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Abstract—Federated learning is a popular strategy for training
models on distributed, sensitive data, while preserving data
privacy. Prior work identified a range of security threats on
federated learning protocols that poison the data or the model.
However, federated learning is a networked system where the
communication between clients and server plays a critical role for
the learning task performance. We highlight how communication
introduces another vulnerability surface in federated learning
and study the impact of network-level adversaries on training
federated learning models. We show that attackers dropping the
network traffic from carefully selected clients can significantly
decrease model accuracy on a target population. Moreover, we
show that a coordinated poisoning campaign from a few clients
can amplify the dropping attacks. Finally, we develop a server-side
defense which mitigates the impact of our attacks by identifying
and up-sampling clients likely to positively contribute towards
target accuracy. We comprehensively evaluate our attacks and
defenses on three datasets, assuming encrypted communication
channels and attackers with partial visibility of the network.

I. INTRODUCTION

Federated Learning (FL) or collaborative learning, introduced
by McMahan et al. [1], has become a popular method for
training machine learning (ML) models in a distributed fashion.
In FL, a set of clients perform local training on their private
datasets and contribute their model parameters to a centralized
server. The server aggregates the local model parameters into
the global model, which is then disseminated back to the clients,
and the process continues iteratively until convergence. Training
ML models using FL allows the server to take advantage of
a large amount of training data, and each client to retain the
privacy of their data. FL can be deployed in either a cross-
silo setting with a small number of participants available in all
rounds of the protocol, or in a cross-device setting with a large
number of participants, which are sampled by the server and
participate infrequently in the protocol.

Recent work studying the security of FL has highlighted the
risk of attacks by compromised clients through data poison-
ing [2] and model poisoning [3], [4] under different objectives
such as availability, targeted, and backdoor attacks. While
availability objectives aim at compromising the accuracy of the
model indiscriminately [5], [6], targeted and backdoor attacks
only affect a specific subset of samples [4], [7], [8] and are
harder to detect. Among the proposed defenses, availability
attacks can be mitigated by gradient filtering [5], [6], [9], while
targeted and backdoor attacks could be addressed by clipping
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gradient norms at the server, during model updates, to limit the
individual contributions to the global model [4], [7].

FL is a networked system where communication between
server and clients plays a critical role as the global model
is learned in rounds with contributions from multiple clients.
Thus, communication represents another point of vulnerability
that an attacker can exploit to influence the global model
learned by the system. In this case, an attacker leverages
network-level information and attack capabilities to prevent the
ML algorithm from receiving the information needed to learn an
accurate model. An attacker can exploit the specific communi-
cation channels for FL to perturb messages sent between server
and clients via jamming [10], BGP hijacking [11], compromis-
ing routers [12], hosts [13], or transport-level protocols [14].
Network-level attacks have been shown to impact other systems
such as Bitcoin [15], payment-channel networks [16], and
connected cars [17]. These adversaries are especially relevant
when political or economic incentives result in a government
or company exploiting an AS for which sub-populations are
geographically localized. For instance, this attack may be used
to censor a word prediction model (especially targeting a
country’s minority language), or modify words associated with
a competitor company or unfavorable political movements.

In this paper, we conduct the first study of network-level
adversaries’ impact on machine learning models trained with
federated learning. We analyze the ways an attacker can exploit
information sent over the network to maximally damage the
learning algorithm under realistic conditions such as encrypted
channels and partial visibility of the network. Specifically, we
show that attackers who can carefully orchestrate dropping of
the network traffic of selected clients can significantly decrease
model accuracy on a target population. Our key insight is that a
few clients contribute significantly to the accuracy of the model
for target subpopulations, and we create an algorithm that
allows the attacker to identify such clients, and, by interfering
with only those clients, significantly outperform randomized
packet dropping. Moreover, we show that model poisoning
attacks from a small set of clients can further amplify the
impact of the targeted dropping attacks. As an example, on a
text classification problem, selectively dropping updates from
only 5 clients from the target population can lead to a decrease
in accuracy from 87% to 17%, on a particular target class.
Furthermore, by adding a poisoning attack of equal size, the
model accuracy decreases to 0% on the same target class.
Finally, we consider a resource limited adversary, who can
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observe only a small subset of the participating clients, and
show that our attacks are still effective, for instance inflicting
a 43% relative accuracy drop when observing only a third of
the clients in a computer vision task.

Federated learning system owners do not usually control
the underlying network and might not be able to implement
network-level mitigations to make communication more re-
silient. Complementary to such network-level defenses, we
propose a server-level defense that is agnostic to how the
dropping attack is performed. Our defense modifies client
sampling in each round of FL training to increase the likelihood
of selecting clients who sent useful updates in previous rounds
of the protocol, while decreasing the probability of selecting
less relevant clients. Interestingly, defensive client selection
leverages the same procedure for client identification employed
by the network-level adversary. The defense is extremely effec-
tive against a targeted dropping attack. For instance, in the same
text classification task mentioned above, while an unmitigated
attack would completely disrupt the model accuracy on the tar-
get task (from 87% to 17%), the defense achieves an accuracy
of 96%, which exceeds that of the original model before an
attack is mounted. Moreover, our defense can be combined
with a standard poisoning defense based on update clipping to
withstand both targeted dropping and model poisoning attacks.
On the same task, the combined dropping and poisoning attack
brings the target accuracy to 0, and the combination of our
defense with clipping results in 94% accuracy on the target
population. For encrypted communication the improvements
compared to the original accuracy can be as high as 34%.

To summarize, the contributions of the paper are: (i) the first
study of network-level adversaries in FL, specifically packet
dropping attacks targeting a subpopulation and amplification
by using model poisoning attacks; (ii) an algorithm for identi-
fication of highly contributing clients, allowing the attacker to
be more effective than just randomly dropping traffic between
clients and server; (iii) a defense based on up-sampling highly
contributing clients to the learning task which can be combined
with clipping to mitigate both targeted dropping and poisoning
attacks; (iv) a comprehensive evaluation across multiple model
architectures, datasets, and data modalities (image and text).
For reproducibility, all code is publicly released1.

II. BACKGROUND AND THREAT MODEL

A. Federated Learning

FL considers a set of n clients, each with a local dataset Di,
and a server S. Clients train locally on their own datasets and
the server requests model updates, rather than data, building an
aggregated global model iteratively over time [18]. We consider
here the Federated Averaging training algorithm designed for
cross-device settings [1]. In each round 1 ≤ t ≤ T , the server
randomly selects a subset of m ≤ n clients to participate in
training, and sends them the current global model ft−1. Each
selected client i trains locally using dataset Di, for a fixed

1https://github.com/ClonedOne/Network-Level-Adversaries-in-Federated-
Learning

number of TL epochs. The server updates the global model ft
by mean aggregation of local updates Ui: ft = ft−1+η

∑m
i=1 Ui
m .

Data privacy can be further enhanced in FL by secure aggre-
gation performed via Multi-Party Computation (MPC) [19].

