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Abstract—Risk perceptions are essential in cyber insurance
contracts. With the recent surge of information, human risk
perceptions are exposed to the influences from both beneficial
knowledge and fake news. In this paper, we study the role of the
risk perceptions of the insurer and the user in cyber insurance
contracts. We formulate the cyber insurance problem into a
principal-agent problem where the insurer designs the contract
containing a premium payment and a coverage plan. The risk
perceptions of the insurer and the user are captured by coherent
risk measures. Our framework extends the cyber insurance
problem containing a risk-neutral insurer and a possibly risk-
averse user, which is often considered in the literature. The
explicit characterizations of both the insurer’s and the user’s
risk perceptions allow us to show that cyber insurance has
the potential to incentivize the user to invest more on system
protection. This possibility to increase cyber security relies on
the facts that the insurer is more risk-averse than the user (in
a minimization setting) and that the insurer’s risk perception
is more sensitive to the changes in the user’s actions than the
user himself. We investigate the properties of feasible contracts
in a case study on the insurance of a computer system against
ransomware.

I. INTRODUCTION

Human risk perception plays an important role in cyber
insurance contracts. On the one hand, individuals who are
risk-averse tend to overreact to severe potential losses that are
not likely to happen. On the other hand, they are eager to
seek additional resources to defend against cyber losses. The
risk-sharing property of cyber insurance contracts that mitigates
the cyber losses of users depends on the user’s risk-aversion.
The cyber insurance market does not exist when the users are
risk-neutral [1]. In an era of information explosion, people
may either intend to adjust their risk attitudes according to
expert advice or be manipulated by fake news to reform they
risk preferences without awareness [2]. The instability of risk
perception can have essential impacts on the insurance market
and the resiliency of cyber systems. Therefore, there is a need
to study how users with different risk perceptions behave when
they face potential cyber losses and how the optimal insurance
plan should change according to the risk attitudes.

Linear contracts involving a prepaid premium and a coverage
plan are among the most considered contract models in the
cyber insurance market. The premium is a money transfer from
the user to the insurer for entering the contract and the coverage
plan describes the proportion of cyber losses covered by the
insurer. In a linear contract model, the insurer is often assumed
to be risk-neutral and evaluate her loss using expectations; the
user is set to exhibit risk-aversion. The risk-aversion of an
individual can be modeled by a nonlinear utility function [3],

[4]. The risk-aversion is captured by the fact that the utility
function is assumed to be increasing and concave in return.

There is a recent trend on the study risk quantification
adopting coherent risk measures (CRMs). The axiomatic
definition of CRMs maintains the generality of the risk
modeling and provides rich insights towards applications.
The dual representation of a CRM shows its robustness to
probabilistic uncertainty. Reformulation techniques [5], [6],
[7] have also enabled convenient and tractable computation
methods of risks modeled by various CRMs.
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Figure 1. Cyber insurance has the potential to enhance system security by
incentivizing the user to invest more on system protection, if the risk perception
of the insurer exhibits more risk-aversion and is more sensitive towards the
distributional shifts of the cyber losses.

We study the role of human risk perceptions in cyber
insurance using a holistic framework which incorporates the
modern risk modeling approach and a linear principal-agent
(P-A) model. In particular, we use CRMs to describe the
risk-aversion of the principal and the agent. The reason is
two-fold. First, CRMs allow us to investigate the probabilistic
distortion to the random cyber losses caused by human risk-
aversion. Second, cyber risks are challenging to quantify due
to the difficulty in transforming the cyber losses to monetary
losses. Therefore, the probabilistic robustness that CRMs
possess leads to reliable and safe estimations of cyber risks.
Our framework builds on the hidden-action linear contract
problem to capture the information asymmetry between the
insurer and the user. Specifically, the principal minimizes her
loss function by designing the contract containing a premium
and a coverage rate subject to the individual rationality (IR)
constraint which guarantees beneficial participation and the
incentive compatibility (IC) constraint which corresponds to the
rationality of the agent. Due to the IC constraint, the contract
problem appears in the form of a bilevel program. Though
a full-information counterpart to this problem where the IC
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constraint is absent produces a lower optimal loss, the hidden-
information does not suffer from the moral hazard issue [8]. In
this work, we focus on the influence of risk measures on the
insurance. Hence, we do not consider additional nonlinearities
on top of the random cyber loss modeled by a random variable
endowed with a parametric distribution. The validity of linear
contracts follows from the monotonicity property of the solution
to general contract problems [8].

