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Abstract—Machine learning (ML) has become increasingly
popular in network intrusion detection. However, ML-based
solutions always respond regardless of whether the input data
reflects known patterns, a common issue across safety-critical
applications. While several proposals exist for detecting Out-Of-
Distribution (OOD) in other fields, it remains unclear whether
these approaches can effectively identify new forms of intrusions
for network security. New attacks, not necessarily affecting
overall distributions, are not guaranteed to be clearly OOD as
instead, images depicting new classes are in computer vision. In
this work, we investigate whether existing OOD detectors from
other fields allow the identification of unknown malicious traffic.
We also explore whether more discriminative and semantically
richer embedding spaces within models, such as those created
with contrastive learning and multi-class tasks, benefit detection.
Our investigation covers a set of six OOD techniques that employ
different detection strategies. These techniques are applied to
models trained in various ways and subsequently exposed to
unknown malicious traffic from the same and different datasets
(network environments). Our findings suggest that existing de-
tectors can identify a consistent portion of new malicious traffic,
and that improved embedding spaces enhance detection. We also
demonstrate that simple combinations of certain detectors can
identify almost 100% of malicious traffic in our tested scenarios.

I. INTRODUCTION

Network Intrusion Detection Systems (NIDS) monitor the
network traffic for signs of potential threats with various tech-
niques, including signature detection, anomaly detection, and
behavioral analysis [1], [2]. Network traffic can be analyzed
either at a Packet Capture or Network Flow [3] (NetFlow)
level, though packet inspection has become less common due
to encryption and the massive size of modern traffic. We focus
on NetFlow inspection, where packets relating to a single
communication [3] are analyzed by measuring aggregated
features such as idle times and the amount of exchanged data.

Recently, Machine Learning has gained popularity in
NIDS [4] as it enables automatic extraction of complex detec-
tion patterns, quick adaptation to changing environments [5],
and easy personalization without expensive human expertise.
However, ML-based solutions have limitations such as lacking
interpretability and requiring well-crafted training data. Al-
though a large body of research is addressing these issues [4],
we focus on another drawback: ML-based NIDSs always
provide a response regardless of whether they recognize (are
trained with) the input data pattern.
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Fig. 1. Different situations in the decision space of a deployed ML-based
NIDS. Case 1 is the expected situation where the new traffic respects the i.i.d.
assumption. Case 2 depicts traffic that is (gradually) shifting due to changes
in malicious and benign behaviors towards relatively known (usual) regions.
Case 3 shows new unknown traffic (of potentially different classes) falling
into unusual regions of the decision space. Case 4 describes a challenging
situation where a new attack is crafted so that it is misclassified by the NIDS.

This issue is particularly relevant since network traffic
tends to have dynamic and non-stationary distributions, either
caused by normal behavioral shifts or adversaries, which can
cause degradation in NIDS performance: a problem known
as concept drift [6]. Another inherent problem of dynamic
distributions is Out-Of-Distribution data, which is unusual
traffic markedly different from a reference distribution not
necessarily affecting the overall data distribution. In general,
concept drift and OOD data are both caused by shifts in feature
distributions, label distributions, or both [6], [7].

Based on our analysis, an ML-based NIDS may be affected
in various ways after deployment. In Fig. 1, we present 4
exemplar cases in a NIDS trained to detect Botnet and SQL
injections. Normally, the NIDS is expected to work as in Case
1, where new traffic is well represented by training data (i.i.d.
assumption). However, it is normal for traffic to shift over time
and this may affect NIDSs depending on the shift extent and
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direction. For instance, the shift to SQL traffic in Case 2 does
not compromise the NIDS, but the same is not true for benign
traffic. Moreover, new traffic may also be adversarially crafted
(Case 3) and be potentially mistaken as in Case 4.

We argue that shifts as those in Fig. 1 happen more in
NetFlow features (covariate shift [7], [8]) rather than in labels
(actual or semantic shift [6], [7]). As in Case 2, malicious traf-
fic remains malicious if its features are adversarially crafted to
evade detection, while shifts in normal user behaviors should
not transform benign traffic into malicious. Even in cases of
new attacks (Case 3), it might be possible to experience shifts
in feature distributions [7]. Additionally, we argue that OOD
techniques sensitive to small feature perturbations can also
serve as drift detectors by monitoring the volume of alerts over
time either with standard statistics or existing methods [6], [8],
[9]. Therefore, in this work, we adapt and evaluate techniques
to detect shifts primarily affecting features.

A perfect OOD detector should trigger an alert and ask the
expert knowledge for further investigation in every situation
but Case 1. However, Case 4 is extremely difficult to detect
without any additional information besides the ML-based
NIDS and training data. Whereas well-designed OOD detec-
tors should identify cases like 2 and 3. We thus investigate
whether traffic generated by new attacks, either similar to those
in training or completely different, can be detected as OOD by
existing techniques from other ML fields. Note that it is not
guaranteed that effective techniques in other fields are suitable
for network intrusion. As an example, well-working detectors
on data like images with bounded and discrete domains might
prove ineffective on NetFlows, where features are generally a
mix of continuous unbounded and discrete.

Therefore, we select detection techniques of different na-
tures from other ML fields and evaluate whether such tech-
niques can identify NetFlows of unknown attacks. As baseline
model, we consider a standard FeedForward Neural Network,
and we also assess the effect of different training regimes
on the quality of detection techniques. Specifically, we train
models in binary (different attacks in the same class) and
multi-class (each attack makes a class) settings, with and
without the aid of a simple Contrastive Learning approach:
Center-Loss [10]. We expose various combinations of models
and detection techniques to malicious traffic generated from
attack types not seen in training, where such traffic may
come from the same dataset (same network environment) and
a different dataset (different network environment). Finally,
we evaluate two ensembles of OOD techniques to enhance
detection and further explore the complementarity of these
techniques, providing guidelines for practical applications. All
our code and the numerical results are freely available at
https://github.com/AndreaCorsini1/CyberOOD

The contributions of this paper include:
• We investigate the effectiveness of treating the identifica-

tion of unknown intrusions as an OOD detection problem
and explore the applicability of existing OOD techniques.

