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Lawful Interception (LI) is a legal obligation of Communication
Service Providers (CSPs) to provide interception capabilities to
Law Enforcement Agencies (LEAs) in order to gain insightful
data from network communications for criminal proceedings,
e.g., network identifiers for tracking suspects. With the privacy-
enhancements of network identifiers in the 5th generation of
mobile networks (5G), LEAs need to interact with CSPs for
network identifier resolution. This raises new privacy issues, as
untrusted CSPs are able to infer sensitive information about
ongoing investigations, e.g., the identities of their subscribers
under suspicion. In this work, we propose P3LI5, a novel system
that enables LEAs to privately query CSPs for network iden-
tifier resolution leveraging on an information retrieval protocol,
SparseWPIR, that is based on private information retrieval and
its weakly private version. As such, P3LI5 can be adapted to
various operational scenarios with different confidentiality or la-
tency requirements, by selectively allowing a bounded information
leakage for improved performance. We implement P3LI5 on
the 5G LI infrastructure using well known open-source projects
and demonstrate its scalability to large databases while retaining
low latency. To the best of our knowledge, P3LI5 is the first
proposal for addressing the privacy issues raised by the mandatory
requirement for LI on the 5G core network.

I. INTRODUCTION

Lawful interception (LI) is a statutory requirement for
communication service providers (CSPs) to provide autho-
rized law enforcement agencies (LEAs) with the capability
to intercept network communications and gain insightful in-
formation regarding criminal and anti-terrorism investigations
from network data. While in previous generations of mobile
networks, LEAs relied solely on radio monitoring techniques,
e.g., IMSI-catchers [1], to intercept network identifiers, this is
no longer possible in the new 5G core network [2], where the
subscriber long-term identifiers are transmitted in concealed
form to protect users’ privacy. As a result, the 3rd Generation
Partnership Project defines a set of interfaces and standards
which allow LEAs to resolve short-term identifiers with the
collaboration of the CSPs [3]–[5], which hold the associations
between the permanent and short-term network identifiers.

However, concealing network identifiers while at the same
time requiring CSPs to provide LI capabilities contradicts the
enhancement of subscriber privacy in 5G, as an untrusted CSP

can infer sensitive information by observing the LI interface:
On the one hand, the confidentiality of the LEA operations is at
stake, as the CSP can obtain more information about the context
of current investigations. On the other hand, there is a breach
of users’ privacy, as the CSP can gain additional information
on its subscribers with respect to their involvement in criminal
investigations. This raises the need for designing mechanisms
that protect the confidentiality of the LI interface on the 5G
core.

We introduce P3LI5, a novel system for confidential LI
on the 5G core. P3LI5 employs Private Information Re-
trieval (PIR) (and its relaxed and more performant variant
Weakly-Private Information Retrieval (WPIR)), a cryptographic
protocol which enables private data retrieval from untrusted
databases. Central to P3LI5 is SparseWPIR, a novel infor-
mation retrieval scheme empowering clients (LEAs) to control
information leakage by their queries towards CSPs, thus accom-
modating diverse privacy and performance needs. Our contri-
butions encompass: (i) SparseWPIR: A dynamic information
retrieval scheme enabling clients to manage information sharing
in queries, effectively balancing privacy and performance; (ii)
A rigorous privacy analysis employing established metrics
in the literature to quantify information leakage; (iii) The
development and proof-of-concept (PoC) of P3LI5, the first
system for practical and confidential LI on the 5G core.

The rest of the paper is organized as follows: We first
introduce the necessary background knowledge on the 5G
system and the cryptographic primitives upon which we base
our solution (II). Then, we discuss related work (III), and
we formally present our system and threat models (IV). We
introduce SparseWPIR, our generic Information Retrieval
(IR) scheme (V) and we show how to integrate it in the 5G
LI architecture by building P3LI5 (VI). We experimentally
evaluate P3LI5 (VII) and we conclude (VIII).

II. BACKGROUND

We highlight the main concepts regarding the 5G core [2]
(II-A) and its LI architecture (II-B). Then, we provide back-
ground for the cryptographic primitives employed by P3LI5
(II-C).
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Fig. 1. LI architecture on the 5G core network for identity disclosure.

A. The 5G System

1) Registration Procedure
In normal mode of operations, upon the first registration to

the network, User Equipment (UE) identify to the network
via a Registration Request with a concealed identifier called
Subscription Concealed Identifier (SUCI). This is an encryption
of the Subscription Permanent Identifier (SUPI), a unique iden-
tifier per SIM card generated by the Communication Service
Provider (CSP). Encryption employs ECIES in such a way that
only the CSP can recover the SUPI [6]. Moreover, the SUCI
is formed with fresh randomness, thwarting tracking attacks.
Post initial registration, each UE receives a fresh random
identifier, 5G-Global Unique Temporary Identifier (GUTI) (or
in shortened form 5G-Temporary Mobile Subscriber Identity
(TMSI)), again unfit for LI due to its randomness.

2) 5G Core
The 5G core is the back-bone network of the 5G architecture

defined in the 3GPP specification TR 21.915 [2]. It is composed
by a plethora of entities called Network Functions (NFs), i.e.,
components offering specific services to the network. In the
context of LI, a relevant NF is the Access and Mobility Func-
tion (AMF) [7], which handles the registration and mobility of
the subscribers in the network (e.g., it allocates identifiers after
every registration or when a subscriber changes base station).

