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Abstract—Despite the proliferation of tra�c �ltering capa-

bilities throughout the Internet, attackers continue to launch

distributed denial-of-service (DDoS) attacks to successfully

overwhelm the victims with DDoS tra�c. In this paper,

we introduce a distributed �ltering system that leverages

nodes distributed along the paths of DDoS tra�c to �lter the

DDoS tra�c. In particular, we focus on adaptive distributed

�ltering, a new direction in �ltering DDoS tra�c. In our

design, a subscriber to the distributed �ltering service can

act on behalf of a DDoS victim and generate �ltering rules

that not only adapt to the most suitable and e�ective �ltering

granularity (e.g., IP source address and a port number vs. an

individual IP address vs. IP pre�xes at di�erent lengths), but

also adapt to the preferences of the subscriber (e.g., maximum

coverage of DDoS tra�c vs. minimum collateral damage from

dropping legitimate tra�c vs. minimum number of rules).

We design an e�cient algorithm that can generate rules

adaptive toward �ltering granularities and objectives, which

can further help determine where to deploy generated rules

for the best e�cacy. We evaluated our system through both

large-scale simulations based on real-world DDoS attack

traces and pilot studies. Our evaluations con�rm that our

algorithm can generate rules that adapt to every distinct

�ltering objective and achieve optimal results. We studied

the success rate and distribution of rule deployment under

di�erent Internet-scale rule deployment pro�les, and found a

small number of autonomous systems can contribute dispro-

portionately to the defense. Our pilot studies also show our

adaptive distributed �ltering system can e�ectively defend

against real-world DDoS attack traces in real time.

Index Terms—distributed denial-of-service; DDoS; DDoS

�ltering; distributed DDoS �ltering; adaptive �ltering

I. Introduction

Despite years of research and industry e�orts that have led

to a myriad of defense approaches, the Internet continues

to be severely susceptible to distributed denial-of-service

(DDoS) a�acks and see DDoS a�acks increase in both the

amount and scale [1]. Among the most common DDoS

a�acks are high-volume DDoS that overwhelm a victim’s

bandwidth, in which such a�acks can reach as high as 1.2

Tbps [2], 1.35 Tbps [3], 2.4 Tbps [4], or even 3.47 Tbps [5],

with largest ever recorded packet per second-based DDoS at

809 Mpps [6].

On the other hand, the Internet has seen a proliferation

of �ltering capabilities throughout. With Access Control

Lists (ACLs) built into routers by vendors from day one,

broader usage of Border Gateway Protocol (BGP) �ow speci-

�cation [7], the increasing deployment of so�ware-de�ned

networking (SDN), and so on, Internet service providers

(ISPs) at the core of the Internet or proxies and �rewalls

at the edge are equipped and ready to �lter tra�c, including

DDoS packets. Indeed, many ISPs already perform various

tra�c �ltering operations, including �ltering DDoS tra�c.

Meanwhile, DDoS �ltering has o�en been at a single point

at the victim end [8], not leveraging the ever-growing �lter-

ing capabilities inherent in the Internet. Or, if it is conducted

in multiple locations over the Internet, li�le has been done to

investigate how �ltering may be adaptive to a multitude of

orthogonal or con�icting factors, such as �ltering granularity

(e.g., IP source address and a port number vs. an individual

IP address vs. IP pre�xes at di�erent lengths), the trade-

o� between DDoS tra�c coverage, collateral damage from

dropping legitimate tra�c, and the number of DDoS-�ltering

rules, and DDoS tra�c with spoofed source IP addresses.

In this paper, we introduce adaptive distributed �ltering.

We allow a subscriber who acts on behalf of a DDoS victim

to adaptively generate rules at the proper granularity and

then deploy them at the most suitable �ltering nodes on the

paths of DDoS tra�c. For example, although it is probably

suitable to �lter tra�c from an entire IP pre�x when a victim

is under a severe DDoS a�ack, if the volume of DDoS tra�c

from the pre�x is low and the volume of legitimate tra�c

from the pre�x is high, it may be more preferable to �lter

tra�c from individual IP addresses instead. Or, if there are

two tra�c �ows appearing from the same IP address, one

of which is benign tra�c and the other is DDoS tra�c

spoo�ng the source, �ltering tra�c from the IP address

becomes a dilemma unless it happens only on the paths of

the DDoS �ow, or the �ltering must use both IP address and

port numbers if the two �ows share the same path but use

di�erent port numbers.

Adaptive distributed �ltering is challenging because there

can be thousands of DDoS �ows at pre�x level, millions of

DDoS �ows at IP address level, and potentially even more

at IP address plus port number level. It will be prohibitively

expensive to monitor tra�c for every granularity and then

determine �ltering rules accordingly. Furthermore, every

victim may have their own objectives regarding maximum

coverage of DDoS tra�c, minimum collateral damage to

legitimate tra�c, and minimum number of rules, while in

general one cannot accomplish all objectives simultaneously.

We therefore develop an e�cient rule-generation algo-

rithm that can not only generate rules with di�erent gran-

ularities toward di�erent objectives, but also help determine
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where to deploy generated rules for the best e�cacy. We then

evaluate our system that embraces the algorithm. We �rst

use large-scale simulations based on real-world DDoS a�ack

traces to study the e�cacy of rules generated, then study

their deployment success rate under di�erent distributed

Internet-scale �ltering pro�les, and also experiment the e�-

cacy and scalability of the entire system for DDoS mitigation

in real time against real-world DDoS a�ack traces.

�e rest of this paper is organized as follows. We �rst

summarize related work in Section II. We then describe the

adaptive distributed �ltering model for DDoS mitigation in

Section III and elaborate our system design in Section IV,

followed by the implementation in Section V. We detail

our results from evaluating our solution through simulations

and pilot studies in Section VI and conclude the paper in

Section VII.

