
Very Pwnable Network:
Cisco AnyConnect Security Analysis

Gerbert Roitburd
SEEMOO, TU Darmsdtadt

groitburd@seemoo.de

Matthias Ortmann
SEEMOO, TU Darmsdtadt

mortmann@seemoo.de

Matthias Hollick
SEEMOO, TU Darmsdtadt

mhollick@seemoo.de

Jiska Classen
SEEMOO, TU Darmsdtadt

jclassen@seemoo.de

Abstract—Corporate Virtual Private Networks (VPNs) enable
users to work from home or while traveling. At the same time,
VPNs are tied to a company’s network infrastructure, forcing
users to install proprietary clients for network compatibility rea-
sons. VPN clients run with high privileges to encrypt and reroute
network traffic. Thus, bugs in VPN clients pose a substantial
risk to their users and in turn the corporate network. Cisco,
the dominating vendor of enterprise network hardware, offers
VPN connectivity with their AnyConnect client for desktop and
mobile devices. While past security research primarily focused on
the AnyConnect Windows client, we show that Linux and iOS are
based on different architectures and have distinct security issues.
Our reverse engineering as well as the follow-up design analysis
and fuzzing reveal 13 new vulnerabilities. Seven of these are
located in the Linux client. The root cause for privilege escalations
on Linux is anchored so deep in the client’s architecture that it
only got patched with a partial workaround. A similar analysis
on iOS uncovers three AnyConnect-specific bugs as well as three
general issues in iOS network extensions, which apply to all kinds
of VPNs and are not restricted to AnyConnect.

Index Terms—Virtual Private Network, Fuzzing, iOS, Linux

I. INTRODUCTION

When corporations build an internal network, they often
stick to the same vendor for all components due to compat-
ibility reasons. A vendor should offer a variety of solutions
meeting all the customer’s needs. Creating and maintaining
such a product range is a huge effort, and, thus, the corporate
network landscape is dominated by very few vendors. Cisco’s
market share including VPNs and other enterprise network
equipment is around 50% [1]. Thus, users connecting to
corporate VPNs will likely face a setup that requires them to
install the Cisco AnyConnect client. This client supports the
most popular desktop and mobile operating systems Windows,
Linux, macOS, iOS, and Android. While they have platform-
dependent feature sets, they are all compatible with Cisco’s
Adaptive Security Appliance (ASA), which, amongst others,
also provides VPN server functionality. As a product that is
meant to provide secure network access and protect corporate
networks, VPN clients should have a high security standard.

In this paper, we analyze the AnyConnect client for iOS
and Linux. These operating systems have very different secu-
rity mechanisms and network stacks, enforcing a fundamen-
tally different implementation on both platforms. We reverse-
engineer the proprietary clients and their operating system in-
tegration, analyze design issues, and test interesting interfaces
with automated fuzzing. On Linux, issues anchored deep in

the client’s architecture lead to privilege escalations that can
only be prevented with workarounds. Even after our report
and an official advisory by Cisco, the default configuration
remains insecure. On iOS, our findings are not limited to
the AnyConnect client. Third-party VPN applications can be
integrated into the iOS network stack using the network ex-
tension framework, in which we uncover three issues. Despite
these findings, iOS network extensions conceptually prevent a
multitude of attack vectors that have been previously reported
for desktop clients. Our main contributions are as follows.

• Reverse-engineering of the AnyConnect iOS and Linux
client functionality to understand the underlying design
and security assumptions.

• Protocol and design analysis of the Linux client, revealing
one version downgrade and two privilege escalation bugs.

• Analysis of the iOS client, uncovering multiple issues,
including plaintext data transmission.

• Fuzzing of interfaces identified during the initial analysis,
discovering multiple memory corruption bugs on Linux,
as well as a permanent Wi-Fi Denial of Service (DoS)
that persists through iOS reboots.

• Analysis under unstable networking conditions, revealing
a double-free memory corruption bug in iOS network
extensions that can be triggered over-the-air.

We responsibly disclosed all identified issues. The remain-
der of this paper is structured as follows. Previous work
is categorized to get a better understanding about which
types of bugs affected which components in Section II. The
security analysis in Section III focuses on the Linux client
while Section IV focuses on the iOS client. Both sections
follow the same structure that explains the client’s design,
the resulting security assumptions as well as the individual
findings. Section V concludes this paper.

II. PREVIOUS WORK

An overview of security issues that existed prior to our
work is shown in Figure 1. Since the first public release of
an AnyConnect vulnerability in 2011, twelve vulnerabilities
per year were published on average [2]. Cisco rates issues as
low, medium, high, or critical. However, no issue with the
rating critical was published since a remote code execution
vulnerability in 2012. We categorize all issues from Cisco’s
security bulletins to get a better understanding before starting
our own security analysis.

ar
X

iv
:2

20
2.

05
57

3v
1

 [
cs

.C
R

]
 1

1
Fe

b
20

22

A. Cryptography

Not all published issues are directly located within the Any-
Connect client—the majority is attributable to the third-party
cryptographic library OpenSSL. This library had vulnerabilities
like Logjam and SWEET32 [3], [4]. Thus, 63.5% of the issues
fall into the cryptography category. When analyzing Cisco-
specific issues, this category is out of scope.

B. Privilege Escalation

A VPN client configures network routes and encrypts all
traffic. Hence, AnyConnect has components like vpnagentd
requiring system or administrator permissions. These pose
an interesting attack surface for privilege escalations. When
excluding third-party components, privilege escalations are the
most frequently reported attack vector. Since privilege escala-
tions are systemic to VPN clients and stem from architectural
issues, we provide further details about these. However, the
official advisories are missing this information, and we need
to rely on externally published write-ups.