Algorithm 1: Federated Averaging Protocol
Data: Clients C = {Di}ni=1, Federated Learning Server S,

rounds T , clients per round m, aggregation learning
rate η

Function FedLearn(S, C):
// Function run by server
f0 = INITIALIZEMODEL()
for t ∈ [1, T ] do

// Get updates from m participants in round i
Mt = SELECTPARTICIPANTS(C,m)
REQUESTUPDATE(ft−1,Mt)
Ut = RECEIVEUPDATE(Mt)
// Update and send out new model
fi = UPDATEMODEL(ft−1, Ut, η)
BROADCASTMODEL(ft, C)

B. Threat Model

Adversarial goal: An attacker can target the accuracy for all
the classes of the learning task – availability attacks, or target
a particular class – targeted attacks. Targeted attacks are much
more difficult to detect as the attacker strives to make the model
retain its test accuracy for non-targeted points to avoid trivial
detection. We consider targeted attacks and define a population
to be one of the classes in the learning task, but this notion
could be extended to sub-classes as well. We do not consider
poisoning availability attacks which are detectable and can be
addressed with existing defenses [5], [6], [9].
Attack strategies: The attacker can conduct poisoning attacks,
or network-level attack. Poisoning attacks can target the training
data – an adversary injects maliciously crafted data points
to poison the local model [2], or the model - where the
adversary compromises a set of clients and sends malicious
updates to the protocol with the goal of achieving a certain
objective in changing model’s prediction [4], [7], [8]. Both
these attacks are conducted by manipulating directly the inputs
to the machine learning algorithm. We consider an attacker
with model poisoning (POISON MODEL) capability, using it
to amplify network-level attacks.

In network-level attacks, based on their network-level ca-
pabilities, the adversary can observe communication sent over
the network and prevent the machine learning algorithm from
receiving the information needed to learn a good model. The
basic action for a network-level attack is dropping traffic.
We consider a smart attacker that selectively drops traffic to
maximize the strength of the attack while minimizing detection.
The attacker has several decisions to make: (1) what clients to
select to drop their contributions, (2) when to start the attack
given that federated learning is an iterative protocol, and (3)
how many packets (i.e., local models) to drop. We focus on a
targeted dropping attack in which the attacker selects a set of
clients contributing highly to the target class for dropping their

https://github.com/ClonedOne/Network-Level-Adversaries-in-Federated-Learning
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contributions. We compare that with an attack which drops the
traffic of a subset of randomly chosen clients.
Adversarial network-level knowledge: We consider encrypted
communication and partial network visibility scenarios for the
communication in the FL protocol. For comparison we also
consider unencrypted communication.

1) COMM PLAIN. All communication between clients and
server is unencrypted. This is a baseline scenario where
a network-level adversary obtains maximum information.
We do not expect this to happen in practice and we study
this model to understand the maximum possible damage.

2) COMM ENC. All communication between clients and
server is encrypted. This is a realistic scenario, where
the network-level adversary could infer the set of clients
participating in each round, but not the exact model
updates they send. This is the typical deployment for FL,
using IPSec, HTTPS, or application-level encryption.

3) COMM ENC LIMITED. A special case of COMM ENC
where communication is encrypted, and the adversary
is limited to only observe a fixed subset of the clients
participating in the protocol. This is the most constrained
attacker we consider.

Adversarial global model knowledge: Since cross-device FL is
an open system, the adversary can always participate in the FL
protocol as one of the clients. We assume that the adversary
obtains the global model updates ft at each round t.

To summarize, we consider an adversary that has either
the COMM PLAIN, COMM ENC or COMM ENC LIMITED
network capability, has knowledge of the global model at
each round, and targets a particular victim population of
interest. We also consider an adversary that additionally has
POISON MODEL poisoning capabilities.

C. Feasibility of Network-level Attacks for Federated Learning

FL protocols such as Federated Averaging [1] usually ab-
stract the communication protocol between the server and
clients. In practice, clients will communicate with the server
either directly through a TCP connection, or through a multi-
hop overlay network of hop-by-hop TCP or customized trans-
port services. Finally, the last hop connecting the client to
the Internet is often in the form of wireless communication.
Network infrastructure and routing protocols facilitate all this
communication through physical or logical connectivity. By ex-
ploiting the underlying routing protocols and network topology
an attacker can position themselves to observe and interfere
with data of interest; they can then further impact the accuracy
of the global model and create an effect similar to that created
through a data or model poisoning attack.

Packet dropping attacks can be achieved in multiple ways,
and have been studied for network-level adversaries who per-
form physical-layer attacks in wireless networks [10], router
compromise [12], or transport-level attacks [14]. Each of these
methods will require different attacker capabilities. For example
for physical layers attacks for wireless clients, the attacker
needs to be in their proximity - this is both a powerful

attack since jamming is usually difficult to defend against,
and limiting since it will be difficult for the attacker to attack
geographically distributed clients without significant resources.
In the case of routing, while a router might be more difficult
to compromise, in practice the impact can be bigger as it
might have control over the traffic of multiple clients. Last, but
not least, if customized overlays are used for communication,
compromising nodes in the overlay is slightly easier as they are
typically hosts, and the number of clients that can be impacted
depends on the scalability of the service.

III. NETWORK-LEVEL ATTACKS ON FEDERATED LEARNING

In this section we describe in detail our targeted network
attacks against a population in federated learning.

A. Identification of Highest-Contributing Clients

The key insight of our attack is that only a small number
of clients contribute to the accuracy of a target population
of interest. Thus, the most effective and difficult to detect
strategy is to drop the traffic just for those highly contributing
clients. However, the attacker will first need to identify such
clients. We design a Client Identification algorithm aimed at
determining the set of clients whose model updates lead to
the largest improvements in target population accuracy. Our
method, described in Algorithm 2, supports both plain and
encrypted network communication, and is very effective even
if the attacker has limited observability of the network. We
demonstrate in Section V that if the adversary has high success
at identifying the clients contributing to the task of interest, then
the targeted dropping attack impact is much higher compared
to random dropping.

Algorithm 2: Loss Difference Client Identification
Data: Target Population Dataset D∗, loss function `, rounds TN , count of

clients to drop kN , visibility parameter v.
Function ClientIdentification(D∗, `, TN , kN):

f0 = GETGLOBALMODEL(0)
∆ = []
for t ∈ [1, TN ] do

Mt = GETPARTICIPANTS(v)
ft = GETGLOBALMODEL(t)
if COMM ENC then

// Get loss differences for this round
Lt = `(ft−1, D

∗)− `(ft, D∗)
for j ∈Mt do

// Associate Lt with update members
∆[j] = CONCATENATE(∆[j], [Lt])

if COMM PLAIN then
for j ∈Mt do

fjt = GETLOCALMODEL(j)
// Get participant’s loss difference
Ljt = `(ft−1, D

∗)− `(fjt , D
∗)

// Associate Ljt with this participant
∆[j] = CONCATENATE(∆[j], [Ljt ])

// Compute the average loss change for each client
for j ∈ ∆ do

∆[j] = 1
|∆[j]|

∑
∆[j]

Z = GETLARGESTVALUES(∆, kN )
return Z

The main intuition is that the adversary computes the loss of
the model before and after the updates on the target class for



a number of rounds TN . Rounds in which the loss decreases
correspond to an increase in accuracy on the target class.
The adversary tracks all the clients participating in those
rounds, and computes a loss difference metric per client. In
the plain communication case, the adversary will determine
exactly which clients decrease the loss, while in the encrypted
communication case the adversary only observes the aggregated
updates and considers all clients participating in the round to
be collectively responsible for the loss improvement.