II. Related Work

Although starting from day one DDoS tra�c was launched

from all over the Internet toward a victim, �ltering DDoS

tra�c was initially done only at a single point at the victim

end. Network operators can install systems at a victim such as

Arbor APS [8] and FastNetMon [9] to detect and �lter DDoS

tra�c upon their arrival, or manually connect (e.g., via ssh)
to local routers or �rewalls to install Access Control Lists

(ACLs) to �lter the DDoS tra�c. While victim-end solutions

are relatively easy to implement and deploy, they can incur

a high defense cost due to resource requirements in terms of

network connection and devices, and o�en fail to mitigate

a�acks when a victim’s inbound links are already inundated

with DDoS tra�c.

Filtering of DDoS tra�c has thus evolved in two comple-

mentary directions. One direction is to enhance the ability

to �lter DDoS tra�c of a single unit, whether it is a

programmable switch that is powerful for detecting and

mitigating DDoS tra�c [10], [11], an ISP that can orchestrate

multiple virtual machines to process and �lter DDoS tra�c

([12]), or a DDoS-scrubbing service that can scrub DDoS

tra�c and forward only cleansed tra�c to clients ([13], [14]).

�e other direction, which is more related to this work, is

to �lter DDoS tra�c at multiple locations, i.e., distributed

�ltering, which we further elaborate below.

�e most straightforward distributed �ltering is probably

�ltering DDoS at their sources. Example solutions include

D-WARD [15], which installs rate-limiting �lters at border

routers in source networks, and COSSACK [16], which de-

ploys countermeasures at the ASes of a�acking sources. Such

approaches face severe di�culties in locating a large number

of DDoS sources and deploying �lters against them.

�ere are also numerous methods that �lter DDoS tra�c

at multiple upstream ISPs, such as PushBack [17], TVA [18],

AITF [19], DefCOM [20], StopIt [21], and RAD [22]. �e

foci of these methods are mostly to strengthen the capa-

bilities of routers in identifying, processing, and �ltering

DDoS packets, including through the development of new

communication protocols. �e advent of so�ware-de�ned

networking (SDN), due to its friendliness to deploying rules

to �lter tra�c, has also led to a variety of SDN-based

DDoS �ltering solutions that allow a victim to express to

�ltering entities inside the network their preferred tra�c

control policies [14], speci�c DDoS-�ltering requests [23], or

blackholing rules [24]. Nonetheless, much is yet to be done

to investigate how �ltering may be adaptive to a multitude

of situations, including how �ltering may use a dynamic

granularity to most e�ectively �lter DDoS tra�c, even when

some DDoS tra�c uses spoofed IP addresses, how �ltering

rules may adapt to the preferred �ltering objectives of users,

and how to achieve the best tradeo� between �ltering DDoS

tra�c and avoiding the collateral damage to legitimate tra�c

without using too many rules.

III. Adaptive Distributed Filtering Model

A. Distributed Filtering
While recent DDoS mitigation research investigated the

mitigation of DDoS tra�c at a programmable switch ([10],

[11]) or an ISP ([12]), we focus on a distributed �ltering

model where the mitigation happens in multiple di�erent

locations. As a DDoS a�ack is to launch DDoS tra�c from

DDoS bots throughout the Internet towards a victim along

many di�erent paths, the DDoS tra�c can be �ltered along

these paths before they reach the victim, so long as on the

paths there are nodes that are set to help �lter DDoS tra�c

and know what tra�c are DDoS tra�c to �lter. An exemplary

distributed �ltering approach is AITF ([19]), which �lters

DDoS tra�c based on individual IP addresses of DDoS bots

as close to the source as possible.

Our study is centered on having proper nodes on DDoS

paths to deploy proper rules regarding what tra�c is DDoS

tra�c and thus should be �ltered, including adaptively de-

termining the proper nodes and proper rules. We elaborate

our design’s fundamental di�erences from existing work,

including AITF, in Section III-D.

�e development of Internet has made distributed �ltering

of DDoS possible. Nodes on the Internet, whether they

are routers, programmable switches, middleboxes, or end-

hosts, are witnessing increased capabilities of inspecting and

�ltering network tra�c. A “node” can also be an ISP, as some

ISPs on the Internet can provide DDoS-�ltering service, or a

specialized DDoS-scrubbing service, which typically consists

of multiple geo-distributed data centers to �lter tra�c.

Distributed �ltering of DDoS is also o�en necessary. If

only �ltering all the DDoS tra�c at a single point, it has

to be done at a point where most, if not all, of the DDoS

tra�c converges. �is point of �ltering can be a DDoS victim

server itself or the �rewall of the DDoS victim’s network,

which all the DDoS tra�c to the victim will hit. �e point

can also be at the ISP of the victim’s network, which may

or may not see all the DDoS tra�c to the victim, dependent

on whether the victim’s network is solely dependent on the

ISP for Internet connectivity, i.e., single-homed, or multi-

homed. A clear disadvantage here is that at such a point the

volume of DDoS tra�c can be already too overwhelming to



handle. Another critical disadvantage, albeit more subtle, is

its more severe susceptibility to IP spoo�ng: Say a DDoS bot

is spoo�ng the IP address of a benign end-host which is also

sending tra�c to the victim. If �ltering DDoS tra�c using the

source IP address at a single point where tra�c converges,

it will also drop the legitimate tra�c from the benign host.

On the other hand, distributed �ltering will be less subject

to IP spoo�ng, as we will elaborate later in Section III-D.

�e distributed �ltering model is suitable at multiple scales,

including the Internet scale, an ISP scale, or a scrubbing

service scale. �e DDoS tra�c can be �ltered on their paths

toward the victim at di�erent autonomous systems (ASes)

throughout the whole Internet (Figure 1(a)), or at di�erent

routers or programmable switches inside an ISP (Figure 1(b)),

or di�erent data centers inside a DDoS-scrubbing service

(Figure 1(c)). In this paper we focus on Internet-scale �ltering

of DDoS tra�c en route, but in general our design is also

applicable to distributed �ltering of DDoS at an ISP or

scrubbing center level.

DDoS-filtering AS
DDoS traffic

legitimate traffic

Victim

(a) Internet scale

DDoS-filtering router

Victim

DDoS traffic

legitimate traffic

(b) ISP scale

DDoS-filtering
data center

Victim

DDoS traffic

legitimate traffic

(c) Scrubbing service scale

Figure 1. Distributed �ltering at di�erent scales.