Hidden-action contract problems are challenging because
of the bilevel nature. However, leveraging the linearity of the
contract and the first-order approach, we can simplify the
problem and derive its optimality conditions. The conditions
allow us to characterize the coverage and the premium in terms
of the derivative of the risk of the user with respect to his
action. By choosing proper risk measures, practitioners can
obtain optimal contracts which satisfy desired properties.

One of the most essential features of the principal-agent
models lies in that the distribution of the random losses is
parametric in the agent’s action. In our framework, how the
risks perceived by the insurer and the user change according to
the user’ actions captures how sensitive the insurer and the user
are towards the parameterization. We show that when, compared
to the user’s risk perception, the insurer’s risk perception
exhibits more aversion to random cyber losses and is more
sensitive to the parameterization, cyber insurance can enhance
system security by incentivizing the protection investment of the
agent. These requirements suggest the following characteristics
of the insurer. First, the insurer, who bears the responsibility
in evaluating the system risks, should be able to estimate the
cyber losses more cautiously than the user. Second, aiming
to design an incentive contract, the insurer should possess a
higher level of awareness of how the actions from the user
influence the system risks stochastically than the user himself.
Our result enriches the literature by introducing the possibility
that cyber insurance can incentivize the user’s system protection
investment and hence enhance the overall system security.
This possibility is not observed in traditional cyber insurance
problems where the risk perceptions are captured by nonlinear
utility functions [1], [9], [10].

The paper is organized as follows. In Section II, we first
introduce the risk preference modeling, then we incorporate it
into the cyber insurance contract design problem. Section III
contains the analysis of the game. We discuss the roles of risk
perceptions in shaping the optimal contract and the relation
between risk sensitivity and system security. We use a case
study to further investigate the insurance contracts in Section
IV. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, we first introduce the definition of CRMs
and their analytical properties. Then, we introduce the cyber
insurance contract design problem with the risk preferences of
the insurer and the user described by CRMs.

A. Risk Preference Modeling

Consider the probability space (Ξ,F ) of cyber loss samples
ξ ∈ Ξ⊂ R+ endowed with the reference probability measure
P. Let Z := Lp(Ξ,F ,P) denotes the space of random losses
Z : Ξ→R with finite p-th order moment. The parameter p lives
in [1,+∞). A risk measure ρ is a function Z →R that assigns
a deterministic value to a random loss. Classic approaches to
risk modeling includes using the expected loss, the standard
deviation of the loss, the value-at-risk, and etc. These risk
metrics can come in handy in many real situations due to their
simplicity and straightforwardness of interpretation. However,
the classic risk metrics are lacking in the following two ways.
First, one risk metric cannot fully characterize the behavior
of a random loss. A simple example would be that using
the expectation to characterize the risk of a Gaussian random
loss has 50% chance to fail when the randomness is realized.
Second, human risk perceptions are different across individuals.
According to [3], humans tend to distinguish between losses and
gains and are likely to perceive the true probability of random
events with biases. Hence, risk metrics should characterize
human behaviors beyond merely risk-neutrality.

In this paper, we will use CRMs to characterize the risk
sensitivities that the insurer and the user exhibit.

Definition 1 (Coherent Risk Measures [11]). A function ρ :
Z → R is called a Coherent Risk Measure if for Z,Z′ ∈Z it
satisfies
(A1) Monotonicity: ρ(Z)≥ ρ(Z′) if Z(ξ )≥ Z′(ξ ) for almost
everywhere ξ ∈ Ξ.
(A2) Convexity: ρ(tZ +(1− t)Z′) ≤ tρ(Z)+ (1− t)ρ(Z′) for
t ∈ [0,1].
(A3) Translation equivariance: ρ(Z +a) = ρ(Z)+a if a ∈ R.
(A4) Positive homogeneity: ρ(tZ) = tρ(Z) if t ≥ 0.

One definition of risk-aversion [12] is referred to the fact
that the perceived risk is not smaller than the expectation of the
random loss, i.e., ρ[·]≥ E[·]. A convex risk measure captures
the risk-aversion of decision-makers in this sense.