• We identify the most effective techniques for detecting
new intrusions and explore their potential for combination

to enhance detection. We also discuss limitations of some
techniques, providing insights for further development.

• We emphasize the significance of improving the model
embeddings to achieve better detection, highlighting that:
– Contrastive Learning, specifically the use of Center-

Loss, enables the creation of embeddings that improve
OOD techniques and their ensemble.

– Multi-class training allows making semantically richer
embeddings, which offer advantages over binary ones
for OOD techniques and their ensembles.

The remainder is organized as follows: Sec. II presents
existing OOD literature; Sec. III describes key concepts for
our work; Sec. IV outlines our methodology; Sec. V describes
the experimental setup; Sec. VI presents results; and Sec. VII
closes with limitations and potential future directions.

II. RELATED WORKS

In this section, we present various Out-Of-Distribution de-
tection techniques and we review recent proposals to identify
and react to shifts in the NIDS literature.

A. Out-Of-Distribution in Machine Learning
Machine learning models are trained under the closed-world

assumption, where test data is drawn i.i.d. from the same
distribution as the training data. However, this assumption is
often violated and several ML fields try to address the issue
of identifying unknown/anomalous/out-of-distribution data:
• Anomaly detection [11] aims to detect anomalous inputs

that deviate from normality, whether in features or labels.
Anomaly detection assumes there might be abnormal data
in the training set [12] and treat data as a whole, thus it
does not strictly require the correct classification of inputs.

• Novelty detection is similar to anomaly detection, but as-
sumes the presence of only normal data in the training set
and focuses on inputs affected by semantic shift [7], hence
not falling into any of the training classes. In addition, novel
inputs are not treated as erroneous and are typically prepared
for retraining and future constructive procedures.

• Open Set Recognition [13] goes beyond novelty detection
and also requires the correct classification of in-distribution
(ID) data. The goal is to detect inputs belonging to new
classes and correctly classify those from known classes.
Open Set Recognition is usually focused on semantic shifts.

• Outlier detection identifies inputs in a dataset that markedly
differ from others. Outlier detection is a pre-processing step
and is not applied during inference or training.
As introduced in Sec. I, the NIDS setting requires the

classification of known traffic and the detection of shifts
caused either by modifications in known traffic or the ap-
pearance of unknown traffic. This setting resembles the Open
Set Recognition one, but it additionally comprises shifts not
implying the appearance of new classes. Therefore, we speak
of Out-Of-Distribution detection in general terms.
Confidence-based detectors use estimates derived from a
model to quantify the level of certainty or trust in its predic-
tions as an indicator of ID-ness. In [14], the authors observed
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that well-trained models assign lower confidence scores to
OOD data. Subsequent studies [15]–[17] have proposed tech-
niques to enhance confidence estimation, while others have
introduced modifications to the model architecture and training
objectives [18], [19]. Although confidence is not always a
reliable OOD indicator [20], [21], due to their simplicity
and clarity, confidence-based detectors are commonly used in
practice and serve as a baseline for OOD detection.

Density-based detectors explicitly model the distribution of
ID data, either raw or latent features, and flag samples falling
into low-density regions as OOD. In multi-class tasks, class-
conditional distribution estimators are often employed so that
the OOD samples can be identified based on their likeli-
hood [22], [23]. To model the class-conditional distribution
of ID data, parametric and non-parametric models such as
a simple Mixture of Gaussian, Kernel Density Estimation,
and deep generative models [7] are frequently used. However,
modeling the distribution of complex data and estimating the
likelihood may be challenging [23], imply a-priori assumptions
that need validation, and do not always scale well like in kernel
estimators. Therefore, we prefer to avoid these detectors and
leave their evaluation to future work.

Distance-based detectors are based on the idea that the
OOD samples should be relatively far away from centroids or
prototypes of ID classes. Once a prototype is extracted for each
training class, a distance metric like Mahalanobis, Euclidean,
or Cosine can be used to estimate the class similarity and
flag samples that are not similar enough to any of the proto-
types [7], [22]. Recently, even a class-conditioned K-Nearest
Neighbor approach [24] has been adopted to detect OOD
samples based on the distance from the k-nearest neighbor.

B. Out-Of-Distribution in Network Intrusion

A significant portion of the network intrusion literature
on ML applications focuses on anomaly detection [25], [26]
and concept drift [6], [27]–[29]. Anomaly techniques, such as
autoencoders [30], have gained interest due to their ability to
detect unknown attacks using only normal traffic and without
requiring labels. However, these methods often suffer from
a high number of false alarms as they flag any anomalous
sample as an attack [4]. In contrast, concept drift and OOD
detectors are generally more effective but typically require
labeled data [6], [7]. Therefore, recent works proposed ML-
based solutions that ease the need for labels without increasing
false alarms by leveraging anomaly detection techniques. For
instance, [31] proposed an efficient and online ensemble of
autoencoders that utilizes an ad-hoc feature extraction module
to differentiate normal and abnormal patterns in packets.
Similarly, [31] introduced an adaptive ensemble system that
incorporates a packet-based feature extraction method and a
sub-classifier generation module to create ensemble models
from drifted data chunks and ground truth labels. [32] modified
the extreme gradient boosting algorithm to detect and adapt
to drifts in the presence of a large number of features. [29]
employed active learning, label estimation, and an explainable

ML framework to respectively update the model, reduce
labeling overhead, and interpret model reactions to shifts.

In a context akin to ours, [5] utilized a contrastive loss
signal alongside a distance function capturing instance and
class-level fidelity to recursively update the encoder network.
Similarly, [27] employed Contrastive Learning to create a
compressed representation of training data which is used to
detect drifting samples with class centroids. Both these works
use a contrastive signal that pulls embeddings of the same
class together and pushes those of different classes apart, we
instead rely on Center-Loss [10]. Moreover, these works use
autoencoders while we adopt a FeedForward Network.