B. Subscriber

Distributed �ltering of DDoS tra�c can be viewed as a

service collectively provided by nodes that �lter DDoS tra�c.

Its clients can be a DDoS victim itself, or a node that acts on

behalf of the victim, such as the �rewall of an institutional

network or the upstream ISP of the victim. We also call any

client of a distributed �ltering service a subscriber.

A subscriber’s job is to determine what tra�c needs to be

�ltered and select �ltering nodes to �lter such tra�c. For the

Internet-scale �ltering of DDoS tra�c, the �ltering nodes a

subscriber selects will be ASes on the Internet, not routers

or mitigation appliances in those ASes, as it is up to an AS

to determine its internal locations of �ltering DDoS tra�c.

DDoS defense is usually composed of three complementary

processes that also map to three lines of research in par-

allel over the last two decades: DDoS detection and DDoS

tra�c classi�cation that detects DDoS a�ack and classi�es

DDoS tra�c and legitimate tra�c; DDoS path discovery

that discovers the paths of DDoS tra�c (or more generally

their footprints that also include the source IP addresses

and bandwidth consumption etc.); and DDoS mitigation that

�lters, thro�les, or redirects DDoS tra�c. �is paper is

focused on DDoS mitigation via adaptive distributed �ltering.

Below we explain how our design leverages DDoS detection

and classi�cation and DDoS path discovery, including its

certain assumptions about them.

C. DDoS Detection and Classi�cation and DDoS Path Discovery

We assume a subscriber can detect DDoS a�acks and

classify “�ows” to be DDoS �ows or legitimate �ows with a

usable accuracy that commodity detection so�ware can easily

provide, and it continuously does so. A �ow can be de�ned

using any reasonable combination of the following a�ributes

that can be derived from packet header �elds:

• Source: which can be an IP pre�x, an IP address, an IP

address plus a port number, or a wildcard;

• Protocol: which can be TCP, UDP, IPSec (AH or ESP),

ICMP, or a wildcard;

• TCP �ags: which can be SYN, SYN-ACK, ACK, FIN, or

RST that indicates the status of a TCP segment, or a

wildcard; and

• Destination: which is the victim’s IP pre�x (if an entire

subnet is under DDoS a�ack), an IP address, or an IP

address plus a port number (if a speci�c service is under

DDoS a�ack).

�e following are examples labeling a DDoS tra�c �ow:

1) A general direct, protocol-agnostic, volumetric a�ack.

Source = IP 1: Port 1, IP 1: Port 2, IP 3: Port 3, …, IP

100, IP 101, …, IP Pre�x 1, IP Pre�x 2, IP Pre�x 3, …

2) An NTP ampli�cation a�ack. Source = *: 123, Protocol

= UDP.

3) A DNS �ood. Source = *: 53, Protocol = UDP.

4) A TCP SYN �ood. Source = *, Protocol = TCP, TCP Flag

= SYN.

5) An ICMP �ood. Source = *, Protocol = ICMP, ICMP

Type = Echo request.

A subscriber can plug in a third-party DDoS detection

so�ware such as FastNetMon [9]. In doing so, note the

so�ware does not need to detect and classify DDoS tra�c

with 100% recall or precision, as DDoS mitigation does not



need to �lter every DDoS �ow. Such a so�ware can be based

on tra�c measurement results and network capacities to set

up threshold values for every “�ow” as de�ned above on

various network tra�c statistics, such as total byte or packet

numbers, inbound to outbound tra�c ratios, number of SYN

packets, etc. During the tra�c monitoring, if a threshold

for a “�ow” is breached, the detection so�ware can raise

a DDoS alarm. Furthermore, it can classify the �ow, or its

top sub�ows based on their risk level, as a DDoS �ow. For

example, if tra�c volume from an IP pre�x is above the

threshold, it can label all tra�c from the pre�x as a DDoS

�ow, or label the most volumetric connections from the pre�x

as DDoS �ows, so long as the total volume of the rest of the

connections from the pre�x is below the threshold.

We also assume a subscriber can track the DDoS tra�c,

such as knowing the paths of a DDoS �ow before they reach

the victim, so it can select the most suitable �ltering nodes

along the paths to �lter the DDoS tra�c. Example solutions

include those using marking techniques [25], [26], [27] and

those based on logging [28], [29], [30].

D. Adaptive Filtering

Once a subscriber detects DDoS “�ows”, it then can request

�ltering nodes on the path(s) of these �ows to �lter them.

Certain types of DDoS tra�c are straightforward to �lter, in-

cluding those �ows de�ned by the Protocol, TCP �ags, and/or

Destination a�ributes. However, �ows that are de�ned by

di�erent source a�ributes, with or without other a�ributes,

are challenging to handle. Such �ows correspond to three

di�erent �ltering granularities:

• IP-pre�x-based �ltering that discards all tra�c from

an IP pre�x.

• IP-address-based �ltering that discards all tra�c from

an IP address.

• IP-and-port-based �ltering that discards all tra�c

from an IP address with a given source port number.

All three �ltering granularities have their advantages and

disadvantages. IP-pre�x-based �ltering results in the least

number of DDoS “�ows” to �lter, i.e., the least number of

�ltering rules as every DDoS �ow maps to a �ltering rule. It

thus in turn leads to least networking overhead in shipping

rules to wherever they need to be deployed, least memory

overhead in storing rules, and least management overhead

in deploying, monitoring and revoking rules. It could also

lead to faster deployment of all the rules and, with less

rules to search, be�er performance in matching every DDoS

packet to a rule and taking actions. However, IP-pre�x-based

�ltering may lead to collateral damage, sometimes perhaps

even severe, when tra�c from a legitimate IP in an IP pre�x

is �ltered. Nonetheless, certain amount of collateral damage

may be still acceptable to a subscriber, especially when it is

under a severe DDoS a�ack. IP-address-based �ltering will

cause less collateral damage, but it can still happen if there

is also legitimate tra�c from the same IP address of a DDoS

bot, or worse, if a DDoS bot spoofs the IP address of a benign

host who happens to be also sending tra�c to the victim. IP-

and-port-based �ltering has the least possibility of collateral

damage. It also makes IP spoo�ng hard to succeed, unless

a DDoS bot can spoof both the IP address and the source

port number of an active legitimate �ow with the victim, the

chance of which is extremely slim. However, IP-and-port-

based �ltering usually does not scale.