A CRM captures the decision-maker’s robustness consid-
eration to probabilistic uncertainty due to the following dual
representation [11], [13]:

ρ[Z(ξ )] = sup
ζ∈A

∫
Ξ

Z(ξ )ζ (ξ )dP(ξ ), (1)

where A⊂Z ∗ denotes the dual set associated with the risk
measure ρθ and contains probability density functions with
respect to the probability measure P. The set Z ∗ denotes the
dual space of Z defined by Z ∗ : Lq(Ξ,F ,P) with 1

p +
1
q = 1.

The optimization problem (1) admits an optimal solution since
the set A is convex and compact when p ∈ [1,+∞) [13].

The following is an important property of a risk measure.

Definition 2. (Law-invariance.) A risk measure ρ : Z → R is
law-invariant with respect to the reference probability measure
P, if ∀Z1,Z2 ∈Z such that P(Z1 ≤ t) = P(Z2 ≤ t) for all t ∈R,
then ρ(Z1) = ρ(Z2).



A law-invariant risk measure maps random variables that
admit the same cumulative distribution function to the same
risk. In other words, ρ(·) is law-invariant, the function ρ(Z)
only depends on the cumulative distribution function of Z.

The following are some examples of risk measures.

Example 1. (Average value-at-risk.) Let FZ(t) denotes the
cumulative distribution function of a random variable Z. The
average value-at-risk (AV@R) at a%-level is defined as:

AV@Ra(Z) := (1−a)−1
∫ 1

a
V@Rt(Z)dt,a ∈ [0,1), (2)

where V@Rb(Z) := inf{t : FZ(t)≥ b}. AV@R is a law-invariant
CRM [14].

Example 2. (Absolute semideviation.) The absolute semide-
viation of a random variable is defined as ρθ [Z] = E[Z] +
θE{[z−E(Z)]+} with θ ≥ 0. The absolute semideviation is a
law-invariant CRM if θ ∈ [0,1] [7].

B. Cyber Insurance Contract Design Problem

Our contract design problem involves one insurer and one
user. Let x ∈ X denotes the protection investment of the user,
where X ⊂R+ is convex and compact. The cost of investment
is m > 0. The protection investment affects the distribution of
the cyber loss ξ . In particular, we assume that when the user
takes action x, ξ admits a parameterized cumulative distribution
function P(ξ ,x) which is twice differentiable with respect to x
and absolutely continuous with respect to P(ξ ). The probability
density function of P(ξ ,x) with respect to P(ξ ) is denoted
p(ξ ,x). Furthermore, we make the following two assumptions.
Firstly, we assume the protection investment benefits the
system in the sense that the investment provides a first-order
stochastic dominance shift on Ξ, i.e., for all x1,x2 ∈ X such that
x1 ≤ x2, the distribution functions satisfy P(ξ ,x1) ≤ P(ξ ,x2)
for all ξ ∈ Ξ. Intuitively, this stochastic dominance assumption
means that when the protection investment is higher, the
likelihood that severer cyber losses occur is lower. Secondly,
we assume that the density p(ξ ,x) is convex in x for all ξ ∈ Ξ,
i.e., ∂ 2

∂x2 p(ξ ,x) ≥ 0. Since we are considering minimization
problems, this assumption will lead to convex optimization
problems as we will discuss later. Furthermore, this convexity
assumption indicates that the user needs to successively increase
his protection investment to obtain remarkable mitigation of
cyber losses. Hence, the user has to balance his protection
investment between the increasing cost of system updates and
the potential decreased likelihood of severe cyber losses.

When the user does not purchase the cyber insurance, he
receives the full random cyber loss Z = ξ distributed according
to the parameterized distribution P(ξ ,x). Note that one can
consider a more general loss function, such as Z = φ(ξ ) where
φ(·) is a nonlinear continuous function. However, since our
focus is on the role of risk measures, we choose φ as the
identity function. Our results can be generalized with slightly
more complicated notations.

The insurer designs the coverage plan c ∈ [0,1] and the
premium payment q > 0 in the cyber insurance contract. When

the user chooses to purchase the insurance, the user only
receives (1− c)ξ of the random cyber loss at a cost of paying
the premium q to the insurer. The rest amount of the random
cyber loss cξ is beard by the insurer.

We assume that the risk perceptions of the insurer and the
user are captured by risk measures ρ i and ρu, respectively.
When the user purchases the insurance, his loss function is:
U(x) := ρu[(1−c)ξ +mx+q]. The loss function of the insurer
is: J(c, p,x) := ρ i[cξ −q]. The cyber insurance contract design
problem can formulated as the following Stackelberg game:

min
c∈[0,1],q>0,x∈X

ρ
i[cξ −q]

s.t. ρ
u[(1− c)ξ +mx+q]≤ Ū , (IR),

x ∈ argmin
x′∈X

ρ
u[(1− c)ξ +mx′+q], (IC).