In more detail, to measure each client’s contribution to the
target population, the adversary computes the loss difference
between successive model updates on the target population
(using a representative dataset D∗ from the population):

Ljt = `(ft−1, D
∗)− `(f jt , D∗)

Note that the second term `(f jt , D
∗) is the loss of the local

update of client j in round t for COMM PLAIN, but becomes
the loss of the global model `(ft, D∗) when the adversary
only has access to aggregated updates in COMM ENC or
COMM ENC LIMITED. The value Ljt measures the decrease
in the target class loss before and after a given round t.

To more reliably estimate client contributions, especially
with aggregation of the model updates, the values of Ljt are
accumulated over time. The adversary maintains a list for each
client j of the values Ljt for rounds t in which it participated.
This allows the adversary to update the list of clients most
relevant to the target class accuracy at every round. Empirically,
computing the mean of Ljt for each client j across all rounds it
participates in works well at identifying the clients contributing
most to the target class.

B. Dropping Attack

The targeted dropping attack starts with the adversary per-
forming the Client Identification procedure, by running Al-
gorithm 2 during the first TN rounds of the protocol, in
which training happens as usual. The adversary identifies in
expectation kN clients contributing updates for the target class.
After Client Identification is performed, the network adversary
drops contributions from the kN clients in every round in which
they participate after round TN . As the adversary can expect
an increase in identification accuracy by monitoring more
rounds of the protocol, they can repeat the Client Identification
procedure in each subsequent round, and, if necessary, update
the list of selected clients. We assume that the adversary drops
the identified clients’ updates, and the server simply updates the
model using all received updates. If the Client Identification
protocol is not completely accurate, the attacker might drop
traffic from non-target clients but we found this has a minimal
impact on the trained FL model.

C. Attack Analysis

Algorithm 2 uses several parameters: the number of clients
to identify kN and the number of rounds to wait before
identification is successful TN , which we analyze here.

1) How many clients to drop?: In the FL protocol, m out
of n clients are selected at random in each round. Setting the
number of dropping clients kN is mainly a tradeoff between
maximally damaging accuracy on the target data and remaining
stealthy by not significantly compromising the overall model
performance. If kN is too large, significant benign updates
may be removed, preventing the model from achieving good
accuracy, and potentially allowing the server to identify that
an active adversary, rather than standard packet loss, is to
blame for the dropped updates. If kN is too small, however,
not enough clients will be dropped to have a significant impact
on the model. We consider a range of values kN ≤ k, where
k is the number of clients holding examples from the targeted
class, and show the attack effectiveness for each.

2) How many rounds are needed to identify the clients?:
Here, we discuss how to set the number of rounds TN for client
identification for both plain and encrypted communication.
When setting TN , if the value is set too small, then the
adversary will not have enough observations to reliably identify
the contributing clients. However, if set too large, the adversary
will allow benign training too much time, resulting in high
accuracy on the target population, making it more difficult to
mount the attack later. Suppose the adversary wants to wait until
all n clients have participated in the protocol at least once. This
is a well-studied problem, known as the coupon collector’s [20]
(our setting additionally considers batched arrivals). In this vari-
ation of the problem, the adversary must observe an expected
number of cn log(n)/m batches before observing each client,
for a small constant c. With values of n = 100, m = 10,
roughly 46 rounds are necessary [21]. Having established a
connection to the coupon collector’s problem, we will extend
it to model the adversary in each setting:
Plain communication COMM PLAIN. The baseline case is
where the adversary receives every client’s updates. We carry
out a modification of the coupon collector analysis to identify
the setting of TN where a batch of m out of n distinct clients
participate in each round, and the goal is to identify a set of
kN of k target clients. The number of batches to wait for
the i-th client from the k target clients is ti = n

m(k−i+1)
in expectation, as the probability that any target client which
has been unobserved appears is m(k−i+1)

n . By summing this
expected batch count over i from 1 to kN (using the linearity
of expectation), we find that the expected number of batches to
wait for the first kN clients is n

m (Hk −Hk−kN ), where Hi is
the i-th harmonic number (and using H0 = 0 if kN = k). As
k increases, this value tends towards ≈ n

m (ln(k)− ln(k−kN ))
rounds (when k = kN , we replace ln(0) with 0). To use a
setting that is common in our experiments, where n = 60,
m = 10, k = 15, and kN = 15, we expect to wait roughly
n
m ln(k) = 6 ln(15) rounds, or roughly 16 rounds. Note that
waiting for fewer clients kN requires fewer rounds.
Encrypted communication COMM ENC and
COMM ENC LIMITED. In the realistic case of encrypted
communication, the adversary only has access to mean updates
and cannot localize an improved target accuracy to a particular



client, as is possible in COMM PLAIN. However, clients who
repeatedly participate in rounds where the target accuracy
improves, can be considered as more likely targets. Moreover,
clients who participate in any round where the target accuracy
does not improve can be identified as not targets, and we
analyze only rounds without target clients. An α precision
level at identification can be reached by removing n − k/α
clients which are known non-target clients. To analyze how
many rounds it takes to collect n− k/α non-target clients, we
compute the probability that a batch will contain non-target
clients, and then compute how many non-target batches are
required to collect n−k/α clients. To compute the probability
that a batch contains non-target clients, we notice that there
are

(
n−k
m

)
possible batches which have non-target clients, and

there are a total of
(
n
m

)
batches which are selected uniformly

at random. Then the probability a batch has non-target clients
is

(
n−k
m

)
/
(
n
m

)
≈

(
1− k

n

)m
.

To compute the number of non-target batches required to
accumulate n−k/α non-target clients, we can use comparable
coupon collector analysis as before, making the observation
that each non-target batch is guaranteed to have m non-target
clients. On average, an upper bound of n

b (Hn−k − Hk/α−k)
batches is sufficient. As an example, in a setting we use in our
experiments, n = 60, k = 15, and m = 10, the probability
that a batch contains non-target clients is roughly 5.6%. To
reach a precision of α = 0.3, we obtained a total of 26 batches
on average. In practice, it is likely that precision can be even
higher than this value due to overestimation from our analysis.

We note that our analysis is similar to analysis for the group
testing problem [22], introduced by [23], used for pool testing.
However, a key difference is that our algorithm must be capable
of identifying members from noisy aggregate information,
rather than the clean signal which is typically provided during
group testing. It is possible that more sophisticated group
testing algorithms can be used to improve Algorithm 2 further
by overcoming this constraint.

D. Amplifying Dropping Attack with Model Poisoning

In order to amplify the effectiveness of the targeted dropping
attack, the adversary may also collude with, or inject, malicious
clients, whose presence in training is designed to further com-
promise the performance on the target distribution. Following
Bagdasaryan et al. [4] and Sun et al. [7], we use a targeted
model poisoning attack known as model replacement. Writing
θt for the parameter of the global model ft, in this attack, the
adversary seeks to replace θt with a selected target θ∗t (as is
done in [4], [7], we use the θ∗t resulting from a data poisoning
attack on a compromised client’s local training procedure). The
poisoned clients’ local training sets are sampled identically to
clients with access to the target class, with the difference of
changing the labels of target class samples to another, fixed
class. The update that the adversary sends is θ∗t − θt−1. The
server aggregation then weights this update with an η/m factor.
In a model replacement attack, a boosting factor β is applied
to the update, so the update which is sent is β(θ∗t − θt−1), in-
creasing the contribution to overcome the η/m factor decrease.

