]. In a short list, the
attacker’s capabilities are the following:

o The attacker is equipped with an SDR and directional
antennas capable of transmitting signals to the targeted
aircraft.

o The location and speed of the targeted aircraft are known
to the attacker.

o The attacker is able to selectively jam Mode S transmis-
sions of aircraft using knowledge of their ICAO address
and its reply periodicity. Directional jamming is not
required given this knowledge.

o The attacker can properly time their replies, with respect
to the interrogation periodicity of an aircraft, to appear
closer or farther than they really are.

Attack Model. The intended encounter is the scenario shown
in Figure [5] For analysis two aircraft are approaching each



other without any horizontal offset. These aircraft are also
approaching head-on such that there is an exact 180-degree
difference between their bearings with no vertical rate of ap-
proach. Alternate approach angles do not impact the feasibility
of the attack. The aircraft are placed such that they have the
adequate vertical separation that would not elicit any TCAS
warnings. The attacker begins selectively jamming the black
aircraft (the lower one on the left in Figure [5)) to drop its track
from the target aircraft. A false track is baited, and maintained,
by the attacker on the target aircraft. By analyzing the expected
RTT of the request-response TCAS handshake, an attacker can
manipulate artificial latency by delaying their reply once the
interrogation is received, in order to appear to be at a desired
distance and closure rate. This calculation requires knowledge
of the round trip distance between the victim and phantom
times the speed of light, factoring the computational latency of
a TCAS module upon message receipt, and the ability for the
attacker to transmit spoofed messages with ns timing resolution.

Once the attacker has determined that the target is within the
TA range of the phantom, the phantom must send its Resolution
Advisory Complement (RAC) first. The attacker can simply
announce an RA arbitrarily because TCAS trusts that the RAC
it receives is from a transponder acting in good faith. The
attacker forces the target TCAS to cross paths with the phantom
by constructing a “Do not pass above” coordination [10]. In
combination with the required Altitude Limit (ALIM) for this
flight level, the target would need to descend to an altitude no
greater than 40,800 ft.

To accomplish the Phantom Aircraft attack, five conditions
must be met. The attacker needs to:

1) Perform reconnaissance by interrogating the airspace in
the attacker’s vicinity.

2) Estimate the trajectory of victim aircraft through tracking.

3) Bait a false track from the victim by emitting squitters
and detecting them when interrogations begin.

4) Maintain the false track by responding to interrogations.

5) Declare a threat against the victim and detect evidence
that the victim declared its own RA.

V. ATTACK IMPLEMENTATION

We developed an attack platform based on GNU Radio. We
present the block diagrams of the platform and simulation
methods. Lastly, an outline of the hardware used for this
platform is presented.

A. Phantom Aircraft Generator

We demonstrate a proof-of-concept phantom aircraft genera-
tor for GNU Radio application to bait a TCAS into tracking
a phantom aircraft by having a pair of zero-speed aircraft
track each other. The core functionality of an attacker and
a normal aircraft are identical. Figure [6] shows the overview
of the phantom aircraft generator as well as expected carrier
frequencies, modulations, and sample rates.

We designed the system using open-source GNU Radio
modules. The reception and demodulation of DF packets
are handled by gr-adsb (ADS-B OOT for GNU Radio) [20].
The total OOT dependencies for gr-modes are: (1) gr-adsb:
demodulation and decoding of ADS-B messages [20], (2)
gr-burst: blocks for building PSK modems [21], (3) gr-
eventstream [22]], (4) gr-mapper [23]], and (5) gr-pyqt [24].

Universal Software Radio Peripheral (USRP) hardware
requires significant processing power in general, especially
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Fig. 6. Overview block diagram of the phantom aircraft generator.

at high sample rates. The PC for the attack uses an Intel Core
17-6800K; six cores at a 3.4 GHz clock rate with 16GB RAM.
An Ettus Research B210 is the transmitting USRP, and an Ettus
Research N210 is the receiving USRP [25]], [26]. These USRPs
are low cost, $1,259 and $2,011 respectively. The two USRPs
communicate over SMA cables through a variable attenuator
that prevents the receiver’s analog to digital converter (ADC)
from being saturated.

B. Phantom Aircraft Attack Details

We present the architecture of the phantom aircraft generator,
the sub-routines of each high-level block, and the interfaces
between each function.

Our system uses both asynchronous and streamed data. A
TX and RX interface for both interrogations and replies is
used. A nearby carrier frequency in the industrial, scientific,
and medical (ISM) band is chosen for testing [27] instead
of normal TCAS frequency bands [7], [8], [10]. Each RX
interface converts raw samples into packets the Core Logic
can understand; each TX interface performs the opposite. The
range estimation occurs from the RTT of the interrogation-reply
cycle using timestamp feedback from the TX and RX blocks.

Conversion of data from the Core Logic to samples interface
also handles the packing of message data into a complete Mode
S message. A lambda function block from gr-pyqt and a
prepend preamble block from gr-burst are convenient for
packing the data into a Mode S reply [21]], [24].

The data that enters the DF TX interface from the Core Logic
is 56 or 112 samples of bytes in length. To convert this message
into a Mode S reply, the following procedure is performed:
(a) Pulse Position Modulation (PPM) is performed [28]], (b)
the Mode S reply preamble is attached to the beginning of the
packet, and (c) the packet is interpolated to the application’s
base sample rate. Then, the packet must be converted to a
stream of complex samples the GNU Radio supports. Once
the payload is packed into a complete Mode S reply, gr-
eventstream is used to insert the data from an asynchronous
packet into the sample stream.