(3)

where Ū is the optimal solution of the optimization problem:

min
x∈X

ρ
u[ξ +mx], (4)

which the user faces when he does not purchase the insurance.
The IR constraint in (3) guarantees that purchasing the
insurance is beneficial to the user. The IC constraint in (3)
takes into account the user’s rationality. Note that the contract
problem (3) is called the hidden-action P-A problem. The term
”hidden-action” refers to the fact that the insurer is unable to
observe the true action taken by the user after he purchases the
insurance. Therefore, the IC constraint appears as the insurer’s
ex ante anticipation of the user’s action. The hidden-action
P-A problem is free of the moral hazard issue [4].

The optimal coverage rate and the optimal premium obtained
as the solution to problem (3) are denoted c∗ and q∗.

III. THE ROLE OF RISK PREFERENCES

In this section, we investigate the role of the risk preferences
of the insurer and the user in contract design. We assume that
the risk measures ρu and ρ i are coherent and law-invariant.

A. Problem Simplification
Since ρu and ρ i satisfy axioms (A3) and (A4), (3) becomes:

min
c∈[0,1],q>0,x∈X

cρ
i[ξ ]−q

s.t. (1− c)ρu[ξ ]+mx+q≤ Ū , (IR),
x ∈ argmin

x′∈X
(1− c)ρu[ξ ]+mx+q, (IC).

(5)

The risks ρu[ξ ] and ρ i[ξ ] are functions of the user’s investment
x, for the random cyber loss ξ follows the distribution P(ξ ,x).

The IR constraint in (5) is binding. The reason lies in that
the insurer can decrease her objective value by increasing the
premium q without affecting the IC constraint. Hence, we
obtain the following equality:

(1− c)ρu[ξ ]+mx+q = Ū . (6)

Using (6), problem (5) can then be further simplified as follows:

min
c∈[0,1],x∈X

cρ
i[ξ ]+ (1− c)ρu[ξ ]+mx

s.t. x ∈ argmin
x′∈X

(1− c)ρu[ξ ]+mx, (IC).
(7)



Assuming that the solution to IC is in the interior of X , we
obtain the first-order optimality condition of IC in (7):

0 = (1− c)
∂

∂x
ρ

u[ξ ]+m, (8)

where the term ∂

∂x ρu[ξ ] is the sensitivity of the risk of the
user with respect to his protection investment x. Note that the
(sub)differentiability of a risk measure at a point is guaranteed
when it is finite and continuous at that point and conditions
(A1) and (A2) are satisfied [13]. Since CRMs admit the
optimization formulation (1), Danskin’s theorem indicates that
the subdifferential ∂ρu[ξ ] takes the following form:

∂ρ
u[ξ ] = cov

{
∪ζ∈A∗u

∫
Ξ

∂ (ξ p(ξ ,x))ζ (ξ )dP(ξ )
}
, (9)

where cov{·} denotes the convex hull and A∗u denotes the set
of optimizers of the dual representation of ρu[ξ ]. We refer the
readers to [13] for more details regarding the differentiability
of risk measures. The formula (9) will be useful in Section
III-C when we study the relation between risk perceptions
and system security. Combining (8) and (7), we obtain the
following reformulation of the contract design problem:

min
c∈[0,1],x∈X

cρ
i[ξ ]+ (1− c)ρu[ξ ]+ x

(
(c−1)

∂

∂x
ρ

u[ξ ]

)
−Ū .

(10)

B. Properties of Feasible Contracts

From the discussions in Section III-A, we observe that
a feasible contract satisfies the IR and the IC constraints.
Combining (8) and (6), we find that a feasible coverage plan
c and a feasible premium q satisfies the following equations:

c = 1+
m

∂

∂x ρu[ξ ]
∣∣
x

, (11)

and
q = Ū−mx− cρ

u[ξ ]
∣∣
x, (12)

where x ∈ X . From (11), we observe that the feasible coverage
rate is a decreasing function of ∂

∂x ρu[ξ ]. The user’s action
completely determines the coverage. The feasible premium in
(12) also directly depends on the the user’s risk.

We invoke the following result from [14].