IV. DEFENSES AGAINST NETWORK-LEVEL ADVERSARIES

Several defenses against network-level attacks are known.
For instance, defenders could monitor and detect faulty paths
in the network [24], create resilient overlays [25], [26], or
secure the routing protocols [27]. These defenses might increase
robustness, but are generally not effective against stealthy
attacks, such as targeted update dropping, or edge-level attacks,
such as model poisoning. Often, the FL owner might not control
the network, so we design FL-specific server defenses that
complement existing network-level defenses against the attacks
introduced in Section III.
Model Poisoning Countermeasures. A popular form of de-
fense against data and model poisoning attacks in FL is
to replace the Federated Averaging protocol with a secure
aggregation scheme [28]–[31]. It was shown, however, that an
adversary can evade this defense (e.g., [4]–[6]), and finding
a secure aggregation method remains an open problem. Sun
et al. [7] observed that model poisoning attacks with larger
gradient norms are more effective, and therefore a natural
defense is to reduce the norms. With this method, an update
g sent from a client is clipped to a maximum norm C and
becomes min

(
1, C
||∆||

)
g. Clipping works particularly well

against model poisoning attacks in which the local client update
is boosted by the attacker [4].

Algorithm 3: Server Defensive UpSampling Strategy
Data: Target Dataset D∗S , rounds TS , loss function `, client count n, count of

clients to upsample kS , up-sample factor λ
Function UpSampling(D∗S , `, kS , TS , n):

Z = ClientIdentification(D∗S , `, TS , kS)
// Reduce sampling probability for most clients
p = [

n−kSλ
n2−kSn

for c ∈ [n]]

for i ∈ Z do
// Increase sampling probability for highly contributors
p[i] = λ/n

return p

UpSampling Defense Strategy. While Clipping reduces the
impact of model poisoning attack, we still need to defend
against targeted update dropping. When a dropping attack
is performed, the number of clients contributing legitimate
updates to the target class is reduced, leading to a larger
impact on naturally under-represented classes (i.e., available
in a small set of clients). Thus, it is essential for the server to
first identify clients contributing to the target class, and second,
leverage them to improve the accuracy of the target population.
For the first component, we can use directly Algorithm 2
for Client Identification, using the knowledge available to
the server. In standard FL implementations, servers receive
individual model updates from the clients, while in privacy-
preserving FL implementations based on MPC [19] servers only
receive aggregated updates. For the second task, the server can
run Algorithm 3 (UpSampling defense) to modify the client
sampling strategy in the FL protocol. With this modification, the
sampling probability of identified clients is increased by a factor
of λ and the sampling probability of all others is decreased.



TABLE I
THE PARAMETERS USED IN OUR EXPERIMENTS.

Party Param Definition Setting
Dataset n Total Clients {100, 60}
Dataset k Clients with Target Class {9, 12, 15}
Dataset αD Dirichlet Distribution Param 1.0
Dataset αT Target Class Dataset Fraction {0.5, 0.6}
Client TL Local Training Epochs 2
Client ηL Local Learning Rate { 0.1, 0.001 }
Server η Aggregation Learning Rate 0.25
Server m Clients per Round 10
Server T Total Training Rounds Varied
Server TS Rounds before up-sampling Varied
Server kS Up-sampled Client Count Varied
Server λ Up-sampling factor 2
Server C Aggregation Clipping Norm 1

Adversary TN Rounds before Dropping Varied
Adversary kN Number of Dropped Clients Varied
Adversary kP Number of Poisoning Clients Varied
Adversary β Poisoning Boost Factor 10

The server will determine how many clients to identify, kS ,
and how many rounds to monitor, TS , using its own target
dataset D∗S to estimate contributions. As with the attacker,
the server will repeat the Client Identification process at each
successive round to refine its list of clients to up-sample.
Interestingly, the UpSampling strategy can help even if there is
no dropping attack, but there are simply too few clients from
some target population on which the model accuracy is low.

V. EXPERIEMENTAL EVALUATION

Here, we evaluate our attacks, show how model poisoning
amplifies targeted update dropping damage, and conclude by
looking at the performance of the UpSampling defense.

A. Experiment Setup

We use three well known datasets (EMNIST, FashionMNIST,
and DBPedia-14), which we adapt to the non i.i.d. setting by
controlling the class distribution across clients. In all cases, the
target population is represented by samples of an entire class
selected from the dataset. Our datasets have balanced classes,
and we use classes 0, 1, 9 for our evaluation. All reported results
are averages of 4 trials, with different randomness seeds. The
list of parameters used in our FL protocol is shown in Table I.

EMNIST [32] is a handwritten digits recognition dataset with
344K samples. We use approximately 100K images of numbers,
partitioned equally, without overlap, among 100 clients. To
enforce heterogeneity, we allocate samples from the target
victim class to k fixed clients and vary k. For those k clients,
we allocate αT = 50% of the local dataset to be target class
points, while the remainder is sampled from the remaining
classes according to a Dirichlet distribution with parameter
αD = 1.0. For clients without the target class, we sample
100% of the local training set from a Dirichlet distribution with
αD = 1.0, following [33]. We train a convolutional model (two
2D convolution layers and two linear layers, with learning rate
ηL = 0.1) for 100 rounds, selecting 10 clients at each round,
using mean aggregation with a learning rate η = 0.25.

FashionMNIST [34] is an image classification dataset, con-
sisting of 70K gray-scale images of 10 types of clothing

TABLE II
BASELINES. TARGET POPULATION ACCURACY AT ROUNDS T/2 AND T .
T = 100 FOR EMNIST, T = 200 FOR FASHIONMNIST AND DBPEDIA.

Dataset k
Number of Clients Dropped kN

0 k/3 2k/3 k

Perfect Knowledge

EMNIST
9 0.47/0.66 0.21/0.50 0.01/0.23 0.0/0.0
12 0.58/0.78 0.36/0.61 0.06/0.31 0.0/0.0
15 0.65/0.80 0.48/0.66 0.15/0.40 0.0/0.0

FashionMNIST 15 0.40/0.55 0.17/0.32 0.02/0.09 0.0/0.0
DBPedia 15 0.36/0.53 0.03/0.06 0.00/0.00 0.0/0.0

Random Drop

EMNIST
9 0.47/0.66 0.40/0.68 0.39/0.68 0.35/0.64
12 0.58/0.78 0.58/0.78 0.57/0.77 0.53/0.76
15 0.65/0.80 0.66/0.82 0.64/0.81 0.65/0.82

FashionMNIST 15 0.40/0.55 0.39/0.53 0.38/0.53 0.35/0.50
DBPedia 15 0.36/0.53 0.39/0.54 0.31/0.47 0.34/0.45

articles. It is more complex than EMNIST, but smaller. Thus,
we increase the number of training rounds to T ∈ {200, 300},
reduce the number of clients n to 60, and set αT to 0.6. We
set the local dataset size to 400. We use a convolutional model
similar to the one used before, and fix all other parameters.

DBPedia-14 [35] is an NLP text classification dataset con-
sisting of 560K articles from 14 ontological categories, such
as ”Company”, ”Animal”, ”Film”. DBPedia-14 is a relatively
complex dataset, so we use the same k, T , and αT as in
FashionMNIST, and a local dataset size of 1000. The model
is trained starting from pre-trained GloVe embeddings [36],
followed by two 1D convolution layers and two linear layers,
and optimized with Adam, with ηL = 0.001.