One of the first privilege escalation vulnerabilities was pub-
lished by Kostya Kortchinsky in 2015 [5]. This vulnerability
marks a turning point in identifying further, similar privilege
escalations. On Windows, vpnagent.exe runs with system
privileges. Moreover, vpnagent.exe parses a special Inter-
Process Communication (IPC) message that defines a binary
and arguments to execute it. This is not directly exploitable
because the binary needs to be signed by Cisco. Kortchinsky
identified a Cisco-signed executable VACon64.exe, which
allows installing additional services, leading to arbitrary code
execution. Cisco fixed this vulnerability by restricting vpnage
nt.exe to only execute vpndownloader.exe.

Shortly after, James Forshaw and Yorick Koster indepen-
dently discovered that this restriction did not include the full
path. An unprivileged user could copy vpndownloader.e
xe to another directory and plant a malicious .dll into the
same directory, again leading to code execution [6].

In 2016, Duarte Silva found a flag in the same IPC mes-
sage [7]. This flag sets if vpndownloader.exe is launched

Cryptography
63.5 %

Privilege Escalation
15.7 %

Remote Code Execution
4.3 %

Denial of Service
3.5 %

Sensitive Information
2.6 %

Version Downgrade
1.7 %

Overflow
1.7 %

Other
7.0 %

Fig. 1: Public security bulletin vulnerability categories.

from a temporary or secured application directory. Unprivi-
leged users can modify the temporary directory.

Koster’s first report was a duplicate, but he identified a
path traversal issue several years later in 2020. The directory
check was flawed because Windows considers both \ and / as
directory separator [8].

All these issues are specific to Windows. The history of
these bugs shows that they were fixed individually but the
underlying design issues were not solved. Even the latest
advisory of January 2021 once again includes a malicious
.dll injection [9]. To the best of our knowledge, there are
no write-ups for Linux or iOS privilege escalations.

C. Remote Code Execution

All public vulnerabilities that lead to code execution require
user interaction. The only vulnerability with the rating critical,
fixed in 2012, still demands the user to visit a malicious
website that loads a Java applet [10].

D. Denial of Service

The VPN client might be interrupted or stopped. Depending
on the remaining system configuration, this can either lead
to disrupted network connectivity or traffic being exchanged
without the additional layer of VPN encryption. For example,
one vulnerability classified as DoS allows a local attacker to
stop the vpnagentd service [11].

E. Sensitive Information

A VPN client has access to a lot of sensitive information that
it could leak. In a VPN setting, remote information leakage
is much more severe than local leakage. One vulnerability of
this category allows a remote attacker to exploit insufficient
boundary checks to read confidential system information [12].
This vulnerability is still only rated as medium.

F. Version Downgrade

A version downgrade of the installed client is a first step to
exploit previously fixed and known vulnerabilities. The most
severe issue in this category can be exploited remotely. The
web launch feature allows websites to start AnyConnect using
ActiveX or Java applets, but it also allowed downgrading the
AnyConnect client [13]. Despite being exploitable remotely
and an interesting component for exploit chains that could
lead to code execution, this bug was only rated as medium.

G. Overflow

Missing input checks can cause buffer, heap, and integer
overflows. These in turn lead to crashes or might change the
program flow. Overflows could be assigned to the previous
categories. However, they can be identified automatically using
fuzzing. From a security research perspective it is hence
interesting to list them separately to see how common simple
programming mistakes are within the code base. One of the
overflow issues allows an attacker to execute arbitrary code
with system permissions [14]. It is only rated as medium,
similar to most other privilege escalation bugs.

H. Other

The remaining vulnerabilities stem from a variety of root
causes. Issues in this category include modifying configuration
files as unprivileged user or damaging existing files owned by
the system user.

III. LINUX CLIENT

In the following, we analyze the AnyConnect client ver-
sion 4.9.00086 on Linux. The overall architecture is simi-
lar to Windows, and despite not having source-code access,
we assume that major parts of the code base are shared.
However, both operating system have fundamentally different
network stacks and different process interaction, resulting in
various implementation-specific details. Especially platform-
dependent bugs can therefore have similar root causes in the
architecture, but require different fixes for each platform as
they are not part of a shared code base.

We start with a component overview in Section III-A and
explain the basic connection setup in Section III-B. Based on
this, we can make security assumptions in Section III-C—
for example, the VPN server must be ultimately trusted by
a Linux client to not execute malicious code. Even with
this assumption, the client’s design allows for unpatchable
privilege escalations, as explained in Section III-D. Moreover,
we identify further bugs with fuzzing in Section III-E.

A. Component Overview

The Linux client consists of three main binaries.
1) vpnagentd establishes VPN tunnels and applies net-

work settings.
2) vpnui is responsible for user interaction.
3) vpndownloader downloads profile files and updates

provided by the VPN server.
The core VPN functionality requires all these binaries and

their interaction via IPC. IPC messages are implemented as
network messages sent to local TCP sockets. The precise
message format is Linux-specific and shown in Table II. While
these messages are meant to enable communication between
the three main binaries, they also pose an attack surface to
privilege escalations.

Moreover, the binaries rely on various libraries, including
ports of open-source libraries, as well as resources, which
are processed frequently and control its actions. The most
noteworthy resources are profiles and local policies. Profile

files contain special features and rules to be used when con-
necting to a specific VPN server. The local policy file contains
various settings also affecting the security. This overview is
still very brief and simplified. The /bin directory contains
8 binaries and 2 shell scripts, and 14 libraries reside in the
/lib directory.

B. Connection Setup

The AnyConnect client encrypts traffic based on Transport
Layer Security (TLS). Specific actions like authentication, file
download, or tunnel setup rely on HTTPS. The content-type
of these messages is XML, which makes interpretation rather
simple. Local IPC uses plaintext communication in a binary
format over TCP sockets. On the server side, Cisco VPNs run
ASA, which provides remote access VPNs, site-to-site VPNs,
and firewall functionality.

With all those binaries on the client side and configuration
by the ASA server, the connection setup works as follows:

1) vpnui establishes a TLS connection to the ASA server
to perform user authentication. The ASA server requires
a valid certificate and the user has to provide valid
credentials, meaning that both parties are mutually au-
thenticated after this step.