Lemma 1. If a risk measure ρ : Z → R is law-invariant and
satisfies condition (A1), then it is consistent with first-order
stochastic dominance, i.e., ρ[Z1] ≥ ρ[Z2] if and only if Z1
stochastically dominates Z2 in the first-order.

Since we have assumed that when x2 ≥ x1, P(ξ ,x1) stochas-
tically dominates P(ξ ,x2), the consistency result of Lemma 1
indicates that ∂

∂x ρu[ξ ]≤ 0 and ∂

∂x ρ i[ξ ]≤ 0.
Applying 1 on (11), we arrive at a direct consequence that

feasible coverage rates is increasing in the user’s actions. When
utilized in the inverse direction, this monotonicity property
suggests that the insurer can potentially incentivize the user to
invest more on protection by increasing the coverage rate of
the cyber insurance. The monotonicity of feasible premiums

with respect to the user’s action is challenging to conclude
solely from (12). The reason lies in that the second and third
terms on the right-hand side of (12) evolve to the opposite
directions when the user’s action changes.

When ρu[ξ ] and ∂

∂x ρu[ξ ] are evaluated at points in X which
optimize the objective function of (7), (11) and (12) arrive at the
optimal coverage rate and premium. Hence, the values of the
optimal coverage and the optimal premium can be calibrated
conveniently when the set A∗u is a singleton. If one is aware of
how user’s risk perception changes under exogenous influences,
such as marketing, nudging, and information campaigns, then
one can achieve better performances in the optimal contract
using the knowledge. Since the effect of information on human
risk perception is beyond the scope of the current paper, we
leave this topic as a future work.

C. The Influence of Risk Perceptions on System Security
Cyber insurance, as a tool to increase the resiliency of cyber

systems, is the last resort to enhance the system security. The
overall system security largely depends on the how much the
user invests on protection. In this part, we investigate the risk
preferences of the insurer and the user to provide conditions
under which the contract incentivizes the user to invest more on
protection. Our analysis is based on comparing the protection
investment actions of the user when he purchases and does
not purchase the insurance. The former action is the optimal
solution to (10), which we denote as x∗. The latter action is
the optimal solution to (4), which we denote as x0.

Next, we present our result which characterizes the condi-
tions on the risk preferences for the contract to be incentivizing.

Theorem 1. Insurance enhances system security by
incentivizing the user to invest more on protection, i.e., x∗ ≥ x0,
if the following conditions hold:
(C1) The insurer is more risk-averse than the user:
ρ i[ξ ]≥ ρu[ξ ], for all x ∈ X.
(C2) The insurer’s risk perception is more sensitive than the
user’s to the stochastic dominance shift induced by the user’s
action, i.e., | ∂

∂x ρ i[ξ ]| ≥ | ∂

∂x ρu[ξ ]|.

Proof. We first explicitly express the first-order optimality
conditions that x0 and x∗ satisfy. From (4), we observe that x0

satisfies the following equation:

0 =
∂

∂x
ρ

u[ξ ]+m. (13)

To obtain the formula that x∗ has to satisfy, we substitute (8)
into (7) to eliminate the decision variable c:

min
x∈X

U ′(x) := (1+
m

∂

∂x ρu[ξ ]
)ρ i[ξ ]− m

∂

∂x ρu[ξ ]
ρ

u[ξ ]+mx.

(14)
The optimal solution to (14) is equivalent to x∗. By adding the
term ρu[ξ ]−ρu[ξ ] to U ′(x) and performing a few algebraic
manipulation, we arrive at the following:

U ′(x) =
(
ρ

i[ξ ]−ρ
u[ξ ]

)
·

(
1+

m
∂

∂x ρu[ξ ]

)
+ρ

u[ξ ]+mx. (15)



Let D(x) = ρ i[ξ ]−ρu[ξ ]. From (15), we obtain the following
first-order optimality condition which x∗ satisfies:

0 =
d
dx

D(x) ·

(
1+

m
∂

∂x ρu[ξ ]

)
+D(x) ·

−m ∂ 2

∂x2 ρu[ξ ]

( ∂

∂x ρu[ξ ])2

+
∂

∂x
ρ

u[ξ ]+m.