III. GRADIENT DETECTION & CONTRASTIVE LEARNING

This section presents key components of our study, specif-
ically gradient-based detectors and Contrastive Learning. We
represent an ML-based NIDS with a parameterized model f
that maps NetFlows xi ∈ Rd into a class y = argmaxj∈C zj ,
where C is the set of training classes and zj = fj(xi)
is the logit (pre-softmax) score produced by f for class
j ∈ C. Additionally, we suppose the model gives in output the
embedded representation ei ∈ Rw of xi constructed after the
last embedding layer, i.e., the one before the classifier layer.
Refer to the left part of Fig. 2 for a graphical representation.

A. Gradient-based Detection: ODIN and Mahalanobis

Most OOD detectors rely on information extracted from
models to derive OOD scores, disregarding information on the
gradient. In [15], the authors observed that adding a fixed per-
turbation to samples in the direction of the gradient amplifies
the gap between ID and OOD softmax scores. Thus, the idea
behind Out-of-DIstribution detectioN (ODIN) [15] is to jointly
apply temperature scaling [33] and a controlled perturbation
to detect OOD data. ODIN consists of the following steps:

1) Temperature Scaling: divides the logits zj by a tem-
perature T that reduces the sharpness of the softmax
distribution and makes the model less confident.

2) Perturbation: involves adding a perturbation ϵ to xi in
the direction given by the sign of the gradient:

x̂i = xi − ϵsign(∇p∗j ) (1)

where p∗j = maxj∈C pj is the maximum softmax score
for xi after temperature scaling. This perturbation pushes
samples toward their nearest class.

3) Detection: computes an ID score by feeding x̂i into the
model again; if this score is above a threshold, xi is ID.

Another similar gradient-based method is the Mahalanobis
Detector (MD) [12], where the Mahalanobis distance is used
to measure how “typical” a point is with respect to a learned
latent distribution. The Mahalanobis distance requires an es-
timate of the mean µ and covariance matrix Σ for each ID
class, which are normally extracted from the training set. After
having these parameters, MD applies a controlled perturbation
as in ODIN, but without temperature scaling and where the
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(ei) created by the encoder inside the decision space of the FNN trained with and without Center-Loss on four traffic types. The lines highlight points of the
decision space where the softmax scores produced by the classifier (i.e., the FNN confidence) change.

gradient is computed with respect to the distance between ei
and the nearest class distribution (distMD(·)):

x̂i = xi − ϵsign(∇distMD(ei)) (2)

The final OOD detection is similar to ODIN: a threshold
is first extracted from the validation, and every perturbed x̂i

with a distance higher than this threshold is labeled as OOD.

B. Contrastive Learning and Center Loss

Contrastive Learning is a self-supervised technique designed
to learn meaningful embedding representations. It achieves this
by bringing similar input samples closer together in the learned
embedding space while pushing dissimilar apart [34]. By doing
so, Contrastive Learning encourages the model to capture dis-
criminative features that can be useful for various downstream
tasks. In a typical contrastive framework, each sample in a
batch is augmented through ad-hoc transformations (such as
random cropping and flipping for images) into new samples
called the positives, while the original sample is referred to as
the anchor. The objective is to maximize the similarity between
the anchor and the positives while minimizing the similarity
between the anchor and other batch samples.

One of the precursor techniques to Contrastive Learning
is Center-Loss [10] (CL). CL encourages a model to learn
discriminative embeddings ei that cluster around their class
centers. It accomplishes this by defining a center cj ∈ Rw for
each class j ∈ C and introducing an additional term to the
standard cross-entropy loss. This additional term minimizes
the distance between the embeddings and their corresponding
class centers, which are determined by the ground-truth labels.
The class centers are learned alongside the model’s parameters
by minimizing the additional Center-Loss term:

LCL =
1

2

∑
i∈B

||ei − c∗j ||2 (3)

where the sum is over the batch samples B and c∗j is the
ground-truth center of each input. The overall loss is thus a
linear combination of Cross-Entropy (LCE) and Center-Loss:
L = LCE +λLCL, where λ is a hyperparameter that controls
the weight of LCL.

IV. METHODOLOGY & DESIGN CHOICES

Herein, we present our model architecture, the adapted
Center-Loss for our settings, and the selected OOD detectors.

A. The Model Architecture

Although it might be possible to design ad-hoc architectures
for OOD detection tasks [19], [35], we prefer to avoid them
and make no particular assumption about the model. We only
require for a NetFlow xi ∈ Rd to have access to its pre-
softmax score zi and to an embedded representation ei ∈ Rw

produced within the model, like the one generated before the
classification layer. Therefore, the architecture can comprise
any layer like convolutional, linear, and recurrent ones [30].

We logically divide our model into two parts: (i) an encoder
that transforms NetFlows xi into embeddings ei, and (ii) a
classifier that uses ei to produce a softmax score for each
class. The proposed encoder is composed of four linear layers
of decreasing size, each activated through a LeakyReLU non-
linearity with a slope of 0.15. We also apply dropout after the
first three layers. The classifier is a single linear layer that has
as many neurons as the number of output classes. We will
refer to such a model as Feedforward Neural Network (FNN)
and provide in the left part of Fig. 2 a visual representation.

B. Improving the Model Embedding

Recently, Contrastive Learning has been widely adopted
to improve the performance of ML in different tasks [34].
In our work, we propose to use Contrastive Learning to
make embeddings learned by our FNN more discriminative,
improving classification tasks [10], [34], [36] and potentially
enhancing the effectiveness of OOD detectors. As an example,
refer to the two plots on the right of Fig. 2, which represent the
embedding spaces produced by our FNN encoder when trained
with and without a contrastive learning signal, respectively. It
is immediate to see that the projected NetFlows of individual
attacks are less scattered and more separated in the Center-
Loss plot. These discriminative embeddings may benefit de-
tectors like distance-based ones that assume normality or well-
representative prototypes to detect OOD.



Although many contrastive methods exist [10], [34], [36],
most of them are primarily designed for other ML fields and
rely on positive samples and ad-hoc augmentations [34], vague
concepts in the NIDS literature. Therefore, we prefer to em-
ploy a simpler and more straightforward method: Center-Loss
(described in Section III-B). The application of Center-Loss
to our setting does not require any particular modifications;
however, we need to account for the unique aspects of NIDSs
such as heavily imbalanced training sets and noisy data.