2) ASA replies with an XML file, containing session tokens
and a list of downloadable files.

3) vpnui launches vpndownloader, which continues
running in the background.

4) vpnui transfers the essential XML contents to
vpndownloader via IPC.

5) vpndownloader parses the XML and downloads
available profile files and other resources.

6) vpndownloader notifies vpnui about the successful
download.

7) vpnui advises vpnagentd to establish a VPN tunnel.
8) vpnagentd sends a HTTPS CONNECT request to ASA

to initiate a tunnel.
9) ASA replies with tunnel parameters such as a DNS

server and routes.
10) From now on, VPN traffic is exchanged between

vpnagentd and ASA.
Even this simplified connection process shows the AnyCon-

nect complexity. The binary separation and local communica-
tion via IPC is meant to decouple processes running with user
permissions from vpnagentd with root privileges.

TABLE I: Architectural and fuzzing issues in AnyConnect for Linux.

Name Cause Impact Report Fix
vpnagentd-vd Missing version validation Version downgrade Jul 5 2020 Sep 24 2020
vpnagentd-pe1 Scripts can be overwritten Vertical privilege escalation Aug 6 2020 Nov 4 2020*
vpnagentd-pe2 Profiles can be overwritten Vertical privilege escalation Aug 6 2020 Nov 4 2020
vpnagentd-c1 Invalid memory address Crash Oct 28 2020 Feb 24 2021
vpnagentd-c2 Double free Crash Oct 28 2020 Feb 24 2021
vpnagentd-c3 Heap corruption Crash Oct 28 2020 Feb 24 2021
vpnagentd-c4 Heap corruption Crash Oct 28 2020 Feb 24 2021

* Only a workaround configuration, still insecure by default.

C. Security Assumptions

We assume the ASA server has no malicious intent.
It could spy on the client’s network traffic or modify it.
Moreover, the vpndownloader can be advised to download
scripts, executed by vpnui. Thus, the server needs to be ulti-
mately trusted. This is already quite exceptional, considering
that the user does not get any warnings if ASA pushes scripts.
We set vpndownloader and vpnui out of scope since they
do not run as privileged processes.

Furthermore, we assume TLS is secure. Breaking authen-
ticated, end-to-end encrypted communication has the same
severe impact as a malicious server. Moreover, the server and
client are mutually authenticated. The server authenticates
with a certificate signed by a trusted authority and the client
provides a certificate or credentials.

The client is using Linux in default configuration without
special security mechanisms activated. However, the operating
system is compliant with a secure user role model. The
AnyConnect client is also installed in default configuration,
meaning that the application directory is readable by all users
but only writable with root privileges.

A local attacker aims at compromising confidentiality, in-
tegrity, and availability. Moreover, they want to escalate their
privileges. They have the permission to run unprivileged code
in a shell and modify files in the /tmp directory. They can
also open TCP ports above 1023 and connect to TCP ports on
the loopback interface.

D. Architectural Issues and Logic Bugs

Overall, we discovered three bugs by manually analyzing
the protocol steps: a version downgrade, overwriting scripts,
as well as overwriting profiles (see Table I).

1) Version Downgrade: The vpndownloader is respon-
sible for downloading client updates from the server. After a
successful download, it sends an IPC message specifying an
installer executable. Yet, the actual binary can have an older
version, and an attacker can replace it. Prior to installation, the
installer’s hash and Cisco signature are verified, which pre-
vents installing arbitrary software. Nonetheless, it is possible
to install any AnyConnect version, including downgrades.

A downgrade enables exploitation of previously disclosed
bugs. However, Cisco rated this version downgrade vulnera-
bility so low that they did not publish any advisory. This is

TABLE II: IPC message format on Linux.

Offset Purpose Default
00-03 Magic byte OCSC
04-05 Header length 26

06-07 Body length
08-0f IPC response pointer
10-17 Unknown
18-1b Unknown
1c-23 Return IPC object
24 Message type
25 Message identifier
26-nn Body

Offset Purpose
00-03 Type
04-07 Length
08-nn Value

TLVs

surprising given that other downgrade vulnerabilities were in-
cluded in advisories. Since version downgrades have also been
reported for other desktop clients, this indicates that Cisco
does not validate and fix the root cause of each vulnerability
in all clients.

2) Privilege Escalation: An attacker can overwrite the
OnDisconnect script and manually trigger it by discon-
necting from the VPN. If scripting is not enabled in a profile,
this can be bypassed by also overwriting the profile. Both can
be combined for a reliable privilege escalation.

ASA

vpndownloader
(user)

vpnagentd
(root)

A
ut

he
nt

ic
at

io
n

D
ow

nl
oa

d
Tu

nn
el

2. Started vpndownloader binary

3. Started vpndownloader binary

4. Basic VPN server parameters

1. Execute

5. Basic VPN server parameters

7. Use vpndownloader to move script to
script directory

8. Move script to
 script directory vpndownloader

(root)

10. Stopped vpndownloader binary

9. Stopped vpndownloader binary

vpnui
(user)

6. Download OnConnect script

A
tta

ck

HTTPS

IPC Execution

Fig. 2: Script deployment process.