B. Baselines: Perfect Knowledge and Random Dropping

To demonstrate the potential severity of a dropping attack, we
evaluate the best possible case, where the adversary has perfect
knowledge of a subset of kN target clients from the beginning
of the protocol, and drops every update originating from them
throughout training. The results in Table II demonstrate the
power of update dropping, and provide a baseline to compare
our full attack pipeline against. We also evaluate the effect of
an adversary that selects victim clients uniformly at random.

C. Client Identification Evaluation

Table III shows the average number of targeted clients
correctly identified by Algorithm 2 for encrypted communi-
cation with plain as comparison. Client Identification works
very well for plain communication, and maintains a reasonable
performance even when the adversary only sees aggregated
updates (COMM ENC). For instance, on DBPedia an average
of 11.75 out of 15 clients are identified at 70 rounds under
COMM ENC. Interestingly, for FashionMNIST and DBPedia,
it is easier to identify target clients than for EMNIST (where
an average of 7 out of 15 clients are identified at round 70).
One hypothesis for this phenomenon is that classes are more
distinct in complex datasets, leading the global model to forget
the target class in rounds with no participating target clients,
resulting in significant loss increases for those rounds.

We also use Table III to select parameters for the targeted
dropping attack and validate our analysis from Section III-C.



TABLE III
TARGET CLIENT IDENTIFICATION. AVERAGE NUMBER OF CLIENTS CORRECTLY IDENTIFIED BY ALGORITHM 2 AT DIFFERENT ROUNDS UNDER

COMM PLAIN AND COMM ENC, kN = k. ON FASHIONMNIST AND DBPEDIA ALL 15 TARGET CLIENTS ARE IDENTIFIED AT 50 AND 20 ROUNDS,
RESPECTIVELY, FOR COMM PLAIN, WHILE THE MAXIMUM NUMBER OF CLIENTS IDENTIFIED UNDER COMM ENC IS 11.75 AT 70 ROUNDS FOR DBPEDIA.

Dataset Communication k
Round Number TN

5 10 15 20 30 40 50 70

EMNIST

COMM PLAIN

9 1.75 5 7.50 7.75 8.50 8.75 8.75 8.50
12 5 8.25 9.75 10.25 10.75 10.75 11.25 11.25
15 4.25 9.50 11.50 12 14.25 14.25 14 14

COMM ENC

9 0.50 2.25 3.25 2.75 3.25 3.75 4 5.25
12 2 2.75 3.25 3 3 4 5 5.25
15 3 4 4 3.75 4.75 5.75 6.25 7

FashionMNIST
COMM PLAIN

15
9 12 14 14.75 14.75 14.75 15 15

COMM ENC 5.5 6.50 8.0 8.50 9 10 10.50 11

DBPedia
COMM PLAIN

15
8 13.25 13.75 15 15 15 15 15

COMM ENC 5.25 7 8 9 10 11.25 11.25 11.75

In the COMM ENC scenario, we see that more rounds are
necessary for successful identification, as expected from Sec-
tion III-C. To identify between k/3 and 2k/3 of the target
clients, we need to wait between 30 and 50 rounds, and, in many
cases, the identification accuracy tends to plateau in successive
rounds. Thus, we select round 30 as the starting point for the
dropping attack in our COMM ENC experiments.

D. Targeted Dropping Evaluation

We measure our targeted dropping attack’s performance in
Table IV. Under COMM PLAIN, it significantly compromise
target population accuracy, closely approximating the perfect
knowledge adversary for increasing values of kN . We also ob-
serve that our attack in the COMM PLAIN scenario vastly out-
performs the strategy of randomly dropping the same number
of clients, in all situations. Our attacks’ performance decreases
when the adversary’s knowledge is limited in COMM ENC,
which is expected from the reduced Client Identification per-
formance. We still observe a significant advantage in using our
identification pipeline, over the random selection baseline. For
instance, with kN = 5, the target accuracy on DBPedia drops
drastically from 53% to 6%. Moreover, these results highlight
the trend mentioned in Section V-C: on more complex tasks,
such as FashionMNIST and DBPedia, the high identification
accuracy leads to noticeably larger attack performance, than in
EMNIST. Given the targeted nature of our attack, in all consid-
ered scenarios, dropping the victim clients generally leads to
very little degradation of the overall model performance – on
average 3.88% for COMM PLAIN and 1% for COMM ENC.

Tables VI, VIII, X, show the accuracy of the global model on
the full test set under the same settings as the other experiments
we run.

E. Impact of Model Poisoning and Targeted Dropping

We compared the effects of the model poisoning strategy
and targeted dropping on the EMNIST dataset for the cases
of perfect knowledge, COMM PLAIN, and COMM ENC in
Figures 1a, 1c, and 1e respectively. These heatmaps show
that, for different levels of kN (number of dropped clients)

TABLE IV
TARGETED DROPPING ATTACK, UNDER COMM PLAIN AND COMM ENC.
ACCURACY ON TARGET POPULATION AT ROUNDS T/2 AND T . T = 100

FOR EMNIST, T = 200 FOR FASHIONMNIST AND DBPEDIA.

COMM PLAIN

Dataset k
Number of Clients Dropped kN

0 k/3 2k/3 k

EMNIST
9 0.47/0.66 0.25/0.49 0.09/0.18 0.00/0.00
12 0.58/0.78 0.39/0.65 0.19/0.33 0.00/0.00
15 0.65/0.80 0.50/0.74 0.26/0.50 0.02/0.02

FashionMNIST 15 0.40/0.55 0.24/0.23 0.02/0.03 0.00/0.00
DBPedia 15 0.36/0.53 0.10/0.01 0.00/0.00 0.00/0.00

COMM ENC

EMNIST
9 0.47/0.66 0.35/0.58 0.32/0.52 0.32/0.52
12 0.58/0.78 0.50/0.72 0.48/0.69 0.45/0.67
15 0.65/0.80 0.63/0.78 0.60/0.76 0.56/0.71

FashionMNIST 15 0.40/0.55 0.34/0.38 0.14/0.13 0.03/0.01
DBPedia 15 0.36/0.53 0.19/0.06 0.06/0.00 0.00/0.00

and kP (number of poisoned clients), the model replacement
attack is more effective than targeted dropping, even when
the adversary has perfect knowledge. The results, however,
are significantly different when Clipping, a standard poisoning
defense [7], [37], [38], is applied to local model updates.
Figures 1b, 1d, and 1f show the same set of experiments
repeated with a clipping norm of 1. These heatmaps highlight
that, while clipping lowers the impact of model poisoning, the
combination of targeted dropping and model poisoning still
results in very noticeable targeted performance degradation. For
instance, under COMM PLAIN, the original model accuracy on
class 0 is 0.8. This becomes 0.59 when dropping 7 clients out
of 15, and 0.66 when poisoning 7 clients, while combining both
attacks leads to 0.4 accuracy.

By repeating the experiments with T = 50, we can observe
that it appears that targeted dropping is more effective than
poisoning at low round counts, as shown in Fig. 2 When
the model is in its early phase of learning, it needs to see
some examples of the target class to begin learning it, and
dropping significantly delays the arrival of these examples.
Later in training, however, the difference between poisoning
and dropping decreases.