B. 5G Lawful Interception Architecture

3GPP specifications [3]–[5], [8], [9] define a set of com-
ponents that CSPs should deploy to provide LI capabilities to
LEAs, and the requirements these should satisfy. According
to [3], the CSP LI infrastructure should provision the inter-
ception of communication upon receiving a lawful request
by LEAs. In this work, we consider LI operations aimed at
identity disclosure (i.e., by associating temporary identifiers to
the SUPI). We briefly describe the main components for target
identification in the LI infrastructure (Figure 1).

1) LEA
LEAs deploy sniffing devices to collect identifiers from the

network interaction between UE and the 5G core targeting

the Registration Procedure (II-A1). LEAs communicate with
the CSP using a standardized interface named LI HIQR. This
interface allows the exchange of information from LEA to CSP
(e.g., captured identifiers, time and location of the capture, and
optionally warrants) and vice versa (status of the interception,
resolved identifiers, validity start/end time for the associated
identifiers) in the form of XML messages following [5], [8].

2) CSP
The LI infrastructure deployed on the 5G Core network

by the service provider consists of several components and
interfaces which enable communications between them:

a) IEF: The Identifier Event Function is responsible
for providing association and disassociation events between
SUPIs and short-term (or concealed) identifiers, including the
association validity start and end time, to the ICF (II-B2b)
via the LI XER interface. The IEF is typically deployed as
a separate component (e.g., a virtualized container) associated
to a NF (e.g., AMF).

b) ICF: The Identifier Caching Function is responsible
for caching all the identifier associations provided by the IEF.
The ICF responds to identity association queries (short-term
to long-term identifiers and vice versa) forwarded by the IQF
(II-B2c). It retains currently valid associations until these are
flagged by the IEF as invalid (retaining them in memory for a
short time period), or for a maximum retention period (defined
by local legislation and the CSP) [4].

c) IQF: The Identifier Query Function listens for LEA
requests on the LI HIQR interface, and forwards identity
disclosure queries to the ICF via the LI XQR interface. It is
part of the Administration Function (ADMF), which manages
the other LI components (i.e., the IEF and ICF) via an internal
interface (LI XEM1).

C. Cryptographic Building Blocks

1) Homomorphic Encryption (HE)
HE schemes support the execution of operations (e.g., ad-

dition or multiplications) directly on encrypted data, hence
enabling computation delegation to third parties without risk-
ing data confidentiality. More formally, let E be an encryp-
tion scheme with the following operations: KeyGen which
generates an encryption key sk, Encsk(pt) which encrypts
a plaintext pt with sk, and Decsk(ct) which decrypts a
ciphertext ct with sk. E is considered an HE scheme, if
there exists an efficient and secure (with respect to a se-
curity parameter λ) algorithm Eval, which takes a cir-
cuit C (i.e., a set of operations) and some ciphertexts
[ct1, . . . , ctn]=[Encsk(pt1), . . . ,Encsk(ptn)], such that:

Decsk(Eval(C, [ct1, . . . , ctn])) = C([pt1, . . . , ptn]) (1)

Modern HE schemes [10]–[13] are based on the Ring-
Learning-With-Errors (RLWE) problem [14], [15]. Such
schemes operate over the polynomial ring Rq=Zq[x]/(X

n +
1) (with n the ring degree), and support Single-Instruction-
Multiple-Data (SIMD) operations, as they can pack vectors of
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data in a single plaintext/ciphertext. Moreover, such schemes
require ad-hoc cryptographic material to perform some oper-
ations (e.g., ciphertext-ciphertext multiplication or cyclic rota-
tions of the vector of encoded data), in the form of evaluation
keys. An operation GenEvk(C) generates the evaluation keys
for a set of operations in C using the secret key sk. Finally,
we note that RLWE-based HE schemes can perform a finite
number of operations on ciphertexts before decryption.

2) Private Information Retrieval (PIR)
Let DB be a database with N records {x0, . . . , xN−1}

replicated among k≥1 machines, controlled by an honest-but-
curious adversary S [16]. Let U be a user interested in privately
retrieving the i-th element xi from one or more of the k
database replicas. Finally, let P be an information retrieval
scheme consisting of three algorithms: (i) Query(i) used by U
to generate a query Q to retrieve xi from one or more database
replicas; (ii) Answer(Q,DB) used by S to generate an answer
A to Q using DB; (iii) Extract(A) used by U to extract xi

from A. We consider P a PIR scheme if, P is correct (i.e.,
Extract(Answer(Query(i),DB))=xi, ∀xi∈DB), and pri-
vate, i.e., S learns no information about i from Q=Query(i).
Recent PIR schemes [17]–[19]) guarantee correctness and con-
fidentiality, by encrypting queries with an HE scheme E and by
letting S compute the answers using homomorphic operations.
U can then decrypt the result and retrieve the desired item.

III. RELATED WORK

We review the related work on the security and privacy
aspects of 5G (III-A) and PIR schemes (III-B).