We thus introduce adaptive �ltering to seek the best

tradeo� among all the competing factors. In particular, a

subscriber can enforce �ltering at di�erent granularities. A

simple adaptive �ltering strategy could be as follows. For

an IP pre�x that originates DDoS tra�c, if the volume of

legitimate tra�c from the pre�x is low, assuming the victim

is under a severe DDoS a�ack and can a�ord losing some

legitimate tra�c, a rule that �lters the entire IP pre�x is

probably applicable. Otherwise, we can look at every sub-

pre�x of the pre�x. We can generate a rule for every sub-

pre�x that primarily originates DDoS tra�c, skip every sub-

pre�x that primarily originates legitimate tra�c, and apply

the same �ltering strategy here recursively on every sub-

pre�x that originates both DDoS and legitimate tra�c. If in

this recursive process a sub-pre�x becomes an IP address that

originates both DDoS and legitimate tra�c, we can check

which ports of the IP address originates DDoS tra�c, and

only �lter tra�c from those ports of the IP address.

With adaptive �ltering, a subscriber is no longer limited

to a single granularity of �ltering DDoS tra�c, such as AITF

that �lters DDoS tra�c using individual IP addresses [19].

Instead, a subscriber is able to elect to use di�erent �ltering

granularities as needed.

�e aforementioned simple adaptive �ltering strategy,

however, leaves many key questions unanswered. A major

challenge is that there can be thousands of DDoS �ows from

di�erent IP pre�xes, millions of DDoS �ows from di�erent

IP addresses, and potentially even more from di�erent IP ad-

dress and port number combinations. It will be prohibitively

expensive to monitor tra�c for every granularity and then

determine �ltering rules accordingly. Moreover, it does not

consider a subscriber’s preferences in tra�c �ltering, such

as its objectives and constraints in terms of DDoS tra�c

coverage, collateral damage, and the number of rules to

generate and deploy. Also, for a �ow from an IP pre�x or

IP address, it does not take advantage of the paths of the

�ow that a subscriber can learn (Section III-C). For example,

if tra�c from an IP address consists of DDoS tra�c from

one path and legitimate tra�c from another distinct path,

we can employ IP-address-based �ltering at a node that

is on the former path but not on the la�er path, without

resorting to the more speci�c but less scalable IP-and-port-

based �ltering. Finally, the simple adaptive �ltering strategy

is a top-down approach, moving from IP pre�xes to sub-

pre�xes to IP addresses and then to ports. However, DDoS

detection and classi�cation solutions usually classi�es tra�c

�ows into a �ne granularity such that every �ow is either

DDoS tra�c or legitimate tra�c (rather than a mixture of

both) (Section III-C). To run adaptive �ltering on top of DDoS



classi�cation, it is more natural for adaptive �ltering to be

bo�om-up instead. We address all these questions in the next

section (Section IV).

IV. System Design

Ideally, a subscriber wants to generate rules that are opti-

mal for three objectives, including a full coverage of DDoS

tra�c, no collateral damage from dropping legitimate tra�c,

and only using a small number of rules. In practice, however,

a subscriber must compromise one or two objectives in order

to optimize for another objective, and each subscriber may

have a di�erent set of prioritized objectives. In our design,

we allow a subscriber to optimize for one objective, but it

must also meet the constraints for other objectives.

A. Problem Formulation

We now formulate the problem of rule generation. For a

given rule r, we de�ne d(r, T ) and l(r, T ) to be respectively

the DDoS tra�c and legitimate tra�c that rule r �lters

from the tra�c set T , respectively. As such, if we have

a set of rules R={ri|i=1, . . . , n}, where ri is a rule, we

have d(R, T )=
∑n

i=1 d(ri, T ) and l(R, T )=
∑n

i=1 l(ri, T ) to

respectively represent the DDoS tra�c coverage and collat-

eral damage of the rule set R over tra�c T . Assuming the

subscriber’s constraints for the minimal amount of DDoS

tra�c that must be �ltered is D, the maximal amount of

legitimate tra�c that could be �ltered is L, and the maximal

number of rules that is allowed to generate and deploy, which

we also call rule budget, is M , we de�ne three distinct

single-objective rule-generation problems as follows:

• Rule-generation Problem 1: In case the subscriber is

most concerned about �ltering as much DDoS tra�c as pos-

sible, for tra�c T , output a set of rules R={ri|i = 1, ..., n}
that maximizes d(R, T ), whereas l(R, T )≤L and |R|≤M .

Example scenario 1: the victim is overwhelmed by a severe

DDoS a�ack and eager to have as much DDoS tra�c as

possible �ltered.

• Rule-generation Problem 2: In case the subscriber is

most concerned about avoiding collateral damage due to the

�ltering of legitimate tra�c, for tra�c T , output a set of

rules R={ri|i = 1, ..., n} that minimizes l(R, T ), whereas
d(R, T )≥D and |R|≤M ; Example scenario 2: the DDoS

a�ack is not that severe, and the victim does not wish

legitimate tra�c to be �ltered by mistake.

• Rule-generation Problem 3: In case the subscriber is

most concerned about minimizing the number of generated

rules, for tra�c T , output a set of rules R={ri|i = 1, ..., n}
that minimizes |R|, whereas l(R, T )≤L and d(R, T )≥D.

Example scenario 3: deploying �ltering rules costs a certain

amount of money, and the subscriber may have a limited

budget to defend against an a�ack.

�e subscriber then can choose which problem to solve,

depending on which metric to optimize and which metrics

to impose constraints.

B. F -tree

We now describe a data structure called F -tree, which

we will use to generate DDoS-�ltering rules as described in

Section IV-C. An F -tree is a tree in which every node records

a tra�c source and every parent node records an aggregated

source that aggregates all the sources represented by its

child nodes. Speci�cally, every node in an F -tree records

the following information of a source:

• S: �e source of tra�c. It can be an IP source address

and a port number, an IP address, or an IP pre�x. We

call all packets from S toward the victim a “�ow” from

S. Note the source is not necessarily a single end point

on the Internet. Even if it is a single IP address, because

of IP spoo�ng, there may be more than one path.