(a) Perfect knowledge (b) Perfect knowledge, clipping

(c) COMM PLAIN (d) COMM PLAIN, clipping

(e) COMM ENC (f) COMM ENC, clipping

Fig. 1. Accuracy on target class 0 on EMNIST, for k = 15, T = 100,
and varying number of dropped and poisoned clients under 3 scenarios:
Perfect Knowledge, COMM PLAIN, and COMM ENC. Left results are without
Clipping, and right results use a Clipping norm of 1.

F. Impact of Adversarial Visibility

We model a targeted, resource-limited, adversary,
COMM ENC LIMITED, by restricting their ability to observe
the clients participating to the protocol to a fixed-size subset
of the clients, chosen before the attack starts, sampled from
a Dirichlet distribution with concentration parameter αV . αV
controls how likely it is for the sampled visible set to include
clients containing data of the target population, with larger
values of αV leading to higher likelihood. We run the attack
on FashionMNIST with a similar setup as in Table IV under
the COMM ENC conditions. The results reported in Figure 3a
show that, as expected, higher visibility fractions, and larger
αV lead to smaller target accuracy values. The network
adversary is still quite effective even when observing a small
fraction of the clients, for instance achieving a ≈ 43.6%
relative target accuracy decrease when observing 20 out of 60
clients with αV = 2. Similarly, Figure 3b shows that adding
poisoning always leads to better accuracy degradation.

G. Defense Evaluation

In Tables V, VII, we evaluate the defense strategies under
COMM PLAIN and COMM ENC, using targeted dropping and
poisoning attacks. We set the number of dropped (kN ) and
poisoned clients (kP ) to 2k/3 for EMNIST, and k/3 for
FashionMNIST and DBPedia. These parameters result in strong

(a) Perfect knowledge (b) Perfect knowledge, clipping

(c) COMM PLAIN (d) COMM PLAIN, clipping

(e) COMM ENC (f) COMM ENC, clipping

Fig. 2. Accuracy on target class 0 on EMNIST, for k = 15, T = 50, and
varying number of dropped and poisoned clients under 3 scenarios: perfect
knowledge, COMM PLAIN, and COMM ENC. Left results are without clipping,
and right results use a clipping norm of 1. When no clipping is used, model
poisoning attack is devastating at small number of poisoned clients. With
clipping, model poisoning. Results are similar with those in Figure 1.

(a) Drop (b) Drop + Poison

Fig. 3. COMM ENC LIMITED. Accuracy on target class 0 on FashionMNIST,
for k = 15, T = 200, kN = 10, kP = 10, varying visibility and αV .

attacks, as the target accuracy is below 4% under targeted drop-
ping and poisoning, when no mitigation is used. UpSampling is
successful in mitigating targeted dropping, and, when combined
with Clipping, achieves high accuracy against the powerful
combined attack. For instance, on EMNIST’s class 1 with
k = 9, the update dropping attack causes accuracy to decrease
from 92% to 25% under COMM PLAIN, and UpSampling
manages to restore the target accuracy to 76%.

The UpSampling defense is very effective under the
COMM ENC setting, due to knowledge asymmetry, i.e. the at-
tacker receives aggregated updates, while the defender observes



TABLE V
ACCURACY ON TARGET CLASS PRESENTED AT ROUNDS T/2 AND T , UNDER COMM PLAIN SETTING. T = 100 FOR EMNIST, T = 300 FOR

FASHIONMNIST AND DBPEDIA. WE CONSIDER BOTH TARGETED DROPPING AND DROPPING + POISONING SCENARIOS.

k
Target No Attack Targeted Drop Targeted Drop + Poison
Class FedAvg FedAvg UpSample FedAvg Clip UpSample Clip + UpSample

EMNIST

9
0 0.47/ 0.66 0.09/ 0.18 0.18/ 0.44 0.00/ 0.00 0.00/ 0.06 0.01/ 0.00 0.03/ 0.31
1 0.75/ 0.92 0.09/ 0.25 0.39/ 0.76 0.00/ 0.00 0.00/ 0.04 0.01/ 0.00 0.04/ 0.30
9 0.43/ 0.56 0.01/ 0.17 0.09/ 0.40 0.00/ 0.00 0.00/ 0.01 0.01/ 0.00 0.00/ 0.23

12
0 0.58/ 0.78 0.19/ 0.33 0.40/ 0.66 0.00/ 0.00 0.04/ 0.09 0.00/ 0.01 0.12/ 0.40
1 0.86/ 0.95 0.25/ 0.55 0.49/ 0.85 0.00/ 0.00 0.01/ 0.04 0.04/ 0.01 0.17/ 0.60
9 0.53/ 0.67 0.06/ 0.31 0.28/ 0.52 0.00/ 0.00 0.00/ 0.02 0.02/ 0.01 0.07/ 0.29

15
0 0.65/ 0.80 0.26/ 0.50 0.47/ 0.71 0.00/ 0.00 0.04/ 0.06 0.00/ 0.03 0.22/ 0.35
1 0.91/ 0.96 0.47/ 0.79 0.83/ 0.94 0.00/ 0.00 0.06/ 0.18 0.05/ 0.04 0.53/ 0.51
9 0.65/ 0.75 0.15/ 0.39 0.39/ 0.59 0.00/ 0.00 0.02/ 0.03 0.02/ 0.07 0.19/ 0.40

FashionMNIST

15
0 0.44/ 0.47 0.30/ 0.36 0.60/ 0.62 0.09/ 0.03 0.29/ 0.38 0.13/ 0.19 0.58/ 0.58
1 0.93/ 0.95 0.89/ 0.93 0.95/ 0.96 0.12/ 0.02 0.77/ 0.77 0.16/ 0.28 0.92/ 0.93
9 0.88/ 0.87 0.81/ 0.81 0.92/ 0.93 0.13/ 0.04 0.70/ 0.62 0.09/ 0.19 0.90/ 0.89

DBPedia

15
0 0.45/ 0.54 0.11/ 0.10 0.75/ 0.82 0.00/ 0.00 0.00/ 0.00 0.02/ 0.01 0.65/ 0.77
1 0.77/ 0.87 0.37/ 0.17 0.93/ 0.96 0.00/ 0.00 0.08/ 0.00 0.02/ 0.03 0.89/ 0.94
9 0.52/ 0.60 0.24/ 0.17 0.84/ 0.91 0.00/ 0.00 0.00/ 0.00 0.02/ 0.02 0.64/ 0.62

TABLE VI
ACCURACY ON FULL TEST SET PRESENTED AT ROUNDS T/2 AND T , UNDER COMM PLAIN SETTING. T = 100 FOR EMNIST, T = 300 FOR

FASHIONMNIST AND DBPEDIA. WE CONSIDER BOTH TARGETED DROPPING AND DROPPING + POISONING SCENARIOS.

k
Target No Attack Targeted Drop Targeted Drop + Poison
Class FedAvg FedAvg UpSample FedAvg Clip UpSample Clip + UpSample

EMNIST

9
0 0.92/ 0.95 0.88/ 0.90 0.89/ 0.93 0.86/ 0.87 0.85/ 0.88 0.86/ 0.87 0.86/ 0.91
1 0.94/ 0.96 0.87/ 0.90 0.90/ 0.95 0.85/ 0.85 0.84/ 0.86 0.85/ 0.86 0.85/ 0.89
9 0.91/ 0.93 0.87/ 0.89 0.88/ 0.92 0.86/ 0.87 0.86/ 0.87 0.86/ 0.87 0.86/ 0.90