4f43 5343 2600 f400 ffff ffff ffff ffff OCSC&...........
0000 0000 0000 0000 0200 0000 0000 0000
0000 0000 0102 0001 0028 2f6f 7074 2f63(/opt/c
6973 636f 2f61 6e79 636f 6e6e 6563 742f isco/anyconnect/
6269 6e2f 7670 6e64 6f77 6e6c 6f61 6465 bin/vpndownloade
7200 0002 0094 2243 4143 2d6d 6f76 6509 r....."CAC-move.
2d69 7063 3d33 3733 3139 092f 746d 702f -ipc=37319./tmp/
2e61 6348 314a 3333 422f 4f6e 436f 6e6e .acH1J33B/OnConn
6563 745f 6c69 7474 6c65 092f 6f70 742f ect_little./opt/
6369 7363 6f2f 616e 7963 6f6e 6e65 6374 cisco/anyconnect
2f73 6372 6970 742f 4f6e 436f 6e6e 6563 /script/OnConnec
745f 6c69 7474 6c65 0942 3446 4433 3833 t_little.B4FD383
3645 4338 3246 3146 3542 3544 3338 3437 6EC82F1F5B5D3847
4433 4132 4136 4142 3739 3032 4435 3438 D3A2A6AB7902D548
4209 7368 6131 0931 2200 8005 0001 0006 B.sha1.1".......
0028 2f6f 7074 2f63 6973 636f 2f61 6e79 .(/opt/cisco/any
636f 6e6e 6563 742f 6269 6e2f 7670 6e64 connect/bin/vpnd
6f77 6e6c 6f61 6465 7200 ownloader.

Listing 1: Script deployment IPC message.

a) Overwriting Scripts: Attackers can run scripts with
permissions of active VPN users, since scripts are executed
by vpnui. Vulnerable parts within the full script deployment
process are depicted in Figure 2.

During normal operation, vpndownloader stores scripts
in a temporary directory and then advises the vpnagentd
to move them to an AnyConnect directory using an IPC
message. This IPC message contains a temporary script path,
final script path, and script hash as shown in Listing 1. The
CAC-move command takes both script paths as argument.
The hash value is used for a file integrity check and prevents
vpndownloader to move files without read access. The
value after the hash is set to 1, meaning that the script will
be saved with -rwxr-xr-x permissions. Since this is an
IPC message from vpndownloader to vpnagentd, it also
indicates its listening port 37319 for replies. vpnagentd
does not move the script directly but launches a second,
privileged instance of vpndownloader moving the scripts.

The IPC messages lack authentication. Thus, every user on
the system can send them to the vpnagentd port 29 754.
Moreover, all users can create scripts in the /tmp directory
and they will be accepted by the CAC-move command that
moves them to the final directory. An attacker can trigger
OnDisconnect scripts immediately by sending an addi-
tional IPC disconnect message.

AnyConnect version 4.9.04053 adds a new configuration
option as a workaround. Using the RestrictScriptWeb
Deploy element in a local policy file, it is now possible
to skip the distribution of scripts. However, this is set to
false by default. Users need to know this specific setting
and manually disable it after the AnyConnect client installation
to prevent script deployment by the server.

b) Overwriting Profiles: In case a VPN connection pro-
file has scripting disabled, it is possible to activate scripting
by overwriting the profile. The new profile needs to set the
EnableScripting element to true.

The overall approach for overwriting profiles is similar to
scripts. Profiles are stored in XML format and non-executable.
Instead of setting the IPC message’s last value to 1, it is set
to 0, which corresponds to -rw-r--r-- permissions.

In contrast to scripts, profiles are usually only applied once,
even when overwriting an existing profile. However, during a
reconnect, vpnui reads and processes the profile again. Under
normal circumstances this would only be a simple bug that
results in unnecessary parsing overhead. In this scenario, a
reconnect enables attackers apply a new profile.

Cisco treated both file override bugs as one, since the
resulting code execution can optionally be prevented by the
new RestrictScriptWebDeploy flag. The underlying
bug that enables attackers to inject arbitrary profiles and
scripts remains unpatched and the default configuration
is insecure. Most likely Cisco decided to leave the script
deployment intact by default due to the risk of breaking
existing setups. Leaving the RestrictScriptWebDeploy
flag disabled by default means that users need to manually
enable this flag—also after every AnyConnect client update.

E. Inter-Process Communication Parsing Mistakes
We further automate identifying bugs in the Linux IPC

implementation with fuzzing. Based on the reverse-engineered
IPC message format, we can inject messages while the Any-
Connect binaries are running and have Internet connectivity.
As listed in Table I, this reveals four individual bugs.

1) Inter-Process Communication Message Format: Any-
Connect implements IPC on Linux with TCP sockets. The
reverse-engineered message format is shown in Table II.
Similar to the message in Listing 1, all messages start with the
string OCSC. The messages can even have pointers to objects
or functions. The body contains multiple Type Length Value
(TLV) fields, carrying the actual payload.

2) Fuzzing Setup: We fuzz vpnagentd, because it
runs with root privileges and parses IPC messages. The
vpnagentd IPC interface is a non-trivial target. Without
source code, we can only perform blackbox fuzzing. Ad-
ditionally, vpnagentd requires a fully-functional network
stack. Moreover, some bugs might only occur when injecting
a message sequence or while vpnagentd is in a certain
state. Thus, we fuzz on a fully functional Linux system. In
a first version of the fuzzer, we tried collecting coverage with
F RIDA [15]. Coverage collection significantly slows down the
target and the resulting coverage is inconsistent due to the
target’s statefulness. Instead, we create a dumb fuzzer that
injects packets via a TCP socket. Once the socket is closed,
vpnagentd likely crashed due to fuzzing. New inputs are
generated with radamsa [16].

Our fuzzer discovers multiple memory corruption bugs that
require a sequence of packets. Messages the fuzzer injects
into vpnagentd can reach the whole network stack, and
despite not being state-aware, it is very stateful and logs packet
sequences. If the vpnagentd IPC interface has been fuzzed
before, this was likely only with a more common single-
packet, coverage-based fuzzer.