The receiver interface for DF messages is made from gr-
adsb blocks [20]. The ADS-B Framer is slightly modified
such that it creates a timestamp that propagates to the Core
Logic when a preamble is detected. The ADS-B Framer block
correlates the input with the expected preamble and creates a



tag object on the first sample of the preamble when a match
is detected. This tag serves as the synchronization point which
the ADS-B Demodulator can use for PPM demodulation.
We mimic the design of the reply transmission interface such
that the interface remains independent of actual message data.
Some adjustments are made to support the different pulse
sequence and modulation scheme of Mode S interrogations
and to suppress Modes A and C transponders from processing
the interrogation.

The receiving interface for the Interrogation Framer block
performs correlation analysis of the preamble and creates
a tag on the first sample of the preamble. Using this as a
synchronization point, the Tag Consumer block then creates a
“slice” of samples from 1-120 Differential Binary Phased Shift
Keyed (DBPSK) samples (i.e., length of the preamble + 112
symbols assumed). Demodulation is performed asynchronously.
The Core Logic interfaces then convert interrogation and reply
samples into a format the state machine logic can understand.

VI. EVALUATION

We verify the attack detailed in Section [V] While the
direct testing approach would be to generate aircraft on a
real TCAS, real TCAS hardware is not trivial to acquire and
setup. Therefore, verification is completed with two simplified
aircraft cores that can track each other at zero speed through
the medium of Mode S messages. We performed a series
of unit and integration tests through GNU Radio to verify
the adversarial tasks. For each point of verification below, we
executed the flowgraph for 10 minutes with a fixed surveillance
period of one second such that approximately 600 rounds of
interrogations and replies occur for each item. We have verified
the following:

1) Arbitrary Mode S reply messages can be crafted to
fool the gr-adsb receiver without USRP hardware in-
the-loop [20]).

2) The gr-adsb receiver’s performance is characterized via a
packet-loss calculation with USRP hardware-in-the-loop.

3) Arbitrary Mode S interrogation messages can be crafted
to fool a custom Mode S interrogation receiver without
USRP hardware-in-the-loop.

4) All four message modulators and demodulators can
deliver payloads to the core logic. The core logic per-
formance is indicative of the state machine functionality.
No USRP hardware is used in-the-loop.

Mode S Reply. We first verified that we correctly modulated,
demodulated, and decoded a crafted payload message as shown
in Figure [/| Six different 10-minute test runs are performed.
We found that even the best performing case still has a packet-
loss factor nearly 60%. While this is a significant problem for
hardware testing, our primary focus is its emulation of TCAS
functionality. Therefore, the remainder of the tests ignores the
use of USRP hardware.

Mode S interrogation. We verified that an arbitrary payload of
112 bits is modulated and demodulated to confirm an expected
Mode S interrogation through a simulated Additive White
Gaussian Noise (AWGN) channel as shown in Figure

Core Logic. We verified that the core logic demonstrates
required states in software-only environment, proving the base-
level functionality of this phantom aircraft generator. We note
that altitude information is as expected. Packet throughput
and latency are evaluated as they pertain to maintaining the
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phantom aircraft’s tract in the victim’s TCAS with the correct
range estimation. However, the computational overhead is too
large and imprecise for range estimation, as shown in Figure [9]
Further investigation into improving the RTT estimation and
packet throughput is required.

VII. DISCUSSION AND LIMITATIONS

Based on our experience, the implementation of a phantom
aircraft generator will require the removal of expensive message
interfaces between modules and the implementation of high-
accuracy time-stamping in the code.

Heretofore the nature of TCAS, as a highly complex system,
has allowed it to enjoy a sort of security through obscurity” [29].
We have, however, shown that a relatively low-resourced
attacker can reproduce the essential signals of TCAS so as to
mount an attack against it. Those with the time and resources
to attack a complicated system will eventually succeed. It is
imperative for defenders to act now in securing the integrity
of these systems.

As future work, it is also essential to develop a platform in
which implementations can be tested on real TCAS hardware.
TCAS cannot operate independently from its inputs; it has
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subroutines which disable the TCAS if inputs are failing or
nonexistent [7]], [8], [10]. Therefore, designing a test bench in
which TCAS can operate on real or simulated inputs would
be invaluable in conducting accurate security research. Future
attack models will focus on a more specific approach and
conduct the spoofed message calculation and modulation for
expected attack packets beforehand to reduce latency. The
degree in which an attacker could control airspace given a fully
functional phantom aircraft generator will be also explored.

VIII. CONCLUSIONS

We presented an exploration of TCAS vulnerabilities to
exploitation. A wide breadth of analysis is done with respect
to TCAS security with the intention to motivate academic
and industry-led research into the security of safety-critical
airborne collision avoidance systems. To accomplish this goal,
the following actions are taken. First, a TCAS safety study is
analyzed from an adversarial perspective to quantify the effect
of attacks on the overall NMAC risk ratio. Second, attacks on
TCAS are explored through the model of an attack tree. Third,
an attack is chosen, and a threat model is defined to relay the
attackers goals and capabilities. Finally, an implementation of a
threat using GNU Radio is presented, and critical components
of the implementation are tested.
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