12
0 0.93/ 0.96 0.89/ 0.92 0.91/ 0.95 0.86/ 0.87 0.86/ 0.89 0.86/ 0.87 0.87/ 0.92
1 0.95/ 0.97 0.89/ 0.93 0.91/ 0.96 0.85/ 0.86 0.84/ 0.86 0.85/ 0.86 0.86/ 0.92
9 0.92/ 0.95 0.87/ 0.91 0.90/ 0.93 0.86/ 0.87 0.86/ 0.87 0.68/ 0.68 0.87/ 0.90

15
0 0.94/ 0.96 0.90/ 0.93 0.92/ 0.95 0.86/ 0.87 0.86/ 0.88 0.86/ 0.88 0.89/ 0.91
1 0.95/ 0.97 0.91/ 0.95 0.94/ 0.96 0.85/ 0.86 0.85/ 0.88 0.85/ 0.86 0.90/ 0.91
9 0.94/ 0.95 0.88/ 0.92 0.91/ 0.94 0.86/ 0.87 0.86/ 0.87 0.87/ 0.88 0.88/ 0.92

FashionMNIST

15
0 0.81/ 0.83 0.79/ 0.82 0.81/ 0.84 0.76/ 0.78 0.79/ 0.82 0.76/ 0.79 0.81/ 0.84
1 0.83/ 0.85 0.82/ 0.85 0.82/ 0.85 0.74/ 0.76 0.81/ 0.83 0.75/ 0.78 0.82/ 0.84
9 0.82/ 0.85 0.82/ 0.84 0.83/ 0.85 0.74/ 0.76 0.80/ 0.82 0.74/ 0.77 0.82/ 0.84

DBPedia

15
0 0.93/ 0.94 0.91/ 0.91 0.95/ 0.96 0.89/ 0.90 0.90/ 0.90 0.89/ 0.90 0.94/ 0.96
1 0.95/ 0.96 0.92/ 0.91 0.96/ 0.97 0.88/ 0.89 0.90/ 0.90 0.89/ 0.89 0.95/ 0.96
9 0.93/ 0.94 0.91/ 0.91 0.95/ 0.96 0.89/ 0.90 0.89/ 0.90 0.89/ 0.90 0.93/ 0.94

individual updates. Thus, UpSampling, defending against the
dropping attack, improves the target model accuracy by an
average (over the 3 classes) of 6.33% on EMNIST, 10.66% on
FashionMNIST, and 24.66% on DBPedia for k = 15 compared
to the original accuracy. Even under both targeted dropping and
model poisoning attacks, the combined UpSampling defense
and Clipping results in an average decrease of 5% on EMNIST
and average increase of 9% on FashionMNIST and 16.66% on
DBPedia over the 3 classes compared to the original accuracy.
Interestingly, classes with lower original accuracy benefit more
from the UpSampling strategy, with improvements as high as

34% (on DBPedia for class 9, original accuracy is increased
from 60% to 94% with UpSampling under targeted dropping).

We observed that under-represented classes (in terms of
number of clients holding samples from those classes) are
impacted more by our attacks. To alleviate this problem, the
server could identify new clients with data from the populations
of interest, and add them to the set of clients participating in the
FL protocol. In cross-device FL settings, servers typically have
access to a large number of clients, and can make decisions on
expanding the set of participating clients to improve accuracy
on under-represented populations.



TABLE VII
ACCURACY ON TARGET CLASS PRESENTED AT ROUNDS T/2 AND T , UNDER COMM ENC SETTING. T = 100 FOR EMNIST, T = 300 FOR

FASHIONMNIST AND DBPEDIA. WE CONSIDER BOTH TARGETED DROPPING AND DROPPING + POISONING SCENARIOS.

k
Target No Attack Targeted Drop Targeted Drop + Poison
Class FedAvg FedAvg UpSample FedAvg Clip UpSample Clip + UpSample

EMNIST

9
0 0.47/ 0.66 0.32/ 0.52 0.59/ 0.76 0.01/ 0.00 0.14/ 0.40 0.10/ 0.04 0.46/ 0.68
1 0.75/ 0.92 0.58/ 0.76 0.88/ 0.96 0.04/ 0.00 0.24/ 0.52 0.16/ 0.04 0.67/ 0.88
9 0.43/ 0.56 0.31/ 0.46 0.54/ 0.70 0.01/ 0.00 0.03/ 0.25 0.06/ 0.05 0.37/ 0.57

12
0 0.58/ 0.78 0.48/ 0.69 0.75/ 0.85 0.00/ 0.00 0.29/ 0.36 0.02/ 0.06 0.60/ 0.77
1 0.86/ 0.95 0.77/ 0.91 0.94/ 0.97 0.00/ 0.00 0.47/ 0.43 0.20/ 0.12 0.82/ 0.92
9 0.53/ 0.67 0.41/ 0.56 0.68/ 0.78 0.00/ 0.01 0.18/ 0.27 0.15/ 0.07 0.50/ 0.67

15
0 0.65/ 0.80 0.60/ 0.76 0.81/ 0.89 0.01/ 0.00 0.37/ 0.44 0.01/ 0.05 0.62/ 0.71
1 0.91/ 0.96 0.88/ 0.94 0.96/ 0.97 0.04/ 0.00 0.60/ 0.48 0.12/ 0.06 0.90/ 0.94
9 0.65/ 0.75 0.50/ 0.58 0.76/ 0.85 0.03/ 0.01 0.30/ 0.35 0.10/ 0.07 0.53/ 0.71

FashionMNIST

15
0 0.44/ 0.47 0.40/ 0.39 0.69/ 0.71 0.13/ 0.02 0.38/ 0.36 0.25/ 0.17 0.64/ 0.69
1 0.93/ 0.95 0.92/ 0.94 0.95/ 0.96 0.14/ 0.03 0.86/ 0.81 0.26/ 0.24 0.94/ 0.95
9 0.88/ 0.87 0.85/ 0.82 0.93/ 0.94 0.20/ 0.05 0.77/ 0.59 0.19/ 0.23 0.91/ 0.92

DBPedia

15
0 0.45/ 0.54 0.16/ 0.12 0.79/ 0.84 0.00/ 0.00 0.00/ 0.00 0.03/ 0.01 0.73/ 0.79
1 0.77/ 0.87 0.39/ 0.22 0.95/ 0.97 0.00/ 0.00 0.07/ 0.00 0.10/ 0.05 0.92/ 0.95
9 0.52/ 0.60 0.31/ 0.12 0.88/ 0.94 0.00/ 0.00 0.00/ 0.00 0.02/ 0.01 0.75/ 0.76

TABLE VIII
ACCURACY ON FULL TEST SET PRESENTED AT ROUNDS T/2 AND T , UNDER COMM ENC SETTING. T = 100 FOR EMNIST, T = 300 FOR

FASHIONMNIST AND DBPEDIA. WE CONSIDER BOTH TARGETED DROPPING AND DROPPING + POISONING SCENARIOS.

k
Target No Attack Targeted Drop Targeted Drop + Poison
Class FedAvg FedAvg UpSample FedAvg Clip UpSample Clip + UpSample

EMNIST

9
0 0.92/ 0.95 0.91/ 0.94 0.93/ 0.95 0.86/ 0.87 0.88/ 0.92 0.87/ 0.87 0.91/ 0.94
1 0.94/ 0.96 0.92/ 0.95 0.95/ 0.97 0.85/ 0.86 0.88/ 0.91 0.86/ 0.86 0.92/ 0.95
9 0.91/ 0.93 0.90/ 0.92 0.93/ 0.95 0.86/ 0.87 0.86/ 0.90 0.87/ 0.88 0.90/ 0.93