A. 5G Security and Privacy

There is sparse research focusing on security and privacy
topics for lawful interception in 5G. To the best of our knowl-
edge, this work is the first covering the identifier association
with the LI HIQR interface. On the contrary, the security and
privacy aspects of mobile networks such as 5G and its previous
generations has been more broadly studied. Related to this
work, the AKA protocol was modified in 5G to protect user
privacy by including the SUCI (instead of the IMSI) during UE
identification to the network. However, the AKA protocol has
several flaws [20], [21]. Similar vulnerabilities have been also
identified for the recently introduced SUCI mechanism [22].
Hong et al. [23] studied the privacy implications of the 5G-
GUTI re-allocation, while Fraunholz et al. [24] and Kune
et al. [25] investigated the feasibility of IMSI probing as
an attack against user privacy by relying on the infrequent
change of 5G-GUTIs. Other attacks that allow UE identifica-
tion and tracking are UE attach-request fingerprinting [26]–
[28], physical layer fingerprinting [29], IMSI catching [30],
and signal overshadowing (AdaptOver) [31]. Nie et al. [32]
performed a measurement study about the state of implemented
5G security features in Beijing deployments, and they found
that several crucial security enhancements of 5G are not in
use. We refer the interested reader to Khan et al. [33] for an

overview of user privacy challenges on the air interface and 5G
countermeasures. Finally, ZipPhone [34] and Boeira et al. [35]
conducted research on how user privacy can be preserved if
the CSP acts as an untrusted party.

B. Private Information Retrieval

PIR schemes are categorized based on their security guaran-
tees (Information-Theoretic PIR (IT-PIR) vs. Computational-
PIR (cPIR)), or depending on the number of non-colluding
databases (single-server PIR vs. multi-server PIR). Chor et
al. [36] proved that the only single-server IT-PIR scheme is
the naive scheme that downloads the entire database: Such a
scheme is highly impractical for real-world deployments, as it
incurs a communication cost linear in the size of the database.
Hence, many works focus on single-server cPIR schemes [17]–
[19]. Nonetheless, single-server cPIR schemes come with a
high overhead, as the server performs computation linear in
the size of the database [37]. To overcome this limitation,
single-server cPIR schemes with preprocessing, pre-process the
database in a (query-independent) offline phase to enable sub-
linear computational cost during the online phase [37]. How-
ever, PIR schemes with-preprocessing assume that the database
is immutable; despite attempts to relax this assumption [38],
pre-processing the database is infeasible for real-world use-
cases (e.g., for single-server PIR or PIR over key-value storage,
also known as Keyword-PIR). More recently, single-server
cPIR schemes exploit the capabilities of modern homomorphic
encryption schemes to increase their efficiency [17]–[19], [39],
[40]. In this work, we rely on single-server cPIR schemes, as in
line with our threat model (i.e., a single ICF under the control
of the adversarial CSP IV-B), and we extend such protocols to
make them practical and meet the operational requirements of
LI.

IV. SYSTEM AND THREAT MODEL

We describe the system and threat models considered (IV-A
and IV-B) as well as the requirements (IV-C) for practical and
confidential LI on the 5G core.

A. System Model

1) CSP
We consider that the CSP and the LEA engage in a single

query-response protocol, following the specifications for iden-
tity disclosure operations [4], [5]. We assume that there exists
a single ICF in the 5G network, and a single IEF deployed
in association with the AMF component. The IEF reports a
new event every time a UE registration is successful or UE
unregisters from the AMF [4].

2) LEA
We consider an operational scenario where interception hap-

pens on-field, i.e., LEAs sniff traffic between UE and CSP with
radio devices and query the CSP directly from the radio device
using a mobile internet connection with possibly variable
network conditions (e.g., depending on the area’s congestion
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level or its location). The LEA network captures are incomplete
versions of the events stored on the ICF. More concretely, we
assume that an association/disassociation event is stored in the
ICF as a tuple of data containing information such as the SUPI,
concealed identifiers (e.g., SUCI, 5G-GUTI), start/end time of
the associations between permanent and temporary identifiers,
and location data (e.g., cell where the subscriber connected
from). A LEA network capture is an incomplete version of such
tuple, e.g., missing the SUPI (which, in most cases, LEA aims
to retrieve from the CSP), and potentially other information
(e.g., temporary identifiers not observed over-the-air, start/end
validity time(s)). However, we note that at least one of the
SUPI, SUCI, 5G-GUTI or 5G-TMSI is known by both LEA
and CSP. We consider the following types of queries that LEAs
can perform: by SUCI or by 5G-TMSI/5G-GUTI to associate
temporary identifiers with a SUPI, or a reverse lookup by SUPI
in order to associate it with temporary identifiers used in the
network (e.g., for real-time tracking). Finally, we note that as
we focus on identity disclosure (II-B), the issuance of a warrant
is generally not required (e.g., see the case of Switzerland [41],
[42]). As such, we consider that the only source of information
leakage is the execution of the query-response protocol itself.

B. Threat Model

We consider that the CSP is an untrusted entity following
the honest-but-curious model (equivalent to S in II-C2). In
particular, the CSP will try to gain information about Law
Enforcement Agency (LEA) operations and the identities (and
hence possible involvement in criminal proceedings) of its
subscribers by observing the execution transcript of the LI
query-response protocol over the LI HIQR interface. As such,
all the components in the CSP domain (i.e., the IEF, ICF, IQF,
etc.) are untrusted. We deem this threat model realistic for our
use-case, as CSPs are required by law to cooperate with LEAs,
hence, it would be detrimental for them to behave as active
adversaries (and deviate from the protocol). We consider the
LEA as a trusted entity (similar to U in II-C2), i.e., we do
not consider the LEA acquiring information about the mobile
subscribers as a privacy breach.