To mitigate the effect of imbalanced sets, we adopt a
combination of over- and under-sampling as further described
in Sec. V-B. This is particularly important because CL works
locally on batches, and with heavy unbalancing it is likely to
have batches with only NetFlows of the majority benign class,
thus focusing too much on improving their embeddings and
its center. In addition, we propose to apply the CL term of
Eq. 3 only on samples correctly classified by the model. This
helps in mitigating the effect of noisy labels and data during
training, which are common issues in NIDSs [37].

C. Adopted OOD Detectors

In this work, we consider OOD detectors of different natures
that work beside classification models (pre-trained and not)
and can be applied to any architecture. Our rationale for
selecting detectors reviewed in Sec. II is to choose popular
ones in related ML fields whose complexity (theoretical and
implementation) is as low as possible. Wherever possible and
not penalizing in terms of performance, we prefer to evaluate
detectors as originally proposed.

Regarding confidence-based detectors, we adopt the base-
line approach proposed in [38] (CONF). This straightforward
solution involves applying a threshold to the softmax scores
and labeling as OOD all the NetFlows with a score below this
threshold. We also adopt Monte Carlo Dropout [17] (MCD) in
a similar manner. Instead of relying on a single confidence
estimate for a NetFlow xi, we leverage MCD with a switch-
off probability of 0.4 to obtain multiple softmax scores. Then,
all those xi for which the standard deviation of their softmax
scores exceeds a predefined threshold are flagged as OOD.
This allows a less biased estimate about xi.

In addition, we adopt two cutting-edge gradient-based de-
tectors in computer vision which are ODIN [15] and Malah-
nobis [12] (MD), introduced in Sec. III-A. Although there exist
improvements over these proposals (see e.g. [19]), we prefer
to keep them as originally proposed to avoid potential biases
introduced by the assumptions of such improvements. As we
demonstrate later, gradient-based detection seems less effective
on NetFlows compared to images.

Lastly, we include two distance-based detectors. The first
one (SIM) uses the simplified Silhouette [39] to measure the
distance between test and training data. For each class j ∈ C,
SIM first extracts a center by averaging the embeddings ei
of training data labeled with j. Then, it uses these centers to
compute Silhouette values for testing NetFlows by flagging
as OOD those having a maximum value below a threshold.
Note that the simplified Silhouette is adopted here to reduce

the computational complexity of the standard Silhouette [39].
The second detector is based on the K-Nearest Neighbor (KNN)
proposal in [24], where a separate KNN model is fitted on
the embeddings ei of training classes and used to measure
Euclidean distances at inference time. This detector works
similarly to SIM, but it selects the KNN model to query for
measuring the distance from the kth nearest neighbor based
on the class predicted by the FNN. If such distance is above
a threshold, the NetFlow is OOD. After preliminary analysis,
we set k = 25 and α = 100% in all our experiments. We refer
the reader to [24] for more detailed explanations.

All these detectors rely on thresholds extracted on ID
NetFlows, except ODIN and MD, which also require OOD
data. Details on threshold extraction are provided in Sec. V-B.

V. EXPERIMENTAL SETUP

A. Datasets and Preprocessing

Datasets. In our experiments, we train models on benign
traffic and specific attacks from one dataset. Then, we evaluate
such models on remaining attacks from the same dataset as
well as attacks from another one. Thus, we selected two similar
labeled datasets: IDS2017 [40] comprises synthetic traffic
and common attacks like DoS (D) and DDoS (DD), while
IDS2018 [40] contains more attack variants and is created
in a larger network. You can refer to Tab. IV for the list of
their attacks. The traffic of these datasets is transformed into
NetFlows with the CICFlowMeter [41], where each NetFlow
is described by a set of more than 80 features. We purposely
chose these datasets as they contain roughly the same attack
families and their traffic comes from consecutive years, hence
should not differ much. By training on some attacks and testing
on all the others from both datasets, we can logically simulate
all the cases described in Fig. 1. With a single dataset, it is
hard to cover situations like those described in Case 2 of
Fig 1, as inducing shifts in known training attacks requires
artificial manual crafting of NetFlows. Contrary, with a dataset
comprising the same attacks, we can try to simulate situations
of Case 2 without explicit manual intervention. As an example,
we are going to use the D-hulk traffic of IDS2018 for training
and test detectors on the “shifted” D-hulk traffic of IDS2017.
Lastly, note that solely including more diverse datasets does
not help in better modeling Case 2.

Preprocessing. We have established with a simple feature
selection procedure a common set of 20 features for both our
datasets from the 80+ generated by the CICFlowMeter. Before
applying our procedure, we log-scale continuous features,
leave unaltered integer ones, and encode in one-hot port num-
bers by considering three intervals: well-known, registered,
and ephemeral ports. Then, our feature selection procedure
starts by considering each dataset per se and identifies the
most important features with a Random Forest analysis [42].
On each dataset, we apply the following steps:

1) Remove IPs and quasi-constant (variance <0.05) features.
2) Keep an arbitrary feature between ones having a Pearson

correlation coefficient higher than 0.8.



TABLE I
THE COMMON SET OF 20 FEATURES DESCRIBING A NETFLOW.

# Name Description

1 Dst wk Whether destination port is well-known [0, 1023].
2 Dst reg Whether destination port is registered [1024, 49151].
3 Num fwd pkts Number of packets outgoing the network.
4 Num bwd pkts Number of packets ingoing the network.
5 Max fwd pkt Maximum size of outgoing packets in the NetFlow.
6 Max bwd pkt Maximum size of ingoing packets in the NetFlow.
7 Ack cnt Number of packets with ACK.
8 Syn cnt Number of packets with SYN.
9 Rst cnt Number of packets with RST.

10 Duration NetFlow duration in seconds.
11 Pkts/s Number of exchanged packets per second.
12 Fwd pkts/s Number of packets outgoing the network per second.
13 Bwd pkts/s Number of packets ingoing the network per second.
14 Avg IAT Average Inter Arrival Time between packets.
15 Std IAT Standard deviations of packet Inter Arrival Times.
18 Sflow fwd byts Average number of outgoing packet bytes in sub-flowsa.
19 Sflow bwd byts Average number of ingoing packet bytes in sub-flowsa.
16 Avg idle Average idle time (between sub-flows) of the NetFlow.
17 Avg active Average active time (length of sub-flow) of the NetFlow.
20 Fwd Seg min Minimum segment size in outgoing packets.

a A sub-flow is a sequence of packets inside the NetFlow each received within a
maximal inter-arrival time.