3) Fuzzing Results: In the following, we briefly describe
the bugs found during fuzzing.

a) Invalid Memory Address: This bug requires sending
multiple IPC messages simultaneously to vpnagentd. If an
IPC message corresponds to a certain type (type>0) and ID
(id!=0xd||id!=0x00), it is processed by the IPCDepot,
which notifies all registered handlers. In one of the handlers,
the IPC message is then decomposed into its TLV tuples. CSi
ngleTLV::SetBuffer is called to extract the value from a
TLV tuple with a memcpy operation. The application crashes
when accessing the address pointer with a SIGSEGV.

b) Double Free: The following bug can be triggered
when replacing the message length in the header with zero.
This can lead to the message being rejected, which includes
replacing the message’s memory area with zeros. Then, ope
rator.delete(this); clears the address area belonging
to the message. This causes free being called twice for the
same address range, resulting in a double free. Calling free
more than once to an address pointer damages the memory
management data structure, which can allow arbitrary memory
writes.

c) Heap Corruption #1: Another bug can be repro-
duced by extracting an existing IPC status message, which
contains a notification about the current download progress
of vpndownloader, and slightly modifying it. This status
message is sent by vpndownloader to vpnagentd, which
forwards it to vpnui. The TLV tuple at offset 2e defines the
string to be displayed by vpnui. Replacing the message’s
length field to 0006 before sending it to vpnagentd causes
a crash. However, the crash does not occur during message
processing, since it only corrupts parts of the vpnagentd
heap. This results in a SIGABRT during later heap usage. The
crash is difficult to reproduce because it only occurs when
a timer expires and a new network manager client object
is created. Several minutes can pass between sending the
message and the SIGABRT signal.

d) Heap Corruption #2: Another discovered bug is based
on the previous heap corruption. The previous bug relied on
a single IPC message and waiting for timers to expire. By
sending a specially crafted message sequence, the bug can be
triggered faster. During the crash, a basic validation of the
message takes place within CIpcTransport::OnSocke
tReadComplete. This involves creating an empty response
message stub, which in turn calls malloc, and since the heap
is already corrupted, this directly causes a SIGABRT.

4) Bug Impact: All AnyConnect binaries are compiled
with the most recent binary security features, as tested with
checksec [17]. The checksec output looks as follows for
all binaries:

gef> checksec
[+] checksec for ’/opt/cisco/anyconnect/bin/vpnagentd’
Canary : X (value: 0x19c289dbfffe6c00)
NX, PIE, Fortify : X
RelRO : Full

Thus, we were only able to crash vpnagentd but could
not alter the control flow. Note that advanced exploitation
techniques might still allow to exploit such bugs under certain
conditions, and as such, they should be patched.

The vpnagentd service is managed by systemd and
immediately restarted upon a crash. Currently active VPN
connections are deactivated, and connections residing on top
of it might be dropped. However, AnyConnect cannot be
used if vpnagentd keeps crashing continuously. Thus, even
simple crashes can be used for a permanent DoS, which might
motivate the user to manually disconnect from the VPN and
use a plaintext Internet connection.

IV. IOS CLIENT

The iOS client implementation has a very different ar-
chitecture and feature set. As a result, the app components
(see Section IV-A), connection setup (see Section IV-B),
and security assumptions (see Section IV-C) differ a lot.
Nonetheless, we identify multiple bugs listed in Table III,
which are explained in Section IV-D and Section IV-E. Based
on these bugs, we start further manual analysis and find that
an attacker that can drop or modify network packets, such as
disabling a Wi-Fi access point, can trivially cause VPN crashes
without user interaction. As explained in Section IV-F, these
originate from a double-free memory access while parsing
VPN configurations.

A. Component Overview

iOS sandboxes all applications and limits system functions
apps can access. System functionality is provided via public
frameworks, which abstract system functions and add various
checks. Creating VPN connections is part of the network
extension framework [18]. It offers multiple variants to in-
tegrate and implement VPNs. The VPN server component,
ASA, only supports TLS. AnyConnect must therefore use
the Packet Tunnel Provider feature of the network extension
framework. This is implemented in a custom network exten-
sion called ACExtension. The extension encrypts traffic
with the OpenSSL library, similar to the Linux implementation.

The AnyConnect application can be extracted and de-
crypted from a jailbroken iPhone using F RIDA [15] for
further analysis. The main app binary is called AnyConnect
and provides the user interface. VPN functionality is
contained in the ACExtension plugin. There are two
more plugin components named ACShareExtension and
ACSiriExtensionUI. The main binary and plugins are
non-stripped, they still contain symbol information and debug
strings despite being a compiled binary.

The iOS client only needs to implement a custom packet
format on top of an existing VPN interface. Yet, the code base
is gigantic. Table IV lists the number of functions per binary
for the app version 4.9.00518, which are 24 245 in total. Major
parts of the VPN logic are shared with other platforms, and
only the necessary parts like the user interface and network
extension are implemented in Objective-C. Despite the iOS
framework concept that should unify network extensions and
encourage light implementations, AnyConnect on iOS is very
complex.

TABLE III: Bugs identified in AnyConnect for iOS and the iOS network stack.

Name Cause Impact Report Fix
ios-plaintext Missing crash handler Data sent silently without VPN after a network extension crash Dec 22 2019 — (won’t fix)
ios-dos Missing interface name validation Permanent Wi-Fi DoS Jan 28 2021 iOS 14.6
ios-0click Double-free when parsing configs Network zero-click VPN crash with invalid memory access Feb 3 2021 iOS 14.6
anyconnect-crash1 Memory corruption Configuration string controlled memory access within ACExtension Dec 13 2019 Dec 18 2020*
anyconnect-crash2 Memory corruption Likely memory access in ACExtension Dec 13 2019 Dec 18 2020*
anyconnect-crash3 Fixed dereference Crash only Dec 13 2019 — (non-reproducible)

* Claimed to be patched by Cisco, reproducibility of these bugs is limited.

B. Connection Setup

Setting up connections is based on the iOS network ex-
tension, which creates a tunnel interface to route traffic.
Outbound packets arriving on the tunnel interface are read
by the network extension, encapsulated, and sent to the VPN
server. The server unpacks the packets and routes them to the
final destination. Similar, inbound packets from the server are
encapsulated by the server, sent to the client, unpacked by the
network extension, and written to the tunnel interface.