C. Requirements

The LI architecture should ideally allow for identity reso-
lution in a few seconds (i.e., to enable quick reaction from
LEAs). The low latency requirement is particularly crucial for
on-field operations, like raids. Furthermore, the query-response
protocol should provide the following guarantees:

1) Correctness
By running the protocol, the LEA should retrieve from the

CSP all associations and disassociation events matching its
queries.

2) Query Privacy
By running the protocol, the LEA queries should leak no

information to the CSP about the retrieved events. As discussed
in III-B, the computational overhead of classical cPIR schemes

makes it impossible to balance the privacy of the query and
the LI operational requirements. Hence, we further relax this
guarantee as follows.

2’) Query Quasi-Privacy
By running the protocol, the LEA queries should leak no

non-voluntary information to the CSP about the retrieved
events. In other words, the LEA should be able to select
how much information it wants to leak to the CSP about the
retrieved events while obtaining guarantees that the CSP does
not learn any information beyond that. We note that Query
Quasi-Privacy can correspond to Query Privacy, i.e., the LEA
can choose to run the protocol with no information leakage.

V. A GENERIC INFORMATION RETRIEVAL SCHEME

We introduce SparseWPIR, our generic information re-
trieval scheme that fulfills the requirements of Correctness
and Query Quasi-Privacy (IV-C). We first build our scheme
starting from generic building blocks like RLWE-based HE and
PIR schemes (V-A–V-D). Then, we provide a careful privacy
analysis of the scheme (V-E).

A. PIR with Recursion

We build SparseWPIR on top of a generic PIR scheme
P exploiting a RLWE-based HE scheme E and a technique
called Recursion [17]–[19], [43], [44]. In the Recursion model,
the database DB is represented as a hyper-rectangle D in d
dimensions K=[K0, . . . ,Kd−1]. Assuming that DB contains
N records, D is designed such that each of the

∏d−1
i=0 Ki hyper-

rectangle cells contains exactly M records (where M is the
capacity of an RLWE plaintext). As such, a single cell of D is
represented as a fully-packed RLWE plaintext (exploiting the
SIMD capabilities discussed in II-C1). We indicate a cell of D
at coordinates {k0, . . . , kd−1} as xk0,...,kd−1

.

B. Weakly-Private Information Retrieval

We base SparseWPIR on a generalization of PIR from In-
formation Theory called Weakly-Private Information Retrieval
(WPIR) [45], which allows some fixed information leakage to
reduce the overhead associated with the classical PIR protocol.
In WPIR, the database DB is partitioned in η partitions of
size Nη=

N
η . To retrieve the item xj at the index j of the i-th

partition, U builds the query Q=(Q̃, i)∈Q=Q̃ × [0, ..., η − 1],
where Q̃ is the realization of P .Query(j). In more detail, U
provides S a “hint” h about which partition the requested item
belongs to and S runs the complete PIR protocol on a single
partition of the database of size Nη .

C. Keyword PIR

In real-world scenarios, databases are typically represented
as key-value storage rather than indexed arrays, i.e., an item x
is associated with some keyword w∈W (where W is a large
domain), rather than an index i∈[0, . . . , N − 1]. Moreover, it
may happen that many elements of W are not present in DB
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(i.e., DB is sparse in W). Keyword-PIR tackles such database
types [46]. However, existing Keyword-PIR schemes, compared
to their classical PIR counterparts, introduce significant com-
munication and computation overhead [17], [46], O(N) storage
at the client side [36], or assume static databases [47]. We
extend SparseWPIR to Keyword-PIR without making specific
assumptions nor specific optimizations (e.g., static databases,
batch query optimizations, etc.), by adopting a similar solution
to [17]. In particular, we apply a mapping H:W→Rd, with H a
cryptographic hash function that associates a keyword w related
to a record, with a vector s of d integers representing the coor-
dinates of the hyper-rectangle cell that stores w. Hash collisions
are not a concern, as we can pack up to M records in a single
cell represented as an RLWE plaintext. However, we need to
correctly configure the hypercube dimensions (K0, . . . ,Kd−1),
such that we can guarantee with high probability that a single
cell of D can be always represented by a reasonably small
number of plaintexts θ. To achieve this, we exploit the results
of Raab et al. [48] to estimate with overwhelming probability
the worst-case number of collisions M ′ in a single cell of D
as a function of the number of cells

∏d−1
i=0 Ki, subject to the

constraint M ′≤θM , θ≥1. In particular, we model the problem
of inserting N events in

∏d−1
i=0 Ki cells as a balls into bins

problem, and we follow [48] to find a value for each Ki such
that our constraint is met. We indicate an item associated to a
keyword w as xw.