3) Fit a large Random Forest (200 trees with 20 as maximum
depth) on the remaining features and evaluate Gini and
Permutation importance [42].

4) Rank the features based on the normalized sum of Gini
and Permutation importance.

After having the features ranked by their importance, our
procedure automatically selects those that are among the 20
most important in both datasets. To ensure a satisfactory
detection performance, we additionally ensure that the top-7
features on each dataset are selected. The final set of features
is reported in Tab. I. Note that for open-source datasets not
having all our features, Zeek with a customized script can be
used to generate the required NetFlow features.

B. Model, Training, and Tuning details

Architecture. In our FNN, we use linear layers of decreasing
size in the encoder, the first contains 128 neurons, the second
64, the third 32, and the fourth 2. All dropout layers switch off
neurons with a probability of 0.3. Whereas the classifier con-
tains as many neurons as classes in the training set. Note that
we restrict the encoder to produce embeddings in a 2D space
to easily plot them. We offline verified that this restriction does
not limit the model classification performance, as theoretically
stated in the universal approximation theorem [30].
Training. We train our FNN on scenarios extracted from
IDS2018, the larger and more comprehensive dataset, where
a scenario comprises all the benign traffic and three attacks
(4 classes). Refer to Tab. II for the list of the scenarios
and their attacks. Every training scenario is split 70/30 in a
stratified manner. We use 70% of the traffic for training two
separate models – one with Center-Loss and one with Cross-
Entropy. The remaining 30% is used for validation purposes
and detector tuning. All the models are trained for 25 epochs
with the Adam optimizer [30], batch size of 512, and learning
rate at 0.0005. The model producing the best F1-score on the

TABLE II
THE TRAINING SCENARIOS EXTRACTED FROM IDS2018 AND THEIR

RATIONALE IN OUR EXPERIMENTS.

Training Attacks Rationale

Sc
en

ar
io

1

• FTP
• D-hulk
• DD-hoic

We select training attacks that generate a high-
volume of normal (FTP) and obfuscating traffic.
This setup tests detectors in identifying low-volume
attacks and variations of training ones, e.g., SSH is
a variant of FTP on a distinct protocol and D-hulk
from IDS2017 may be a shifted version of 2018 one.

Sc
en

ar
io

2

• SSH
• D-hulk
• DD-http

We choose again training attacks of high-volume
which may induce different classification patterns
within the FNN compared to Scenario 1. Different
patterns can potentially impact the capability of cer-
tain detectors to effectively identify unknown attacks.

Sc
en

ar
io

3

• D-eye
• DD-udp
• Bot

We create a diverse set of training attacks, spanning
various malicious strategies, mostly relying on the
HTTP protocol. This allows testing detectors in
identifying attacks on different protocols and HTTP
attacks with similar or distinct malicious strategies.

validation traffic (always above 99% in all our scenarios) is
saved for testing. Regarding Center-Loss, we use a separate
Adam optimizer, a learning rate of 0.0001, and a weighting
factor λ = 1 (see Sec. III-B). In addition, we use over- and
under-sampling to make batches with roughly the same amount
of NetFlows for each class. This is achieved by sampling with
repetition a NetFlow with probability inversely proportional to
the frequency of its class in the training set.

Metrics and Detector Tuning. Since our objective is to
determine whether unknown malicious traffic can be identified
as OOD, we evaluate detectors based on the True Positive Rate
(TPR). In this context, a true positive refers to a NetFlow of an
unknown attack labeled as OOD. We specifically avoid using
the F1-score because our detectors are tuned to maintain a
low False Positive Rate (FPR) of 5% on ID traffic. However,
we do utilize the F1-score when assessing the performance of
detector combinations, as the rejected ID traffic may exceed
5%. All the detectors selected in Sec. IV-C rely on pre-defined
rejection thresholds. To set such thresholds, we followed a
common practice in the literature, ensuring that 95% of the ID
validation traffic (malicious included) is not rejected [12], [15],
[19], [24]. The only exceptions are ODIN and MD, for which
we also used OOD attacks to extract the threshold and select
ϵ ∈ {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5} with T = 20.
Specifically, we took advantage of attacks not used in our
evaluation, like infiltration and attacks with a few NetFlows,
and used them along with validation traffic to tune as in [15].
Note that we exclude infiltration as it is not well classified
by the FNN nor well detected by OOD techniques with our
features, i.e., an example of Case 4 in Fig. 1. We also see
that using hard-to-discriminate attacks improves the detection
capability of ODIN and MD. For other parameters such as mean
and covariance matrix in MD, centers in SIM, and KNN models,
we extracted them from the training set.



VI. RESULTS & ANALYSIS

In this section, we evaluate the chosen detectors in Sec. IV-C
to identify previously unknown intrusions as OOD. Remember
that these detectors work beside the ML-based NIDS, i.e.,
the FNN described in Sec. IV-A, that is trained to classify
attacks of specific scenarios. These scenarios comprise only a
few training attacks and are designed to test detectors under
different circumstances, such as those presented in Fig. 1. The
specific scenarios adopted are outlined in Tab. II. Although
it is hard to precisely pinpoint which situation of Fig. 1 is
in each scenario, we tried to design them to logically contain
all. Every scenario comprises training attacks characterized by
distinctive aspects. Within the pool of unknown testing attacks,
encompassing all attacks not encountered during training, there
are fairly similar and dissimilar ones. These testing attacks
should end up in different regions of the FNN’s decision space,
effectively simulating the situations depicted in Fig. 1.

A. Detecting Unknown Attacks with OOD detectors

We begin by assessing detectors and their combination when
applied to models trained in a multi-class setting both with and
without Center-Loss (CL).