(16)

Next, we investigate the relation between (13) and (16). Fix a
subgradient in (9), we can obtain the following:

∂ 2

∂x2 ρ
u[ξ ] =

∫
Ξ

ξ ζ (ξ )
∂ 2

∂x2 p(ξ ,x)dP(ξ ), (17)

where ζ (ξ ) ∈ A∗u is a density function with respect to P(ξ ).
Since Ξ ∈ R+, ζ is a probability density function and P
is a probability measure in (17), the convexity assumption
∂ 2

∂x2 p(ξ ,x)≥ 0 leads to ∂ 2

∂x2 ρu[ξ ]≥ 0 for all x ∈ X . Since (13)
contains ∂

∂x ρu[ξ ] evaluated at x0 and (16) contains ∂

∂x ρu[ξ ]

evaluated at x∗, ∂ 2

∂x2 ρu[ξ ] ≥ 0 tells that to prove x∗ ≥ x0, it
suffices to prove that the following condition holds at x∗:

d
dx

D(x) ·

(
1+

m
∂

∂x ρu[ξ ]

)
+D(x) ·

−m ∂ 2

∂x2 ρu[ξ ]

( ∂

∂x ρu[ξ ])2
≤ 0. (18)

The second term of the left-hand side of (18) is negative if (C1)
holds. Since ∂

∂x ρ i[ξ ]≤ 0 and ∂

∂x ρu[ξ ]≤ 0 because of Lemma
1, the first term of the left-hand side of (18) is negative if
condition (C2) holds. This completes the proof.

Theorem 1 indicates that cyber insurance incentivizes the
user’s protection investment when conditions (C1) and (C2)
hold. Condition (C1) means that the insurer is more risk-averse
than the user. In other words, the insurer measures the risk
to be severer than the user does when they face the same
random cyber loss. This condition suggests that the insurer is
more sophisticated in estimating the harm from potential cyber
attacks or system failures. Hence, the insurer can leverage the
more detailed knowledge of how the cyber loss influence the
system to design the insurance contract for protection purposes.
Condition (C2) indicates that the insurer’s risk perception is
more sensitive to the changes of the action of the user than
the user himself. This requirement can have the interpretation
that the insurer is more aware of how the probabilistic changes
of the cyber losses induced by the user’s actions influences
the systemic risks. This privilege of the insurer aides her in
designing the incentive contracts so that the user’s actions after
purchasing the insurance stochastically shift the cyber losses
to benefit the overall system security.

Remark 1. Risk-aversion of the user is an essential property
to allow the user to seek cyber insurance. For example, the
recent work [9] has investigated a linear cyber insurance
problem where the insurer is risk neutral. The authors in
[9] have shown that the cyber insurance market only exists
when the user is risk-averse. While condition (C1) in Theorem
1 seems to stand on the opposite side of the result of [9],
we can show that they are consistent. The reason lies in the

difference between minimizing the loss and maximizing the
utility. The axioms of risk measures in Definition 1 only fit
minimization problem. For maximization problem, condition
(A1) becomes condition (A1’): ρ(Z)≤ ρ(Z′) if Z(ξ )≥ Z′(ξ )
for almost everywhere ξ ∈Ξ. When we consider our problem in
a maximization setting with risk measures ρ i′ and ρu′ satisfying
(A1’), the relations between stochastic dominance and the risk
measures ρ i′ and ρu′ are reversed. Then, in the maximization
counterpart of our problem, condition (C1) becomes the relation
ρ i′ [−ξ ]−ρu′ [−ξ ]≤ 0, which means that, observing the same
gain −ξ , the user should be the one who exhibits more risk-
aversion. Therefore, our setting is consistent with the findings
in the literature [9], [1], [10]

Remark 2. When condition (C1) in Theorem 1 holds, a
decrease in the coverage rate c will lead to a decrease in the
objective value of (7). However, this fact does not necessarily
leads to a trivial coverage plan, i.e., c∗= 0, due to the existence
of the IC constraint in (7). Suppose that the insurer deceases
the coverage plan c. Since the action of the user x and the
coverage plan c should satisfy (8) and the risk ρu is decreasing
in x, the action x of the user will also decrease. Then, the
deceased action x can increase the objective value of (7) since
both ρ i and ρu increases. Thus, a non-trivial coverage plan
can exist when condition (C1) holds.

D. Perception Compromise

In this section, we discuss the interpretations of problem (7)
by recognizing equivalences in the insurer’s choices.

One observes that choosing the coverage rate c ∈ [0,1] in
the objective function of (7) can be identified as choosing a
distribution with support {ρ i[ξ ],ρu[ξ ]}. This viewpoint can
have the interpretation that the insurer balances between her
own risk perception ρ i and the user’s risk perception ρu. In
other words, in order to design an optimal cyber insurance
contract, the insurer compromises her own risk perception to the
user’s risk perception and tries to find an averaged perception
in between them as the calibration of her risk.