D. WPIR on Sparse Databases with Selective Leakage

SparseWPIR further expands the notion of WPIR by:
(i) running WPIR on a sparse database, and (ii) allowing U
to dynamically choose the set of partitions to run PIR on
(parameterized by a leakage parameter ϵ which controls how
much information it leaks to S). We observe that we can
dissect the dimensions of D and obtain a dynamic set of η(ϵ)
partitions. Let’s assume that U wants to retrieve the item xw

associated with keyword w. U generates the selection vector
s=H(w)=[k0, . . . , kd−1] that maps xw to a cell xk0,...,kd−1

in
D (V-C). U generates a query Q as follows:

Q = (Q̃,h) ∈ Q = Q̃ × (ZK0
× · · · × ZKds(ϵ)−1

) (2)

with ds(ϵ)∈[0, . . . , d]. According to the leakage parameter ϵ,
U selectively leaks a hint to the server S, represented by the
vector h=[k0, . . . , kds(ϵ)] containing the first ds(ϵ) coordinates
of xk0,...,kd−1

in D. This is equivalent to running the WPIR con-
struction of V-B with η=

∏ds(ϵ)−1
i=0 Ki and Nη=

N∏ds(ϵ)−1
i=0 Ki

.
In other words, S runs the PIR protocol on the subset of Nη

elements of D with the first ds(ϵ) coordinates matching what
was leaked by U in h.

E. Leakage Analysis

We characterize the leakage of SparseWPIR by quantifying
the uncertainty of the adversary trying to guess the item of
interest xw when observing Q, by using the min-entropy

metric from information theory:

H∞(X=xw|Q=Q)=

− log2
∑
Q

Pr(Q)(Q)· max
w∈W|xw∈DB

Pr(X|Q)(xw,Q)
(a)
=

− log2
∑
Q

Pr(Q)(Q) · 1

Nη(ϵ)

(b)
=

− log2(
∥Q∥

∥Q∥Nη(ϵ)
) = log2

N

η(ϵ)

(c)
= H∞(X)− ρ

(3)

where
(a)
= stems from the fact that the adversary can only

guess uniformly at random in the set of elements Nη(ϵ), which
corresponds to the partition of the database induced by running
SparseWPIR with the hint produced with ϵ;

(b)
= derives

from the assumption that U looks for an item according to a
uniform distribution, hence every query instance has the same
probability of being generated over the alphabet Q;

(c)
= follows

from Theorem 1 in [45], with ρ the Max Leakage privacy
metric which measures the bits of information leaked to S about
the identity of the requested item xw by observing the transcript
of a query execution Q. We remark that, in SparseWPIR,
min-entropy has similar semantics to the privacy notion of k-
anonymity (a privacy metric used in real-world systems like
“Have I Been Pwned” [49]) with k= N

η(ϵ) . Overall, the leakage
in SparseWPIR indicates how much information is leaked to
S about the coordinates s of an item xw in D. In the context of
LI, this leakage can be practically interpreted by estimating the
size of the anonymity set of all the possible keywords w (e.g.,
network identifiers such as SUCI) associated with the query Q
from the CSP’s point of view.

VI. PRACTICAL AND CONFIDENTIAL LI

We now describe P3LI5, a system which enables prac-
tical and confidential LI on the 5G core by leveraging on
SparseWPIR (V) with LEA playing the role of U and the CSP
the role of S. We first present the workflow of P3LI5 (VI-A
and VI-B) and then discuss additional techniques required to
enable SparseWPIR in LI infrastructures (VI-C and VI-D).

A. Agreement Phase

Before starting with the information retrieval protocol, LEA
and CSP execute the Agreement Phase which consists of two
algorithms:

1) Context Generation
The CSP setups a context for the LI, by choosing the

dimensions of the hyper-rectangle representation for the ICF.
The details are shown in Algorithm 1. We assume that the
ICF already stores N events. If the ICF is empty, the CSP can
configure N based on past statistics (e.g., the expected number
of events).
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Algorithm 1 Context Generation
Input: N : Number of records; B : record size; d : Dimensions of D with d ≥ 2; n

: Ring degree of HE; θ : A tolerance factor for the number of records that can be
stored in a cell of D.

Output: ctx=(K, d, n) (i.e., the context).
1: Compute M from (B,n) ▷ Max. # of records stored in a cell of D
2: Estimate K such that

∏d−1
i=0 Ki≥⌈ N

M ⌉ ▷ e.g., K0= · · · = Kd−1=
d
√
⌈ N
M ⌉

3: Compute M ′, i.e., worst case number of collisions in cell from K ▷ as per (V-C)
4: if θ·M ≥M ′ then
5: return (K, d, n)
6: end if
7: return ⊥

2) Profile Generation

LEA retrieves the context from the CSP and creates a profile
for the LI execution. It selects the parameters for the HE
scheme and it generates the evaluation keys required for the
PIR protocol (see Algorithm 2 for details).

Algorithm 2 Profile Generation
Input: ctx : Context created by CSP; ϵ: Leakage parameter (V-D); P : The space of all

possible parameters for HE.
Output: sk : Secret key for E ; Pϵ=(pϵ, evkϵ) : Profile containing the parameters for
E and the evaluation keys required to execute P .