• F : A set of candidate �ltering nodes on the path(s) of

the �ow that may be used to �lter packets from the �ow.

• d: �e amount of DDoS tra�c from the �ow in terms of

number of bytes, packets, or TCP or UDP connections,

that can be �ltered by F . �is is also the DDoS coverage

when using a node from F to �lter tra�c from S.
• l: �e amount of legitimate tra�c from the �ow that

can be �ltered by F . �is is also the collateral damage

when using a node from F to �lter tra�c from S.

Basically, every node N on an F -tree can map to a rule

that, if deployed on one of the nodes in N.F , can drop tra�c

whose source addresses matches N.S, with a DDoS coverage

of N.d and collateral damage of N.l. Figures 2(a) and 2(b)

show two toy F -tree examples.

Every node N with a set of child nodes c1, ..., cn (in a

binary tree n is 1 or 2) derives its four values from those of

its children through aggregation. First, the source value of N
is the aggregation of the source values of all its child nodes.

Speci�cally, N.S=pre�x(c1.S, . . . , cn.S), where pre�x() is a

function to extract the longest common pre�x from input

pre�xes. For example, in Figure 2(a), if node N1 has two

children c1 and c2, c1.S = 10.0.0.1 and c2.S = 10.0.0.128,
then N1.S = 10.0.0.0/24. Or for another example, in

Figure 2(b), if node N2 has two children c3 and c4, c3.S =
10.0.0.1 : 2222, c4.S = 10.0.0.1 : 3333, where 2222 and 3333

are source port numbers, then N2.S = 10.0.0.1.
�ere are two types of aggregation: union aggregation

or di�erence aggregation. Both can only happen if they do

not lead to an empty N.F . A union aggregation is to derive

information for �ltering all the �ows represented by child

nodes. It is as follows:

• N.F = ∩ni=1(ci.F );
• N.d =

∑n
i=1(ci.d); and

• N.l =
∑n

i=1(ci.l).

Assume node N1 above is derived via a union aggregation.

If c1.F = {3, 4} and c2.F = {1, 2, 3, 5}, then N1.F = {3},
N1.d = c1.d+ c2.d, and N1.l = c1.l + c2.l.

A di�erence aggregation is to derive information for �l-

tering only certain �ows represented by child nodes and

avoid �ltering certain �ows represented by child nodes.

Assume among child nodes c1, ..., cn, we want to �lter �ows
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Figure 2. F-tree for DDoS-�ltering rule generation.

from c1, ..., ck but not �ows from ck+1, ..., cn, a di�erence

aggregation is as follows:

• N.F = ∩ki=1(ci.F ) - ∪ni=k+1(ci.F );

• N.d =
∑k

i=1(ci.d); and

• N.l =
∑k

i=1(ci.l).

Assume node N2 above is derived via a di�erence aggrega-

tion. If c3.F = {1, 2, 3, 4}, c4.F = {1, 2, 6}, and N2 wants

to �lter tra�c from c3 but not c4, then N2.F = {3, 4}, N2.d
= c3.d, and N2.l = c3.l.

Finally, if we combine our above examples for nodes N1

and N2 and map N2 to c1 (they have the same values), we

can obtain a bigger F -tree. Figure 2(c) shows the underlying

topology. We can see if we want to �lter DDoS tra�c from

10.0.0.1 : 2222 (c3) and 10.0.0.128 (c2) without a collateral

damage on tra�c from 10.0.0.1 : 3333 (c4), we will obtain a

rule represented by N1, i.e., �lter tra�c from 10.0.0.0/24, to
be deployed in one of nodes in N1.F , i.e., node 3.

C. Rule Generation Algorithm
We now describe how a subscriber generates rules using an

F-tree. First, as a DDoS victim continuously receives tra�c,

the subscriber acting on behalf of the victim can classify/label

incoming tra�c �ows to be DDoS �ows or legitimate �ows,

and also know the nodes on the path(s) of the �ows that

can �lter tra�c (Section III-C). With such information for

every incoming �ow, the subscriber can accordingly initialize

all the leaf nodes in the F-tree. For all labeled tra�c from

the same source, the subscriber casts them into a leaf node,

say N , on the F-tree, where N.S is the source, N.F are

all the �ltering nodes on the path of tra�c from N.S, and
N.d and N.l are the amount of DDoS and legitimate tra�c

from N.S, respectively. (N.d and N.l are respectively zero

for legitimate and DDoS �ows.) It then runs a loop process

which recursively aggregates leaf nodes to generate parent

nodes, following the aggregation procedure in Section IV-B.

�e key at every iteration of the loop is to determine which

nodes to aggregate based on the rule-generation problem in

place, as follows.

For the rule-generation problem 1 that maximizes the

DDoS coverage, in each iteration, the algorithm �rst �nds

leaf nodes, if aggregated, that will bring the highest increase

of the DDoS coverage without violating the collateral damage

constraint. It then derives their parent node as described in

Section IV-B, prunes the leaf nodes, and makes the parent

node a new leaf node. �e loop process continues until no

such aggregation can be done. �e subscriber then maps the

top up to M leaf nodes with the highest d-values to the rules

to use.

For the rule-generation problem 2 that minimizes the col-

lateral damage, in each iteration, the algorithm �rst �nds leaf

nodes, if aggregated, that will introduce the least collateral

damage. It then derives their parent node, prunes the leaf

nodes, and makes the parent node a new leaf node. �e loop

process continues until in the current F-tree there are M or

fewer leaf nodes whose sum of d values are at least D. It

then maps these M or fewer leaf nodes to the rules to use.

Finally, for the rule-generation problem 3 that minimizes

the number of rules, in each iteration, the algorithm �rst �nds

the largest number of leaf nodes whose aggregation into a

parent node will not violate the collateral damage constraint.