Similar to the Linux client, iOS can apply profiles for a con-
nection. iOS only implements a subset of the functions [19].
Due to iOS-specific security restrictions, many features are
impossible to implement and will not have any effect when
configured by the server. However, there are also features
specific to mobile clients, such as the roaming behavior when
switching between Wi-Fi and Cellular. Moreover, rules for
connect on demand can be configured, which offers automatic
VPN connection establishment when detecting pre-defined
DNS names.

C. Security Assumptions

The iOS framework concept and application sandboxing
protect users. The most dangerous features like the connect and
disconnect scripts on desktop clients cannot be implemented
by iOS apps. This narrows down attack vectors for privilege
escalations. Moreover, it means that an app user only needs to
trust the VPN server with their network traffic. Replacing
traffic to exploit overflows within the client would still be
possible for someone controlling the server. Compared to
implementing scripting out-of-the-box, this is a limited attack
surface, and code injected this way would only run in the
context of the network extension.

Since iOS apps can only be updated via the official App
Store and updates are installed automatically, downgrade
attacks via the app are prevented. Users can still disable
app updates manually and run an outdated version. However,
there is no VPN client interface that would allow downgrades
or, worst case, installing arbitrary executables.

One feature provided by iOS is the so-called Always On
VPN [20]. This feature ensures a VPN stays always activated,
including across reboots. The only possibility to deactivate an
Always On VPN is to uninstall the according VPN profile in
the settings menu. AnyConnect does not support this feature.
Thus, once a VPN connection is terminated, traffic is no longer
tunneled through the VPN and sent directly via a potentially
untrusted Wi-Fi without the additional TLS encryption layer.
Thus, if the network extension crashes, traffic is sent
without VPN encryption and rerouting. While most apps

TABLE IV: AnyConnect network extension modules on iOS.

Module Number of Functions
AnyConnect 6653

ACExtension 13 684

ACShareExtension 3557

ACSiriExtension 351

should use TLS on top, some services and websites might
be plaintext, including DNS. This is different from the Linux
configuration where vpnagentd is automatically restarted
by systemd. When the app crashes, it cannot warn the
user as it is already terminated, and iOS does not warn the
user either. Upon our request Apple confirmed that this is the
expected behavior. Since we believe that this is a dangerous
and unexpected default behavior, we list it as vulnerability
ios-plaintext.

D. Fuzzing the Configuration Interface

The app can be almost completely controlled through a
custom URL scheme starting with anyconnect:// fol-
lowed by further action parameters [21]. This includes cre-
ating connection entries, importing VPN profiles, configuring
localization, connecting with pre-filled credentials, importing
certificates, disconnecting from a VPN, and closing the app.
Only non-destructive operations are possible via this custom
URL scheme, which follows Apple’s recommendation for
developers [22]. It is not possible to delete connection entries,
profiles, or localizations. However, profiles and localizations
can be overwritten. The supported actions are as follows.

• create: Create connection entries.
• connect: Connect with a specific connection entry

identified by its host.
• disconnect: Terminate the current connection.
• close: Dismiss the AnyConnect user interface.
• import: Import certificates, profiles, and localizations.
These actions can be customized with multiple parameters.

For example, to connect to a specific existing profile with pre-
filled credentials and opening a website in the AnyConnect user
interface after a successful connection attempt, the following
parameters can be passed:

anyconnect://connect?host=vpn.example.com&prefill_username=
user&prefill_password=password&onsuccess=http%3A%2F%2
Fwww.example.com

Users need to manually enable this URL scheme via the
setting External Control – Enabled. Thus, this interface is
neither controllable remotely nor a typical one-click attack.
Nonetheless, we can use it to automatically fuzz test the
app’s functions. For this, we build a F RIDA-based fuzzer
that opens anyconnect:// URLs. Additionally, the user
interface needs to be hooked with F RIDA to automate the
manual connection confirmation. The AnyConnect core
module that is responsible for the user interface imple-
ments user prompts, which we hook, is implemented in
CredentialPromptsViewController. We also auto-
mate further steps like deleting all created VPN connections
later on.

Identified crashes are simple to verify by providing the
according URL via a browser. Using this method, we found
one bug in the iOS network stack. If the connection description
string is too large, the iOS-internal settings app becomes very
slow and unresponsive. Moreover, it is no longer possible
to connect to Wi-Fi networks, even after a reboot. Thus,

this is a DoS that affects the whole iOS network stack.
AnyConnect needs to be uninstalled to get Wi-Fi working
again. Sometimes, the AnyConnect VPN profile is still cached,
and reinstalling the app again leads to the same Wi-Fi DoS
even without installing a profile.

E. Regular Connectivity Issues and Crashes

As previously stated in Section IV-C and claimed as separate
vulnerability ios-plaintext, a network extension crash on iOS
leads to plaintext network traffic being sent without warning
the user. These crashes occur frequently during regular usage.
Everything required to trigger these crashes is an unstable
network connectivity that switches between Wi-Fi, Cellular,
and no connectivity.

Nonetheless, bad network connectivity during regular usage
yielded in three unique crashes on the AnyConnect versions
4.8.00825 and 4.8.01097. Cisco claims to have fixed two of
these crashes. In fact, we were not able to reproduce crashes
with an up-to-date AnyConnect client. However, reproducing
a crash requires physically moving to places with bad network
connectivity. Moreover, the crashes only occurred every few
days to weeks prior to the claimed bugfix. We assume that
Cisco was able to find the crash sources based on our reports
and fixed them.

1) Memory Corruption # 1: Upon a reconnect, the configu-
ration is applied again and the tunnel is reinitialized. This hap-
pens via the functions PacketTunnelProvider_apply
VpnConfig_cb and -[PacketTunnelProviderini
tTunnelBuffers:]. When calling objc_release in
the initialization function after calling initWithCapacity,
a memory corruption can occur. The accessed memory address
is invalid because it contains strings like IPv4 and 86k\n,
which likely stem from the VPN configuration. Thus, this
memory access might be controllable by an attacker that can
modify network traffic or runs the server. This crash happened
multiple times with different configuration strings.