1: Extract a suitable set of parameters pϵ for E from P, given ctx and ϵ ▷ Select the
ciphertext modulus q for Rq given n from ctx

2: sk←E.KeyGen(pϵ)
3: evkϵ← E .GenEvk(P) ▷ Generate eval. keys for the execution of P
4: return sk, Pϵ=(pϵ, evkϵ)

Note that LEA chooses the complete set of HE parameters,
as these depend on ϵ. In particular, higher values of ϵ allow
for smaller values of q (i.e., the modulus of the ring Rq in
II-C1), which decrease the computational complexity of the
HE operations. Moreover, we highlight that transferring profiles
incurs high communication, as the evaluation keys consist of
several polynomials. However, the CSP can cache the profiles
after receiving them for the first time.

B. Information Retrieval Phase

After the LEA and CSP agree on the representation of the
database as a hyper-rectangle D, and LEA setups the desired
cryptographic parameters and evaluation keys (VI-A), comes
the Information Retrieval Phase. We assume that both LEA
and CSP employ a common encoding strategy H which maps
events e and network captures ẽ to a fixed set of coordinates in
D. For example, the CSP can map an event e with an element
xw (V-C), by using an identifier (e.g., SUPI, or SUCI, 5G-
GUTI, 5G-TMSI) as a keyword w, and by storing it in a cell
xk0,...,kd−1

. The LEA can do the same, as it is guaranteed that
at least one identifier is known both by LEA and CSP (IV-A2).
As per (V-C), we use a hash-based mapping. P3LI5 exposes
two algorithms, Query (Algorithm 3) executed by the LEA
and Answer (Algorithm 4) executed by the CSP:

Algorithm 3 Query
Input: ctx=(K, d, n) : Context; ϵ : Leakage parameter; Pϵ=(pϵ, evkϵ) : Profile; sk

: Secret key for HE; ẽ : Network capture.
Output: Q (Query).
1: Extract keyword w from ẽ
2: k=[k0, . . . , kd−1]←H(w) ▷ Map w to coordinates in D
3: Determine ds(ϵ)∈[0, . . . , d] ▷ Select the amount of coordinates to leak based on

ϵ, e.g., ds(ϵ)=ϵ, for ϵ∈[0, . . . , d].
4: h=[k0, . . . , kds(ϵ)]

5: k̃←[kds(ϵ), . . . , kd−1]

6: Q̃←P.Query(k̃)
7: return Q=(Q̃,h)

Algorithm 4 Answer
Input: ctx : Context; Q=(Q̃,h) : Query, Pϵ : Profile sent by the LEA; D : Hyper-

rectangle representation of DB (ICF).
Output: A (Answer).
1: D̃={xk0,...,kd−1

∈ D | ki=hi, i ∈ [0, . . . , ds(ϵ)]) ▷ Partition the database
using the hint h=[h0, . . . , hds(ϵ)] (V-D).

2: return A← P .Answer(Q̃, D̃) ▷ Execute P on the partition of the database D̃

After receiving the answer A from the CSP, LEA uses
P .Extract(A) to obtain the cell xk0,...,kd−1

from D, that
contains the events relevant to its query.

C. Handling Dynamic Cache

A subtle problem that P3LI5 needs to address, is the
possibility of a context-mismatch while executing the Answer
algorithm (Alg. 4). Indeed, as the ICF continuously inserts
events from the IEF or deletes expired entries from the cache,
the database representation can change after the LEA fetches
the context from the CSP (VI-A1). This forces the CSP to
enlarge or shrink the dimensions of D which causes 2 prob-
lems: (i) LEA queries might be inconsistent with the current
representation D, requiring the CSP to send an updated context
such that LEA re-generates the query at the cost of an additional
round-trip time; (ii) LEA is forced to regenerate and retransmit
all the profiles, including evk, which is very costly (VI-A2).
P3LI5 tackles this problem by over-provisioning the hyper-
rectangle representation, i.e., by configuring the dimensions of
D for a number of events larger than those currently stored
in the ICF. This way, P3LI5 accommodates database updates
and shrinks the hyper-rectangle size only when the number
of events goes under a certain threshold which can be tuned
experimentally.

D. Multi-Query Support

P3LI5 can support queries by multiple keywords (e.g., by
SUCI, (5G-)TMSI or SUPI, as per IV-A) by following three
deployment options for the ICF:

1) Single Hashing
In this case, a single keyword (e.g., SUCI) is extracted from

an event which is mapped accordingly to a single bin in the
hyper-rectangle representation D. Upon reception of a different
query type (e.g., lookup by 5G-TMSI), a re-encoding process
re-indexes all the database entries to a different bin with the
correct keyword (e.g., 5G-TMSI). The storage complexity of
this option is O(N) (where N is the number of events in the
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ICF), and it incurs an additional linear cost of O(N) for re-
encoding the entries on the fly before executing the Answer
algorithm (VI-B).

2) Multiple Hashing
Different keywords are extracted from the same event (i.e.,

SUPI, SUCI and (5G-)TMSI) and the record is mapped to dif-
ferent bins according to the hash-mapping H and the keyword.
This way, P3LI5 supports successive queries of different types
without additional work, in exchange for storage complexity:
For m different keywords (e.g., m=3), P3LI5 incurs a linear
factor of O(mN).

3) Distributed Single Hashing
Following this option, P3LI5 employs the single hashing

technique in a distributed fashion, i.e., it sets up m ICF
components (with m being the number of supported look-
up types) and the IEF sends events to all ICFs. Each ICF
employs the single-hashing technique on a different keyword.
This allows P3LI5 to support queries for different keywords
simultaneously, at the cost of maintaining more machines.