Single Detector Results. We first examine the performance
of individual detectors. Tab. III presents in each horizontal
section the TPR of detectors (columns) on a distinct scenario.
Each cell contains the TPR of a detector on an unknown attack
when applied to the FNN trained with and without Center
Loss (TPRCL /TPRCE). The last row of a section (Total TPR)
reports the global TPR, irrespective of the attack types.

Overall, we observe that all the unknown attacks are de-
tected to some extent in their traffic. The best OOD detector
appears to be KNN, followed by MCD and CONF, while other
detectors exhibit lower average performance. Specifically, we
see that ODIN and MD have generally lower TPRs than
confidence-based detectors, contrary to what was discovered
in computer vision [12], [15], [19]. This suggests that con-
trolled perturbations rigidly derived from the gradient do not
always benefit detection as expected. We suspect that NetFlow
features, which do not have a bounded and discrete domain
as pixels, may require more flexible per-feature perturbations
that better conform to the domain of features. This might help
in pushing ID NetFlows toward their class, better enlarging
the gap between ID and OOD scores as in computer vision.

Furthermore, we find that applying CL to multi-class models
does not always improve OOD detection. Although the embed-
dings produced with CL are in general more discriminative,
this benefits detectors such as CONF, MD, and SIM, but not
as much KNN. Our explanation is that a multi-class FNN has
already semantically rich embeddings, reducing the effect of
CL. In addition, training with CL may sometimes force the
model to produce embeddings closer to known classes, which
would not be without CL (refer to the right of Fig. 2 for a
graphical comparison). This may benefit the assumptions of
certain detectors like the representativeness of mean and co-
variance matrix in MD and the centers of SIM. However, tighter

TABLE III
THE TRUE POSITIVE RATE PERCENTAGE OF OOD DETECTORS WHEN
APPLIED TO MODELS TRAINED WITH AND WITHOUT CENTER LOSS.

IDS2018 Scenario 1: FTP - D-hulk - DD-hoic
Attacks CONF MCD ODIN MD KNN SIM

un
kn

ow
n

at
ta

ck
s SSH 50.0 / 50.0 53.2 / 70.9 50.0 / 48.2 50.0 / 48.2 100 / 100 50.0 / 48.2

D-eye 95.7 / 81.5 98.7 / 98.7 17.1 / 61.7 92.7 / 60.2 98.6 / 85.9 75.2 / 60.6
D-http 9.4 / 9.4 8.1 / 7.3 0.0 / 100 100 / 100 1.0 / 1.0 2.0 / 2.0
D-loris 8.3 / 0.4 52.9 / 26.6 8.3 / 0.0 53.4 / 0.4 79.1 / 78.3 1.3 / 0.6
Web 21.2 / 33.4 35.4 / 32.5 3.8 / 0.0 49.6 / 2.5 56.9 / 46.8 47.3 / 2.3
Botnet 0.0 / 0.0 0.8 / 0.1 49.9 / 0.0 0.4 / 0.1 50.0 / 97.0 0.0 / 0.0
DD-http 89.4 / 48.7 95.6 / 71.3 90.6 / 0.0 56.0 / 0.1 93.9 / 92.3 50.5 / 0.0
DD-udp 0.0 / 0.0 98.1 / 0.8 0.0 / 0.0 100 / 99.0 100 / 100 100 / 0.0

Total TPR 53.2 / 33.9 57.3 / 48.1 61.6 / 20.6 48.5 / 20.7 74.2 / 83.9 33.8 / 9.5

IDS2018 Scenario 2: SSH - D-hulk - DD-http
Attacks CONF MCD ODIN MD KNN SIM

un
kn

ow
n

at
ta

ck
s FTP 100 / 100 100 / 100 99.2 / 100 100 / 100 100 / 100 100 / 100

D-eye 66.5 / 73.2 83.9 / 100 19.5 / 52.7 95.9 / 70.4 100 / 100 76.3 / 7.5
D-http 100 / 100 100 / 100 98.1 / 100 100 / 100 100 / 100 100 / 100
D-loris 30.5 / 0.4 72.0 / 11.5 6.8 / 0.4 77.5 / 0.4 60.8 / 80.9 54.7 / 0.3
Web 9.4 / 10.1 57.4 / 29.5 2.8 / 0.9 53.7 / 3.1 40.5 / 55.3 19.2 / 0.0
Botnet 0.0 / 0.0 0.5 / 0.0 0.0 / 0.0 0.3 / 0.1 48.1 / 99.4 0.0 / 0.0
DD-udp 0.0 / 0.0 74.1 / 59.7 14.4 / 0.1 99.5 / 100 100 / 100 99.0 / 0.6
DD-hoic 76.1 / 76.1 76.4 / 74.1 64.2 / 50.2 73.0 / 10.9 60.4 / 20.2 57.9 / 1.4

Total TPR 65.1 / 65.1 66.4 / 65.1 57.2 / 51.4 65.1 / 32.3 68.8 / 59.5 56.6 / 25.4

IDS2018 Scenario 3: D-eye - Bot - DD-udp
Attacks CONF MCD ODIN MD KNN SIM

un
kn

ow
n

at
ta

ck
s FTP 0.0 / 0.0 7.2 / 2.8 0.0 / 0.0 90.0 / 89.1 94.7 / 100 78.4 / 0.0

SSH 0.0 / 0.0 10.3 / 1.5 0.0 / 0.0 0.0 / 1.3 0.1 / 60.0 0.0 / 0.0
D-hulk 100 / 97.5 100 / 99.6 98.4 / 97.3 98.4 / 96.1 99.0 / 100 91.0 / 72.6
D-http 0.0 / 0.0 7.3 / 2.4 0.0 / 0.0 89.8 / 88.3 99.5 / 100 45.1 / 0.0
D-loris 66.5 / 45.5 67.0 / 55.7 45.7 / 46.1 88.7 / 49.7 65.8 / 80.6 3.8 / 1.9
Web 3.6 / 28.6 11.4 / 23.8 1.0 / 9.2 53.7 / 29.1 37.5 / 60.1 29.2 / 2.1
DD-http 91.7 / 49.2 72.7 / 65.7 46.3 / 46.0 44.2 / 0.1 80.0 / 70.5 43.8 / 3.5
DD-hoic 73.1 / 94.0 61.3 / 96.2 47.4 / 87.0 0.0 / 0.9 4.8 / 20.5 0.0 / 7.1

Total TPR 66.4 / 61.3 59.9 / 67.2 46.6 / 58.3 45.2 / 33.4 56.7 / 64.8 39.4 / 17.9

neighborhoods may negatively impact the performance of KNN
in certain situations. Consequently, we conclude that CL is a
simple method to enhance OOD detection in NIDSs [24], [27],
although its effectiveness may vary on certain detectors.