It then derives their parent node, prunes the leaf nodes, and

makes the parent node a new leaf node. �e loop process

continues until no such aggregation can be done. It then

returns the least number of leaf nodes whose total collateral

damage is less than L and total DDoS coverage is at least D,

and maps these leaf nodes to the rules to use.

D. Rule Placement

Once rules are generated, the subscriber can inspect all

the rules and deploy them. For every rule, it can look at

the F -tree node that corresponds to the rule, say N , and

choose one of the �ltering nodes in N.F to place the rule. It

then can contact the node for rule placement; if the node is

unavailable, the subscriber can choose another node in N.F
for rule placement. If no node in N.F can place the rule, this

rule cannot be placed. �e subscriber can �rst try to deploy



rules that only have a single possible deployment location

(|N.F | = 1), and then those with two locations, and so on.

E. Rule Generation Complexity Analysis

�e rule-generation algorithm targets three rule generation

problems with a similar structure. Its main loop begins with

an initial set of leaf nodes, and it performs an aggregation

at each iteration until a stopping condition is satis�ed.

Assuming that the number of leaf nodes is initially n, the
maximum number of aggregations that can be performed is

then n-1, and thus the main loop may run n-1 times in the

worst case. Within this main loop, it is necessary to sort

the leaf nodes, which dominates other terms within the loop.

With a sorting complexity of O(nlog(n)) in the �rst iteration

to sort all n leaf nodes but only O(n) in later iterations to

insert a newly made leaf node into an already ordered list of

other leaf nodes, we have a worst-case complexity of O(n2).

V. Implementation

A. Adaptive Distributed Filtering So�ware Suite

We have developed an adaptive distributed �ltering so�-

ware suite composed of a set of independent applications, in-

cluding the subscriber application and the �ltering-node ap-

plication. �e subscriber application takes classi�ed/labeled

tra�c as input and includes modules on rule generation and

rule placement. �e �ltering-node application can interact

with a wide range of �ltering capabilities, including BGP

FlowSpec, Cisco ACL, and all major SDN controller so�ware

(e.g., OpenDaylight[31], ONOS[32], and Ryu[33]).

B. Adaptive Distributed Filtering Protocol

We developed a protocol to de�ne the messages between

any subscriber and any �ltering node. �e most important

message type is rule submission. It includes a version

number, a message type, the rule ID, and the rule itself that

is de�ned by the four �elds (source, protocol, TCP �ags, and

destination) described in Section III-C. Further, it includes a

starting time �eld regarding when the rule should start taking

e�ect and an ending time �eld indicating when the rule

should expire. Also, we de�ne a type of message called rule

submission acknowledgment, which is sent in response

to a rule submission message. It also contains a version

number, a message type, a rule ID that is the ID of the

rule being acknowledged. Moreover, it includes an error code

that indicates either the rule is installed successfully (with

error code being zero), or the reason the rule is not installed

successfully, including veri�cation error, timing error, out of

rule space, internal error, or other.

C. Security and Privacy Considerations

To ensure our system is not misused or abused, we tackle

the following security and privacy issues:

Privacy: �e most essential information sharing in the

system is that when a subscriber runs the rule generation

process, it may learn newly detected DDoS �ows and their

paths from the DDoS detection, classi�cation and tracking

components. It may also learn who the �ltering nodes are

on each path. However, as these paths are the same paths

meant to be announced and propagated for packet routing

on the Internet, there is thus no privacy concern here.

Authentication: Every party in the system (�ltering nodes,

subscriber, or DDoS victim) must have a signed, veri�able

certi�cate so that other parties can verify its identity, IP

address(es), public key, and other metadata. If it does not

already have a certi�cate signed by an existing public-key

infrastructure (PKI) that our system recognizes, it can obtain

a certi�cate from an internal PKI of our system through a

registration process.

Tra�c Ownership: When a subscriber requests a �ltering

node to deploy a rule, the rule must only �lter tra�c to

the victim that the subscriber represents. To ensure this, our

system mandates that the subscriber have a tra�c control

authorization (TCA) ticket issued and signed by the victim

to prove that the subscriber is allowed to issue rules against

tra�c to the victim. �e subscriber must also sign the rule.

�is design also allows our system to protect any link of an

ISP from the Cross�re DDoS [34]: the ISP can contact each

downstream network beforehand for a TCA ticket to become

its subscriber and then generate and deploy rules to �lter the

Cross�re tra�c toward each downstream network.

Message Protection: Communication within our system

must achieve con�dentiality, integrity, and authentication.

Each communication channel will leverage the certi�cate

obtained from the PKI to open an HTTPS connection. Since

HTTPS builds upon the Transport Layer Security (TLS) pro-

tocol, the communication channels will achieve the desired

message protection goals.

VI. Evaluation

A. Overview

We built a simulation platform consisting of the actual im-

plementation of our system and a simulation of the Internet

data plane. We measured our system’s ability at the Inter-

net scale to defend a victim against real-world, large-scale

DDoS a�acks. We replayed three real-world DDoS a�acks

of di�erent sizes and a�ack dynamics: RADB-DDoS [35]

with the DNS protocol and ∼16,000 DDoS sources, Booter1-

DDoS [36] with the DNS protocol and ∼4,500 DDoS sources,

and CAIDA-DDoS [37] with the ICMP protocol and ∼7,000
DDoS sources.

We �rst evaluated rule generation in Section VI-B, focusing

on the e�cacy and tradeo�s of di�erent rule generation

objectives, and rule deployment in Section VI-C, focusing

on the percentage of rules for which suitable locations

are found (i.e., success rate) and the distribution of rules

across participating ASes. In Section VI-D, we assessed our

system’s e�cacy in mitigating DDoS in real time. Lastly, in

Section VI-E we deployed and evaluated our system on the

GENI testbed [38] and two real-world IXPs.
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Figure 3. Rule generation with constraints (D: minimum DDoS coverage;

L: maximal collateral damage; M : rule budget).

B. Rule Generation

We evaluated the rule generation algorithm and measured

the resulting DDoS coverage, collateral damage, and number

of generated rules for each of the rule-generation problems

described in Section IV, and compared the tradeo�s of dif-

fering rule generation strategies. We focused on rules based

on source IP addresses of the tra�c. While rule generation

is a continuous process running in real time and handles a

batch of DDoS and legitimate �ows each time, we focused on

one batch of tra�c over a second composed of 1000 a�ack

sources and 500 legitimate sources, all randomly generated.