E. Extension to Personal Identifiable Information

While the scope of P3LI5 is mainly the retrieval of associa-
tion information between permanent and short-term identifiers
used at the network-level, we note that it can be extended
to support the retrieval of subscribers’ personal identifiable
information (PII). For instance, PII could be included in
the representation of events at the ICF (e.g., at the cost of
performing a join operation using the SUPI with the internal
CSP database storing subscribers’ PII and assigned SUPI, and
of a small storage overhead to store the extra information).
Alternatively, P3LI5 can be used a second time to query the
CSP database storing subscribers’ PII, using the retrieved SUPI
as a common keyword between the LEA and the CSP.

VII. EXPERIMENTAL EVALUATION

We present our implementation details (VII-A) and the evalu-
ation benchmarks of SparseWPIR (VII-B). Then, we describe
our proof-of-concept implementation of P3LI5 (VII-C). Our
code is open-source [50]–[54].

A. Implementation Details

1) Hardware
All experiments are performed on a machine running Ubuntu

20.04, with 256 GB DDR4 RAM and an 2.80GHz Intel(R)
Xeon(R) Gold 6242 processor with 64 cores.

2) Software
We implement SparseWPIR in Go, using the Lattigo

homomorphic encryption library [55]. To simulate variable
network conditions, we rely on the Go Latency pack-
age. For the underlying PIR scheme, we reimplemented the
MulPIR scheme [17] in Go, with a multithreaded execution of
the Answer algorithm (Alg. 4). MulPIR uses the BFV HE
scheme [11], [12], [56], which we instantiate with parameters

Fig. 2. SparseWPIR end-to-end latency under different network conditions
and database sizes (in log scale), using different leakage parameters (ϵ).

that achieve 128-bit security [57]. Nonetheless, we remark
that it is easy to integrate more recent PIR schemes [18],
[19] into SparseWPIR. For PIR Recursion, we use d=3
dimensions, and we generate SparseWPIR hints such that
ds(ϵ)=ϵ. Moreover, we represent the database as a hyper-
rectangle where K0=K1= . . .=Kd−1 (i.e, a hyper-cube).

B. SparseWPIR Evaluation

We evaluate the algorithmic part of P3LI5 at scale and
in a typical IR setting by benchmarking the online phase of
SparseWPIR. In particular, we measure the end-to-end la-
tency of the Query (Alg. 3), Answer (Alg. 4) and Extract
algorithms. We exclude the offline part (context generation
(Alg. 1) and profile generation (Alg. 2) as its latency cost is
negligible (in light of VI-C), however, we stress that trans-
ferring profiles can be costly in terms of communication as
the size of a profile ranges between 20 − 40MB). We test
P3LI5 on databases populated with synthetic data generated
according to the expected byte size of events stored in the
ICF [4], and of various sizes up to ∼34GB, which we deem to
be a realistic estimation of the worst-case size of the ICF. In
particular, following the results of Leo et al. [58], we consider
that IEF events are generated following a Poisson process with
an intensity of λPoisson=0.0006 registrations/s at peak-hour, a
maximum retention time for the ICF of tmax=54 minutes [4],
and a short-term caching time of tshort=

tmax
2 minutes. Then, the

database size is estimated as Nsub·λPoisson·tshort(s)·b, with Nsub
the number of network subscribers and b the byte length of an
event in the ICF. For a large CSP like Verizon (∼143M users as
of 2023 [59]), assuming b≈250B [4], an estimated worst-case
size for the ICF is ∼34.7GB. We also use different values for
the leakage parameter ϵ, and we simulate variable bandwidth
conditions (according to 5G reference values [60]) relevant to
different interception scenarios: a congested network (10Mbps),
broadband access in a crowded urban area (25Mbps), access in
a remote rural area or from a moving vehicle (50Mbps), and
access in a densely populated urban area (300Mbps).
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Fig. 3. Size of the anonymity sets induced by SparseWPIR for different
database configurations and leakage parameters (ϵ). ϵ=0 (green) offers full
privacy (i.e., k=N in the context of k-anonymity V-E).

Figure 2 shows the SparseWPIR latency benchmarks for
increasing database sizes, with the naive PIR as a baseline.
First, we note how trading the communication cost of down-
loading the whole database (naive PIR) for the computational
cost of SparseWPIR becomes more beneficial in opera-
tional scenarios with limited bandwidth. Nonetheless, (the fully
private version of) SparseWPIR (green) performs almost
always better than the naive scheme (blue), even for small
databases with high bandwidth availability. Then, we highlight
the scalability of SparseWPIR, whose latency grows linearly
with the database size. Finally, we observe that the fully
confidential version achieves a speedup of up to two orders of
magnitude over the naive version, depending on the available
bandwidth. Then, the quasi-private versions with moderate and
high information leakage allow for a speedup ranging from
102× to 104× (moderate) and from 103× to 105× (high).