Ensembles Results. We proceed by aggregating detectors into
two ensembles to improve overall performance and evaluate
their complementarity. For this analysis, we use the previously
considered scenarios and assess the ensembles’ performance
on unknown attacks also from the IDS2017 dataset.

To measure the maximum amount of unknown traffic that
can be rejected, we use a simple ensemble (ENS1) that flags
a NetFlow as OOD if at least one detector predicts it as
such. This ensemble comprises all the detectors applied to
the FNN trained with and without CL, resulting in a total
of 12 combinations. The second ensemble (ENS2) consists of
three detectors and flags a NetFlow as OOD if at least one
predicts OOD. We use the CONF detector applied to the CL-
trained FNN, along with the KNN and ODIN detectors applied
to the FNN trained with Cross-Entropy. The goal of ENS2 is to
prove that it contains complementary detectors. We remark that
these ensembles have been specifically designed to increase
the detection (TPR) of unknown attacks.

Tab. IV presents the TPR of the ensembles on attacks from
the two datasets (horizontal sections). The last two rows report
the total TPR and total F1-Score on all the attacks from



TABLE IV
THE TRUE POSITIVE RATE PERCENTAGE OF THE OOD ENSEMBLES.

CELLS MARKED WITH * CONTAIN ATTACKS SEEN IN TRAINING.

Scenario 1 Scenario 2 Scenario 3
Attacks Support ENS1 ENS2 ENS1 ENS2 ENS1 ENS2

ID
S2

01
8

FTP 193.4k * * 100 100 100 100
SSH 187.6k 100 100 * * 62.0 59.1
D-eye 41.5k 100 100 100 100 * *
D-hulk 461.9k * * * * 100 100
D-http 139.9k 100 100 100 100 100 100
D-loris 11.0k 100 79.0 100 100 100 80.7
Web 833 98.1 65.5 82.8 60.0 96.4 66.0
Botnet 286.2k 99.7 99.5 99.3 99.2 * *
DD-http 576.3k 97.5 94.1 * * 99.8 99.5
DD-udp 1728 100 100 100 100 * *
DD-hoic 686.0k * * 82.8 81.1 97.4 96.6

ID
S2

01
7

FTP 3967 100 100 100 100 100 100
SSH 2976 100 100 100 100 100 100
D-eye 7560 100 95.6 100 100 100 100
D-hulk 158.3k 100 89.8 100 96.7 100 100
D-http 1740 100 99.3 100 100 100 100
D-loris 3999 100 99.8 100 100 100 63.1
Botnet 736 100 99.9 100 100 92.2 100
PScan 159.1k 100 99.7 100 100 99.8 86.9
DD-loit 95.1k 100 99.9 100 100 100 100

Total TPR 99.1 96.7 93.3 92.3 96.9 95.3
Total F1 75.9 86.0 77.4 82.5 73.5 83.5

both datasets. Remember that true positives refer to unknown
attacks labeled as OOD while false positives correspond to
benign NetFlows mistakenly marked as OOD. We exclude
training attacks as the FNN detects them correctly.

We first highlight that ENS1 achieves almost perfect TPRs
in both datasets, indicating there are complementary detectors
in our set. However, this ensemble strategy also increases the
false positives, as remarked by the consistent gap between
total TPR and F1-Score in all three scenarios. In fact, the
false positive rate on benign validation traffic goes from 5%
of single detectors (as resulting from the tuning described in
Sec. V-B) up to 36% with the ensemble.

On the other hand, ENS2 demonstrates similar total TPRs
compared to ENS1 but consistently achieves better F1-Scores.
This improvement is attributed to significantly reduced false
positive rates, which are halved compared to those of ENS1.
We observed that CONF and KNN contribute the most to this
ensemble, aligning with the findings in Tab. III, while ODIN
gives a smaller nevertheless important contribution. Overall,
ENS2 proves to be a superior ensemble that incorporates
complementary detectors. This highlights the relevance of
combining detectors of different natures (e.g., confidence-,
distance-, and gradient-based) applied to models trained with
different strategies. By doing this it is possible to fortify
defense against the situations described in Fig. 1.

Additionally, we remark that detecting attacks from other
datasets appears to be a relatively easier task, indicating
experimental bias [43]. Although we verified the similarity
of individual feature distributions between datasets, patterns
extracted from IDS2018 differ from those of IDS2017. This is
evident from the almost perfect rejection of IDS2017 attacks,
the rejection of attack types included in the training set from
the 2018 data (such as FTP and D-hulk in Scenario 1), and the

TABLE V
THE TRUE POSITIVE RATE PERCENTAGE OF DETECTORS WHEN APPLIED
TO BINARY MODELS TRAINED WITH AND WITHOUT CENTER-LOSS AND

THE DIFFERENCE WITH MULTI-CLASS TOTAL TPRS OF TAB. III.

IDS2018 CONF MCD ODIN MD KNN SIM

Scenario 1 54.1 / 8.9 61.0 / 47.8 57.0 / 17.0 52.6 / 15.9 85.0 / 73.3 53.2 / 13.1
Scenario 2 65.4 / 64.4 66.3 / 65.0 63.9 / 61.0 55.3 / 30.8 57.9 / 50.2 47.4 / 1.5
Scenario 3 51.3 / 36.1 52.7 / 46.3 51.3 / 35.6 48.5 / 34.0 53.1 / 52.6 33.4 / 13.9

∆Scenario 1 ↑0.9 / ↓25.0 ↑3.7 / ↓0.3 ↓4.6 / ↓3.6 ↑4.1 / ↓4.8 ↑10.8 / ↓10.6 ↑19.4 / ↑3.6
∆Scenario 2 ↑0.3 / ↓0.7 ↓0.1 / ↓0.1 ↑3.9 / ↑9.6 ↓9.8 / ↓1.5 ↓10.9 / ↓9.3 ↓9.2 / ↓23.9
∆Scenario 3 ↓15.1 / ↓25.2 ↓7.2 / ↓20.9 ↑4.7 / ↓22.7 ↑3.3 / ↑0.6 ↓3.6 / ↓12.2 ↓6.0 / ↓4.0

high rejection rates (above 70%) for IDS2017 benign traffic.
Note that the benign traffic from IDS2017 is for a different
network and is expected that detectors will reject benign traffic
incurred on a different network. In general, there is a need
for a methodology that enables better integration of traffic
from different networks (datasets) for the purpose of OOD
in NIDSs, a topic we will cover in the future.