�e size of the batch is not too big to cause a slow response

with many DDoS �ows, but not too small either to result in

too many batches.

We found the algorithm achieves optimal results for all

three rule-generation problems (1, 2 and 3). We �rst exam-

ined our algorithm for rule-generation problem 1 described

Section IV. Here, the goal is to maximize the DDoS coverage,

while satisfying constraints on the maximum number of rules

M and the maximum amount of acceptable collateral damage

L. We vary the values for L and M and examine the DDoS

coverage. As shown in Figure 3(a), 100% DDoS coverage is

achieved easily, except when L and M are both low. In these

cases, however, the DDoS coverage is still maximized subject

to the stringent constraints on L and M .

We then examined our algorithm for rule-generation prob-

lem 2 described in Section IV. �e goal of this algorithm is

to minimize the collateral damage, subject to constraints on

the minimum DDoS coverage and maximum number of rules.

Figure 3(b) shows that the collateral damage vary as expected

according to the values of the minimal DDoS coverage D and

the maximum number of rules M . In particular, collateral

damage is indeed minimized, and is zero in most cases. When

D is high and M is low, some collateral damage is incurred,

since the only way to cover a large percentage of unwanted

�ows with a relatively small number of rules is to allow some

collateral damage to occur.

Finally, we examined our algorithm for rule-generation

problem 3 described in Section IV. �e goal of this algorithm

is to minimize the number of rules, while satisfying the

constraints on the minimum DDoS coverage and maximum

acceptable collateral damage. Figure 3(c) shows the results.

We can see that in most cases only one or a small number

of rules are generated, except when the minimum DDoS

coverage (D) is high and the maximum collateral damage

(L) is low.

C. Rule Deployment
Continuing with rules generated in Section VI-B, we

evaluated the distributed deployment of DDoS-�ltering rules

against a number of distinct, Internet-scale distributed �lter-

ing pro�les. Each pro�le represents di�erent rates of ASes

on the Internet that participate distributed �ltering of DDoS

tra�c, as shown in Table I. �e total number of ASes in

tiers 1, 2, and 3 is 89, 8442, and 47052, respectively. Full-

participation pro�le is clearly unrealistic, but we use this

pro�le as a baseline. �e “victim only” pro�le serves as

another baseline, in which the victim’s ISP is the only AS

that �lters DDoS tra�c and all rules must be deployed there.

Table I

Distributed filtering profiles for rule deployment

experiments. (These numbers are the same as the real Internet.)

Name Tier 1 Tier 2 Tier 3 Total #

Full-participation 100% 100% 100% 55583

Tier-1-only 100% 0% 0% 89

Top-centered 100% 50% 0% 4310

Middle-centered 0% 80% 20% 16163

Bo�om-centered 0% 20% 80% 39330

Victim-only 0% 0% 0% 1

We �rst evaluated the rule deployment success rate, i.e.,

the percentage of rules for which suitable locations are found.

With rules from Section VI-B as input, Figure 4 depicts the

success rate under each pro�le. �e �rst and most obvious



 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  100  200  300  400  500  600  700  800  900  1000

ru
le

 p
la

c
e
m

e
n
t 
s
u
c
c
e
s
s
 r

a
te

 (
%

)

per-AS rule limit

full-participation
tier-1-only

top-centered
middle-centered
bottom-centered

victim-only

Figure 4. Rule deployment success rates.

trend displayed is that the success rate for all pro�les either

remains stable or generally increases as we increase the per-

AS rule limit from 1 to 1000. Another trend is the impact of a

higher overall rate of ASes participating the distributed DDoS

�ltering. Overall, the rule deployment success rate increases

with a higher rate of participating ASes, though increasing

the participation rate for some AS tiers has di�erent e�ects

than for others. As expected, the lowest success rate belongs

to the victim-only pro�le, while the highest rate is achieved

by the full-participation pro�le. �e four pro�les in between

generally perform much be�er than the victim-only pro�le,

and slightly or moderately worse than the full-deployment

pro�le, where the top-centered pro�le is the only pro�le of

these four to reach nearly 100% success rate, and generally

performs be�er than the others. �e middle-centered pro�le

is not far behind, however, and actually reaches higher

success rates than the top-centered pro�le when the number

of rules per AS is low. �e tier-1-only pro�le is the most

sensitive to the per-AS rule limit, as with only 89 tier-1

ASes each AS faces pressure to deploy more rules than other

pro�les; it thus has a lower success rate than other pro�les

(except for victim-only) when the per-AS rule limit is low,

but gradually improves as the limit gets higher.

Next, we examined how many rules are placed at each

participating AS under �ve di�erent distributed �ltering

pro�les while each AS can only deploy at most 100 rules

(Figure 5). Across all pro�les, except the tier-1-only pro�le,

approximately 60% or more of ASes that participate in the

defense must deploy only a single rule, approximately 95% or

more of ASes deploy no more than 10 rules, and thus a very

small percentage of ASes deploy more than 10 rules. For the

tier-1-only pro�le, the rules are more spread out among all

ASes, but note this pro�le corresponds to the smallest actual

number of ASes. Overall, we can see that the deployment of

rules takes advantage of the fact that a small number of ASes

are in especially advantageous locations and can contribute

disproportionately to the defense.

D. DDoS Mitigation

We also evaluated the overall e�cacy of adaptive dis-

tributed �ltering as we defend in real time against real-
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world DDoS a�ack traces with continuous rule generation

and placement. Figure 6 shows two representative time series

for our defense against two DDoS a�acks with dissimilar

dynamics (CAIDA-DDoS and RADB-DDoS). For each a�ack,

we show the number of DDoS �ows �ltered at each second

during the a�ack as well as the number of �ows that arrive

at the victim when no �ltering is performed; although not

shown, no legitimate �ows are ever �ltered.