Figure 3 provides insights about the information leakage
of SparseWPIR, by showing how the leakage parameter
ϵ affects the anonymity set size of the item retrieved by a
query for databases with different numbers of entries, and
entries of variable byte sizes (V-E). As expected, the higher
the leakage parameter, the smaller the anonymity set size.
Moreover, we observe that the size of the anonymity set is
not only impacted by ϵ, but also by the byte size of the items
in the database: the smaller their byte size, the more items that
can be packed in a cell of the hyper-rectangle, thus, enlarging
the anonymity set. Finally, we evaluate the deployment costs of
our SparseWPIR-enabled ICF on the cloud (e.g., AWS [61]).
We take into account the pricing for both network and CPU
time. Figure 4 shows that a fully confidential query is always
executed with less than 50¢ (USD cents), while quasi-private
ones run with less than 5¢.

C. P3LI5 Proof-of-concept

We build a proof-of-concept for P3LI5 on a simulated
interception task that resolves the identities of 100 subscribers
by SUCI. We build a LI infrastructure for 5G on top of custom
forks [53], [54] of well-known open-source projects to simulate

Fig. 4. Costs of
SparseWPIR Answer
protocol on an AWS
m6g.16xlarge machine
(eu-central-2) [61].

Fig. 5. P3LI5 proof-of-concept implementation
in a virtualized environment.

the 5G Radio Access Network (using UERANSIM [62]) and
the 5G Core network (using open5gs [63]). We also implement
a minimalistic LI infrastructure from scratch in Python [52].
For ease of deployment, each component (UEs, base stations,
5GC NFs, LI components, LEA) is deployed on a separate
Docker container. We dockerize open5gs and UERANSIM,
using an open-source project [64] which we modify to include
their SparseWPIR-enabled versions [50], [51]. Finally, we
develop and integrate a new set of messages into the specifica-
tions [3]–[5], [9] to support P3LI5: for the LI HIQR interface,
we define messages carrying only SparseWPIR encrypted
queries/answers, suppressing all spatio-temporal metadata, and
we follow a similar approach for LI XQR. A demonstration
of P3LI5 proof-of-concept (showing the P3LI5 dashboard
during the interception task) can be found online.

VIII. CONCLUSION

In this work, we presented P3LI5, a novel system that
enables Law Enforcement Agencies (LEAs) to perform Lawful
Interception (LI) on the 5G core network [2] while protecting
the confidentiality of their operations against untrusted Com-
munication Service Providers (CSPs). P3LI5 leverages on a
novel information retrieval scheme, SparseWPIR, based on
PIR and its weakly private version WPIR, hence achieving a
tradeoff between privacy and performance. Our experimental
results show that by selectively disclosing some bounded in-
formation, LEAs can query the CSP identifiers cache (ICF) and
resolve identities with a performance speedup of up to 100×
over the fully private version of the protocol with a classical
PIR scheme. Thus, P3LI5 can adapt to several operational
scenarios and scale to large ICFs (∼34GB). Overall, P3LI5
is the first solution to address the privacy issues raised by the
requirement for LI on the 5G core.
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[30] M. Chlosta, D. Rupprecht, C. Pöpper, and T. Holz, “5g SUCI-catchers:
Still catching them all?” in 14th ACM WISEC. ACM, Jun. 2021.

[31] S. Erni, M. Kotuliak, P. Leu, M. Roeschlin, and S. Capkun, “AdaptOver:
adaptive overshadowing attacks in cellular networks,” in 28th Annual
International Conference on Mobile Computing And Networking. ACM,
Oct. 2022.

[32] S. Nie, Y. Zhang, T. Wan, H. Duan, and S. Li, “Measuring the deployment
of 5g security enhancement,” in 15th ACM WISEC. ACM, May 2022.

[33] H. Khan and K. M. Martin, “A survey of subscription privacy on the
5g radio interface - the past, present and future,” Journal of Information
Security and Applications, vol. 53, p. 102537, Aug. 2020.

[34] K. Sung, B. Levine, and M. Zheleva, “Protecting location privacy from
untrusted wireless service providers,” in 13th ACM WISEC. ACM, Jul.
2020.

[35] F. Boeira, M. Asplund, and M. Barcellos, “Provable non-frameability for
5g lawful interception,” in 16th ACM WISEC. ACM, 2023. [Online].
Available: https://doi.org/10.1145/3558482.3581780

[36] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private
information retrieval,” J. ACM, vol. 45, no. 6, p. 965–981, nov 1998.
[Online]. Available: https://doi.org/10.1145/293347.293350

[37] A. Beimel, Y. Ishai, and T. Malkin, “Reducing the servers computation in
private information retrieval: Pir with preprocessing,” in CRYPTO 2000,
M. Bellare, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000,
pp. 55–73.

[38] Y. Ma, K. Zhong, T. Rabin, and S. Angel, “Incremental offline/online pir
(extended version),” IACR ePrint, Paper 2021/1438, 2021, https://eprint.
iacr.org/2021/1438. [Online]. Available: https://eprint.iacr.org/2021/1438

[39] C. Gentry and Z. Ramzan, “Single-database private information retrieval
with constant communication rate,” in Automata, Languages and Pro-
gramming, L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and
M. Yung, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 803–815.

[40] E. Kushilevitz and R. Ostrovsky, “One-way trapdoor permutations are
sufficient for non-trivial single-server private information retrieval,” in
EUROCRYPT 2000, B. Preneel, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 104–121.

[41] “Bundesgesetz betreffend die Überwachung des Post- und
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