Finally, we also conducted experiments by training on
IDS2017 attacks and testing on IDS2018. In these regards,
we only observed lower detection rates on certain unknown
attacks of IDS2017 like Bot in both individual detectors
and ensembles. However, the performance on attacks from
IDS2018 (Bot included) was almost perfect. This discrepancy
vouches once again for the necessity of a better integration
methodology. Due to space limitations, we do not report such
extensive results.

B. Better Embedding, Better Detection

Many supervised datasets in network intrusion detection
contain information about the specific type of attack each
NetFlow belongs to. Typically, this information is ignored as
the task is treated as a binary classification one. However,
we do demonstrate herein that leveraging the richer semantics
of multi-class models can improve OOD detection and that
Contrastive Learning can serve a similar goal. To this end,
we compare the overall multi-class results from the previous
section with those of the same detectors applied to models
trained in a binary task, which is obtained by grouping
NetFlows of training attacks into a single malicious class. We
retrain a binary FNN with and without CL for each scenario
of Tab. II, and evaluate OOD detectors on unknown attacks.

Single Detector Comparison. We first compare the results
of individual detectors on unknown attacks of IDS2018.
In Tab. V, the top section displays the total TPR of de-
tectors applied to binary models, with and without CL
(TPRCL /TPRCE). Whereas the bottom section presents the
reduction in the rejections computed by subtracting the multi-
class total TPRs from binary ones, with and without CL.

The results in the top section highlight that CL consistently
improves all the TPRs in the binary case, resulting more
effective than in multi-class settings. Therefore, the importance
of CL and Contrastive Learning is more pronounced for
ML-based NIDSs trained on binary tasks, since multi-class
trainings already make embeddings more discriminative.
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Fig. 3. The overall comparison of the four ensembles on unknown attacks
from both datasets. Binary ENS1 and ENS2 are those created with detectors
applied to the FNN trained in a binary task (benign vs. malicious), while
Multi-Class ones are those created with the FNN trained in a multi-class
setting (each training attack makes a distinct class). Better viewed in colors.

In the bottom section, we generally observe that detectors
applied to the binary FNN without CL have significantly
reduced ↓ TPRs compared to the multi-class case. This
underlines that semantic information induced by multi-class
training enables to make better embedding spaces for detecting
unknown attacks. Whereas detectors applied to the binary
FNN with CL have either similar detection rates or less
pronounced reductions, suggesting that CL roughly gives the
same enhancement despite the training regimes of the model.

Therefore, we conclude that better embeddings, such as
those obtained from multi-class models or Contrastive Learn-
ing methods, enhance OOD detection.
Ensemble Comparison. Lastly, we present the overall results
of the two ensembles described in Sec. VI-A in the binary
case. Remember that ENS1 comprises all the combinations
of binary models and detectors, while ENS2 combines CONF
with the CL-trained FNN, as well as KNN and ODIN coupled
with the FNN trained without CL. For this comparison, we
consider the two ensembles made with the binary FNNs and
also those created with the multi-class FNNs. Fig. 3 plots
for each scenario of Tab. II the total TPR and F1-Score on
unknown attacks from both IDS2018 and IDS2017.

Overall, we observe that ensembles of detectors applied
to binary models still yield superior detection, but not as
much as in the multi-class case. This suggests that combining
OOD detectors is more effective when applied to models
with semantically richer embeddings, such as those produced
in multi-class settings. Furthermore, the better F1-scores of
ENS2 with respect to ENS1 in both the binary and multi-class
cases indicate that ENS2 detectors positively complement each
other. This demonstrates again the importance of leveraging
OOD detectors of different natures, as they enable a broader
coverage of unusual and potentially harmful regions of the
model’s decision space (see Fig. 1).

VII. CONCLUSION

In this work, we analyzed the ability of existing OOD
techniques to detect traffic of unknown intrusions. We use
a standard FeedForward Neural Network as ML-based NIDS

and trained it on subsets of attacks in a binary and multi-class
setting, by also applying a Contrastive Learning signal. Then,
we use these models along with a set of six OOD techniques
relying on different strategies to identify unknown attacks
extracted from the same and a separate dataset (network).

Our findings reveal that existing OOD detectors constitute a
valid means to identify portions of unknown attacks, although
their effectiveness varies compared to other ML fields. Further-
more, we highlighted that employing training strategies such
as multi-class supervision and Contrastive Learning improves
the performance of most tested OOD detectors. Lastly, we
demonstrated that combining detectors relying on different
strategies leads to superior performance, especially when ap-
plied to differently trained models.

While our study has provided some insights into the poten-
tial of adopting OOD techniques for network intrusion detec-
tion, we acknowledge that there is still much to cover. Notably,
one of the limitations of our work is the lack of a methodology
that allows a more realistic integration of unknown attacks
extracted from diverse datasets (networks). As many datasets
offer only limited coverage of cyberattacks, this methodology
is of utmost importance to comprehensively assess OOD
techniques. Additionally, we recognize the prospective value
of a visualization tool derived from our plotting strategy used
for Fig. 2 to inspect models’ decision spaces. Such a tool could
prove beneficial for network inspection in practical use cases
and aid the categorization of attacks in the context of Fig. 1.

Therefore, in future works, we will focus on these points and
also explore the influence of different features on the efficacy
of OOD detectors. Furthermore, we intend to improve less
effective detectors, like ODIN and MD, and evaluate others.
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