12
0 0.93/ 0.96 0.92/ 0.95 0.94/ 0.96 0.86/ 0.87 0.90/ 0.92 0.87/ 0.88 0.92/ 0.95
1 0.95/ 0.97 0.94/ 0.96 0.95/ 0.97 0.85/ 0.86 0.90/ 0.90 0.87/ 0.87 0.93/ 0.95
9 0.92/ 0.95 0.91/ 0.94 0.94/ 0.96 0.86/ 0.87 0.88/ 0.90 0.88/ 0.88 0.91/ 0.94

15
0 0.94/ 0.96 0.93/ 0.95 0.95/ 0.96 0.86/ 0.87 0.90/ 0.92 0.87/ 0.88 0.92/ 0.95
1 0.95/ 0.97 0.95/ 0.96 0.95/ 0.97 0.85/ 0.86 0.91/ 0.90 0.86/ 0.86 0.94/ 0.96
9 0.94/ 0.95 0.92/ 0.94 0.94/ 0.96 0.87/ 0.87 0.89/ 0.91 0.88/ 0.88 0.92/ 0.95

FashionMNIST

15
0 0.81/ 0.83 0.80/ 0.83 0.82/ 0.85 0.76/ 0.78 0.80/ 0.82 0.77/ 0.78 0.81/ 0.84
1 0.83/ 0.85 0.83/ 0.85 0.82/ 0.85 0.75/ 0.76 0.82/ 0.83 0.76/ 0.78 0.82/ 0.85
9 0.82/ 0.85 0.82/ 0.84 0.83/ 0.85 0.74/ 0.76 0.80/ 0.82 0.75/ 0.78 0.82/ 0.85

DBPedia

15
0 0.93/ 0.94 0.91/ 0.91 0.95/ 0.96 0.89/ 0.90 0.90/ 0.90 0.90/ 0.90 0.95/ 0.96
1 0.95/ 0.96 0.92/ 0.92 0.96/ 0.97 0.88/ 0.89 0.89/ 0.90 0.89/ 0.89 0.95/ 0.97
9 0.93/ 0.94 0.92/ 0.91 0.95/ 0.96 0.89/ 0.90 0.89/ 0.90 0.89/ 0.89 0.93/ 0.95

Privacy-preserving FL. So far, we have discussed settings in
which the server receives local model updates in all rounds
of the FL protocol. However, to protect client privacy, it
is common to deploy privacy-preserving FL protocols, based
on Multi-Party Computation (MPC), such as [19], [39]. In
MPC implementations, multiple parties will be involved in
aggregation and the server only receives the global model at
the end of each iteration. The server has therefore the same
knowledge as the network-level adversary under encrypted
communication when running the client identification protocol
from Algorithm 2.

In Table IX, we present attack and defense results for this
challenging setting. Similarly to the previous tables, we set
the parameters to kN = kP = 2k/3 for EMNIST, and
kN = kP = k/3 for both FashionMNIST and DBPedia.
While under this setting there is essentially no difference in the
effectiveness of the attacker models we consider, the defensive
performance varies due to the limited knowledge. The results
we observe for the UpSample and Clip + UpSample defensive
mechanisms are, as we would expect, somewhere in between
the COMM ENC and COMM PLAIN scenarios. For instance for
EMNIST, with k = 15 on class 1 we obtain an average accuracy



level of 0.84, considerably higher than the 0.51 obtained under
COMM PLAIN, but also not as high as the average of 0.94
obtained with COMM ENC, which is essentially the same result
obtained without any attack.

VI. RELATED WORK

Given the distributed training process in FL, poisoning
attacks represent an even larger threat than in traditional ML
systems. For instance, poisoning availability attacks have been
shown effective in Federated Learning in recent work [5], [6].
Targeted model poisoning attacks impact a small population,
or introduce a backdoor in the models to mis-classify instances
containing the trigger [3], [4], [7], [8]. Researchers also pro-
posed methods to defend the FL protocol from adversaries, such
as Byzantine-resilient or trust-based aggregation rules [28]–
[31], [40]–[44]. However, [5] and [6] systematically analyzed
Byzantine-robust aggregation schemes, showing that an adver-
sary controlling compromised clients can bypass these defenses
with poisoning availability attacks. Also, targeted poisoning
attacks can bypass Byzantine-resilient aggregation, such as
Krum [4]. Methods protecting from model poisoning include
filtering of malicious gradients for availability attacks [5], [6],
[9] and gradient clipping for targeted attacks [4], [7].

VII. CONCLUSION

We examined the effects that a network-level adversary can
have on the final model’s accuracy on a target population
in cross-device FL. We proposed a new attack, based on a
procedure for identifying the set of clients mostly contributing
towards a target class of interest to the adversary, and showed
that it can be amplified by coordinated model poisoning attacks.
We showed that our attacks are effective for realistic scenarios
where the communication is encrypted and the attacker has lim-
ited network visibility. We also explored defensive approaches,
and found that our UpSampling mechanism can be extremely
successful when paired with clipping of model updates, against
very powerful network-level attacks.
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T. D. Nguyen, P. Rieger, A.-R. Sadeghi, T. Schneider, H. Yalame, and
S. Zeitouni, “SAFELearn: Secure Aggregation for private FEderated
Learning,” in IEEE SPW, 2021.

[40] R. Guerraoui, A. Guirguis, J. Plassmann, A. Ragot, and S. Rouault,
“Garfield: System support for byzantine machine learning (regular pa-

per),” in DSN. IEEE, 2021.
[41] J. Sun, A. Li, L. DiValentin, A. Hassanzadeh, Y. Chen, and H. Li, “FL-

WBC: Enhancing robustness against model poisoning attacks in federated
learning from a client perspective,” in NeurIPS, 2021.

[42] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “Fltrust: Byzantine-robust
federated learning via trust bootstrapping,” in NDSS, 2021.

[43] E. M. E. Mhamdi, S. Farhadkhani, R. Guerraoui, A. Guirguis, L.-N.
Hoang, and S. Rouault, “Collaborative learning in the jungle (decentral-
ized, byzantine, heterogeneous, asynchronous and nonconvex learning),”
in NeurIPS, 2021.

[44] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “Distributed momentum
for byzantine-resilient stochastic gradient descent,” in ICLR, 2021.


	I Introduction
	II Background and Threat Model
	II-A Federated Learning
	II-B Threat Model
	II-C Feasibility of Network-level Attacks for Federated Learning

	III Network-Level Attacks on Federated Learning
	III-A Identification of Highest-Contributing Clients
	III-B Dropping Attack
	III-C Attack Analysis
	III-C1 How many clients to drop?
	III-C2 How many rounds are needed to identify the clients?

	III-D Amplifying Dropping Attack with Model Poisoning

	IV Defenses Against Network-Level Adversaries
	V Experiemental Evaluation
	V-A Experiment Setup
	V-B Baselines: Perfect Knowledge and Random Dropping
	V-C Client Identification Evaluation
	V-D Targeted Dropping Evaluation
	V-E Impact of Model Poisoning and Targeted Dropping
	V-F Impact of Adversarial Visibility
	V-G Defense Evaluation

	VI Related Work
	VII Conclusion
	References