2) Memory Corruption # 2: The second memory corruption
causes a SIGABRT in libsystem_malloc after calling the
function -[PacketTunnelProviderwrite Packet:
dataLen:isIPv4:]. The full stack trace originates from
the event handler when a TLS packet is received, which in
turn calls CTlsProtocol::OnSocketReadComplete.
After further intermediate function calls, this results in calling
CTunTapMgr::postHostBoundPacket. There is one
more call to the AxtSNAKTuntap::Write handler be-
fore finally crashing in -[PacketTunnelProviderwri
tePacket:dataLen:isIPv4:]. Most parts in the stack
trace sound rather generic, except from the Cisco-specific
System Network Abstraction Kit (SNAK). Even though the
crash only resulted in an abort instead of an invalid memory
access, crashing via malloc indicates a memory corruption.
This crash only occurred once.

3) Fixed Dereference: The third crash does not look con-
trollable and is a simple fixed dereference at a pointer to 0x04.
While it is not worth to reverse-engineer its origin to determine

if it could be controllable by an attacker, it is still a crash that
disconnects from the VPN server.

4) Crash Debugging: The AnyConnect app has a configura-
tion option to enable debug logs. These logs contain messages
detailing how connections are established and which settings
are applied. After enabling debug logs on one of our test
devices, AnyConnect kept crashing—but without producing
iOS crash logs and without saving debug logs that lead to
the crash. This crash behavior might explain why Cisco was
not able to identify such issues during internal testing.

F. Attacker-Controlled Connectivity Issues and Crashes

We were not able to program a Packet Tunnel Provider
fuzzer that causes exactly same behavior as described in the
previous section. Switching network interfaces and reconnect-
ing to VPNs are implemented within the kernel. Hence, this
cannot be reproduced by injecting packets into the Packet
Tunnel Provider, which is only responsible for encrypting
and decrypting packets on an upper network layer before
forwarding them to the iOS VPN tunnel interface. As of now,
F RIDA only works in the user space. Fuzzing techniques that
also apply to the kernel were published recently [23], but
still come with a lot of limitations like restriction to selected
modules and a lot of customized harnessing.

Even without specialized tooling, multiple actions can shut
down the network interface or drop packets during VPN con-
nection establishment. For testing purposes, the ifconfig
command can be used on jailbroken iPhones, but connections
can also be interrupted as a regular user on a standard device
by switching off Wi-Fi via menus. The same behavior can be
achieved without user interaction by manually switching of
the Wi-Fi access point, which is something any attacker within
wireless range could do by jamming packets.

Interestingly, the network interface state change caused
by all of the above options triggers a completely new
bug. While originally trying to reproduce the AnyConnect
bugs after Cisco claimed to have fixed them, this regularly
causes another crash due to an invalid memory access in the
iOS network extension agent process neagent. The crash
happens in the com.apple.NSXPCConnection.user.
endpoint thread while deallocating an immutable dictionary
(NSDictionaryI) object. Memory corruptions during deal-
location are also known as double-free, which can be abused
for accessing arbitrary memory. Memory control depends a
lot on the object causing the double-free. The initial crash
log contains 19 entries just for the backtrace of the crashed
thread, plus various additional information on register states.
To locate the actual root-cause and freed object, we use the
frida-trace tool to print dictionary access in neagent
observed in the initial crash log. The trace output when
interrupting VPN connection establishment via Wi-Fi looks
as follows:

/* TID 0x26803 */
-[__NSDictionaryI dealloc] // repeated 18 times
-[__NSXPCInterfaceProxy_NEVPNPluginDriver

startWithConfig:0x10109c620 complHandler:0x16f4ce200]
-[__NSDictionaryI dealloc]

/* TID 0x1864b */
-[__NSXPCInterfaceProxy_NEVPNPluginDriver

startWithConfig:0x0 complHandler:0x16f3b65c0]
-[__NSXPCInterfaceProxy_NEVPNPluginDriver

startWithConfig:0x1010a8ae0 complHandler:0x1010a6c40]
-[__NSXPCInterfaceProxy_NEVPNPluginDriver

startWithConfig:0x0 complHandler:0x16f3b6198]
/* TID 0x1954b */
-[NEConfiguration .cxx_destruct]
| -[NEVPN .cxx_destruct]
| | -[__NSDictionaryI dealloc] // double-free happens here

F RIDA has a backtracing functionality that provides a
similar output as the iOS-internal crash log format. Using this
backtrace, we confirm that the call trace when reaching the
last NSDictionaryI dealloc call shown in the previous
listing looks similar to the 19 entries in the original crash
log. The deallocated object can be determined by hooking the
dealloc function on entry and iterating through all passed
arguments as follows:

var dict = new ObjC.Object(args[0]);
var enumerator = dict.keyEnumerator();
var key;
while ((key = enumerator.nextObject()) !== null) {

var value = dict.objectForKey_(key);
}

Using this technique, the double-freed dictionary turns out
to be the network extension configuration of the VPN profile,
which is stored as JSON and contains partially controllable
contents.

V. CONCLUSION

Corporate VPN solutions cannot provide the security they
promise, if they continue to be developed in a non-security
conscious fashion. Ideally, they add encryption to facilitate
secure access to corporate networks. At the same time, their
ultimate control over a user’s network traffic and integrated
scripting engines controllable via the server significantly en-
danger an end-user’s system security. Similar to previous
findings in Cisco AnyConnect on Windows, the desktop client
for Linux has various possibilities for privilege escalations
and allows the server to push scripts to be executed on the
client by default. Our findings show that even the restricted
iOS network extension framework allows integrating bloated
VPN clients and has severe bugs in itself. Despite being
marketed as security product, users should be very skeptical
about installing and using VPN clients.