The following explanation can also lead to the above
observations. Recall that any convex combination of CRMs is
still a CRM [6]. Then, problem (7) can be reformulated as:

min
x∈X ,ρ̃∈Σ

ρ̃[ξ ]+mx

s.t. x ∈ argmin
x′∈X

(1− c)ρu[ξ ]+mx, (IC),
(19)

where Σ := {ρ : Z → R|ρ = cρ i +(1− c)ρu} denotes the set
of compromised risk measures. Problem (19) indicates that
the insurer’s contract design problem is equivalent to a risk
preference design problem. The set Σ means that the feasible
choices of risk preferences is a compromise of the insurer’s
original preference ρ i to the user’s preference ρu.

IV. CASE STUDY: RANSOMWARE ON COMPUTER SYSTEMS

We consider a scenario where a user aims to insure his
networked computer system containing n computers against a
ransomware. The ransomware is developed by an attacker, who



can hack into the computers to lock down their performances.
Once a computer is locked down by the ransomware, the only
way to restart it is to pay a certain amount of ransom to
the attacker to let him unlock the computer. The protection
investment x ∈ [0,1] in this case refers to the level of effort the
user spends to update the firewalls of the computer system to
defend against the ransomware. An increase in the protection
investment decreases the probability that a computer is infected
by the ransomware. We normalize the ransom to be paid
per computer to an amount so that the loss to the user can
be denoted by the number of computers that get locked
down, i.e., Ξ = {1,2, ...,n} and the distribution of disabled
computers follow a binomial distribution with n trials and
success probability 1− 0.8x2. Note that this setting satisfies
the assumption that an increase in the investment induces a
stochastic dominance shift in the cyber loss. The factor 0.8
represents that fact that the risk cannot be fully avoided.

(a) Change of feasible coverage rate
when user becomes more risk-averse.

(b) Change of feasible premium
when user increases investment.

Figure 2. Properties of feasible contracts.

In numerical results on feasible contracts, we use AV@R
to capture the risk perception of the user. In Fig. 2(a), we
discover that the feasible coverage rate is piecewise increasing
in the level parameter of the user’s AV@R increases. In
Fig. 2(b), we show the feasible premium as a function of
the user’s protection investment. The plot in Fig. 2(b) also
appears to be a piecewise increasing function. The piecewise
increasing property is related to the dual representation of a risk
measure as shown in 1. According to [2], since the probability
density function which admits the optimal value of 1 may lack
continuity, the monotonicity property of the contract can only
be guaranteed in the region where the density is continuous.
The piecewise increasing property can create challenges for the
insurer in design the optimal contract. Nevertheless, the contract
is increasing locally. Hence, the insurance can be design more
conveniently when the risk perceptions and the actions of the
user are in restricted regions. Such scenarios occur, for example,
when the user’s firewall updates have limited effects on the
security of the computer system, or when the risk perception
of the user is resistant to exogenous information.

We can also consider a multi-users scenario where each
user owns a subset of the computers and possesses a unique
risk perception. The risk preference type setting considered
in [2] is a feasible formulation for this scenario. Accordingly,
the insurer designs the contract by considering the averaged
response from the population of the users. We will leave this
extension to the future work.

V. CONCLUSION

In this paper, we have formulated a cyber insurance contract
design problem which incorporates coherent risk measures to
capture the risk perceptions of the insurer and the user. Using
the proposed framework, we have characterized the feasible
coverage rate and premium in terms of the risk of the user and
its derivative with respect to the user’s action. Furthermore,
we have proved that a cyber insurance can incentivize the user
to invest more on the system protection when the insurer is
both more risk-averse than the user and more sensitive to the
impacts of the user’s action changes on the risks than the user.

The nonlinearity induced by the risk measures makes the
investigation of the optimal contract challenging. We leave
the study of the properties of the optimal contracts in the
future work. Another possible extension would be the study
of insurance design in a dynamic environment. This extension
would encounter two major challenges. The first challenge
centers around solving a dynamic principal-agent problem. The
second challenge arises since we need to adopt a dynamic
assessment of the risk. Available approaches to dynamic
risk assessment include using the dynamic risk measures or
considering a repetition of static risk measures.
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