More speci�cally, Figure 6(a) applies rules that are gener-

ated based on source addresses of the tra�c toward maximal

DDoS coverage under zero collateral damage requirement

and three di�erent rule budgets (100, 200, and 500, which

represent roughly 1.5%, 3%, and 7%, respectively, of the total

approximately 7,000 DDoS sources). Here, even with a tight

budget of 100 source-based rules, which is only 1.5% of DDoS

sources, 60-70% of DDoS �ows will be �ltered, and a higher

value for the rule budget leads to more e�ective �ltering.

Figure 6(b) instead applies rules that are generated toward

minimum number of rules under zero collateral damage

requirement and three di�erent requirements on minimum

DDoS coverage (100%, 70%, and 50%). �e generation and

placement of rules tracks very closely the spikes in the

a�ack tra�c, demonstrating the overall accuracy of our rule

generation algorithm. In particular, with rules required to

cover 100% DDoS, although initially not all DDoS �ows are

�ltered, it takes only about 13 seconds to begin �ltering all
DDoS �ows at every second a�erwards.

E. Pilot Studies

We have deployed and tested a distributed DDoS �ltering

pilot system on the GENI (Global Environment for Network

Innovations) testbed [38]. Based on a recent Internet topology

that consists of all Internet ASes, we chose a subgraph of 1

tier-1 AS, 18 tier-2 ASes, and 31-tier3 ASes where each of

the total 50 ASes participates the �ltering of DDoS tra�c.

We also a�ached a local machine to one of the 50 ASes

as a subscriber. Each of these 50 ASes is supported with

two virtual machines provided by GENI. �e �rst virtual

machine for each AS runs a Ryu controller as an SDN

controller and an Open vSwitch[39] as an SDN switch that

can deploy OpenFlow rules to �lter tra�c. �e Open vSwitch

is populated with a forwarding table by running the OSPF
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Figure 6. Time series of �ltering of DDoS �ows. �e “total” curve shows

DDoS �ows without �ltering.

routing protocol [40]. �e second virtual machine for each

AS acts as an end-host in the AS that can generate benign

tra�c toward a destination from di�erent IP addresses of the

AS. More, in order to emulate large-scale DDoS a�acks on

the topology, we installed a DDoS agent on each AS’s second

virtual machine. It can receive commands about a variety of

DDoS a�acks from a bot master that we deployed on GENI

and generate DDoS tra�c toward a victim at a scheduled

time from di�erent IP addresses of the AS.

Our system runs smoothly on this platform with good

performance and low network overhead. It also runs fast

with rule generation at 105 milliseconds on average and the

network overhead is no more than 10 kilobytes each round

for rule deployment.

Below we exemplify our system’s e�ective �ltering of

DDoS tra�c by launching an emulated 100-Gbps DDoS a�ack

toward the subscriber from ∼1000 source addresses, together
with 40- to 60-Gbps legitimate tra�c to the subscriber from

∼200 sources. �e subscriber will then generate rules based

on its newly incoming DDoS tra�c and have these rules

eventually converted to OpenFlow rules and deployed at

selected Open vSwitches to �lter the DDoS tra�c.

Figure 7 shows our defense in two di�erent scenarios. In

the �rst scenario (Figure 7(a)) where the defense begins at

second 48, it takes only about 3 seconds for the �ltering of

DDoS tra�c to reach 100%. Since we are using source-based

�ltering, and the number of a�ack sources (1000) is relatively

high compared to the rule budget (150), some collateral

damage has to happen, preventing the volume of legitimate

tra�c since second 48 from fully recovering; nonetheless,

relative to the sharp dip of DDoS tra�c, the legitimate tra�c

does recover to be between 30 and 40 Gbps. In the second

scenario (Figure 7(b)), we increase the rule budget to 200 and

minimize the collateral damage. Although we no longer �lter

as much of the DDoS tra�c as the �rst scenario, we �lter

enough to relieve the link congestion, while all the legitimate

tra�c can continue to �ow at its previous rate.
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Figure 7. Volume of legitimate and DDoS tra�c over time before and

during distributed �ltering of DDoS tra�c during a pilot study.

Finally, we also conducted a pilot study with multiple

major IXPs to test the scalability of our system in the

wild against real, large-scale DDoS a�acks. �e results are

promising. For example, over a month at one IXP, our system

was able to generate rules towards minimal collateral damage

that covered 90% of the a�ack tra�c from all 46,552 a�ack

IPs in less than 7 seconds.

VII. Conclusion

DDoS a�acks are notorious for the damage they can

cause to network users and services. As a DDoS a�ack

is to launch DDoS tra�c from DDoS bots throughout the

Internet towards a victim along many di�erent paths, this

paper studies a distributed �ltering model that allows nodes

distributed along the paths of DDoS tra�c to �lter the DDoS

tra�c. �is model is made more feasible as nodes on the

Internet are witnessing increased capabilities of inspecting

and �ltering network tra�c. �is model is also necessary to

avoid not only the o�en futile �ltering of tra�c only at a

couple convergence points, but also the mistaken �ltering of



legitimate tra�c as distributed �ltering allows more �ltering

points including those only on the a�ack paths.

We focused on making distributed �ltering adaptive. For

example, while tra�c �ows to �lter may be de�ned by di�er-

ent source granularities, we allow the �ltering to adapt to the

most e�ective granularity of each �ow. A subscriber acting on

behalf of a DDoS victim can run a rule-generation algorithm

to derive an F -tree which, by tracking the tra�c toward

the victim and strategically aggregating �ows from di�erent

sources, can help derive tra�c-�ltering rules adaptive to

di�erent objectives and deploy the rules at the most e�ective

�ltering nodes.

We thoroughly evaluated our system through large-scale

simulations based on real-world DDoS a�ack traces, includ-

ing (i) the quality, quantity, and the tradeo� of rules gen-

erated with di�erent objectives; (ii) rule deployment success

rates and distributions with di�erent distributed, Internet-

scale �ltering pro�les; and (iii) the system’s overall e�cacy.

We also conducted pilot studies on a large-scale testbed as

well as major IXPs, showing our system can �lter the DDoS

tra�c from large-scale DDoS a�acks with as li�le as zero

collateral damage within several seconds.
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