ACKNOWLEDGMENT

We thank the Cisco incident response team for their timely
answers and 90-day disclosure coordination. Moreover, we
thank Apple for confirming the crash behavior of VPNs that do
not implement the Always On VPN feature and fixing network
extension related vulnerabilities.

This work has been funded by the German Federal Ministry
of Education and Research and the Hessen State Ministry
for Higher Education, Research and the Arts within their
joint support of the National Research Center for Applied
Cybersecurity ATHENE.

REFERENCES

[1] Datanyze, “Market Share Category Virtual Private Networks,” https://
www.datanyze.com/market-share/vpn--326, Jan. 2021.

[2] “Cisco Security Advisories,” https://tools.cisco.com/security/center/
Search.x?publicationTypeIDs=1&resourceIDs=109810&prodType=
Cisco&prodRID=109810&limit=100, Jan. 2021.

[3] “Multiple Vulnerabilities in OpenSSL Affecting Cisco Products,”
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/ci
sco-sa-20150612-openssl, Jun. 2015.

[4] “Multiple Vulnerabilities in OpenSSL Affecting Cisco Products:
September 2016,” https://tools.cisco.com/security/center/content/Ci
scoSecurityAdvisory/cisco-sa-20160927-openssl, Sep. 2016.

[5] K. Kortchinsky, “Cisco AnyConnect Secure Mobility Client v3.1.06073
EoP,” https://expertmiami.blogspot.com/2015/06/cisco-anyconnect-se
cure-mobility-client.html, Jun. 2015.

[6] J. Forshaw, “Issue 460: Cisco AnyConnect Secure Mobility Client
v3.1.08009 Elevation of Privilege,” https://bugs.chromium.org/p/project
-zero/issues/detail?id=460, Jun. 2015.

[7] D. Silva, “AnyConnect Elevation of Privileges, Part 2,” https://www.seri
alizing.me/2016/12/20/anyconnect-elevation-of-privileges-part-2/, Dec.
2016.

[8] Y. Koster, “Cisco AnyConnect Privilege Elevation through Path
Traversal,” https://ssd-disclosure.com/ssd-advisory-cisco-anyconnect
-privilege-elevation-through-path-traversal/, Feb. 2020.

[9] A. Thongthua, N. Intarasorn, and S. Sangrattanapitak, “Cisco
AnyConnect Secure Mobility Client for Windows DLL Injection
Vulnerability,” https://tools.cisco.com/security/center/content/CiscoSe
curityAdvisory/cisco-sa-anyconnect-dll-injec-pQnryXLf, Jan. 2021.

[10] “Multiple Vulnerabilities in Cisco AnyConnect Secure Mobil-
ity Client,” https://tools.cisco.com/security/center/content/CiscoSecuri
tyAdvisory/cisco-sa-20120620-ac, Jun. 2012.

[11] “Cisco AnyConnect Secure Mobility Client for Windows Denial of
Service Vulnerability,” https://tools.cisco.com/security/center/content/Ci
scoSecurityAdvisory/cisco-sa-anyconnect-dos-feXq4tAV, Aug. 2020.

[12] “Cisco AnyConnect Secure Mobility Client for Linux Out-of-Bounds
Memory Read Vulnerability,” https://tools.cisco.com/security/center/
content/CiscoSecurityAdvisory/cisco-sa-20190515-anyconnectclient
-oob-read, May 2019.

[13] “Cisco AnyConnect Secure Mobility Client Software Downgrade
Vulnerability,” https://tools.cisco.com/security/center/content/CiscoSe
curityAdvisory/Cisco-SA-20120620-CVE-2012-2494, Jun. 2012.

[14] “Cisco AnyConnect Secure Mobility Client VPNAPI COM Buffer Over-
flow Vulnerability,” https://tools.cisco.com/security/center/content/Ci
scoSecurityAdvisory/Cisco-SA-20131104-CVE-2013-5559, Nov. 2013.

[15] O. A. V. Ravnås, “Frida. A world-class dynamic instrumentation frame-
work,” https://frida.re/, Jan. 2021.

[16] A. Helin, “radamsa,” https://gitlab.com/akihe/radamsa, Jan. 2021.
[17] C. Alladoum, “GEF - GDB Enhanced Features,” https://gef.readthedocs.i

o/en/master/, Jan. 2021.
[18] Apple, “Network Extension Framework,” https://developer.apple.com/

documentation/networkextension, Jan. 2021.
[19] “Cisco AnyConnect Secure Mobility Client Administrator

Guide, Release 4.9, The AnyConnect Profile Editor,”
https://www.cisco.com/c/en/us/td/docs/security/vpn client/anyconne
ct/anyconnect49/administration/guide/b AnyConnect Administrator
Guide 4-9/anyconnect-profile-editor.html, Jan. 2021.

[20] Apple, “Always On VPN overview,” https://support.apple.com/guide
/deployment-reference-ios/always-on-vpn-iore8b083096/1/web/1, Dec.
2020.

[21] “Cisco AnyConnect Secure Mobility Client Administrator
Guide, Release 4.9, AnyConnect on Mobile Devices,”
https://www.cisco.com/c/en/us/td/docs/security/vpn client/anyconnect
/anyconnect49/administration/guide/b AnyConnect Administrator Gui
de 4-9/b AnyConnect Administrator Guide 4-4 chapter 01101.html,
Jan. 2021.

[22] Apple, “Defining a Custom URL Scheme for Your App,” https://deve
loper.apple.com/documentation/xcode/allowing apps and websites t
o link to your content/defining a custom url scheme for your app,
Jan. 2021.

[23] N. Williamson, “Designing sockfuzzer, a network syscall fuzzer
for XNU,” https://googleprojectzero.blogspot.com/2021/04/designing-
sockfuzzer-network-syscall.html, Apr. 2021.

