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Abstract—Federated learning (FL) is designed to preserve data
privacy during model training, where the data remains on the
client side (i.e., IoT devices), and only model updates of clients
are shared iteratively for collaborative learning. However, this
process is vulnerable to privacy attacks and Byzantine attacks:
the local model updates shared throughout the FL network will
leak private information about the local training data, and they
can also be maliciously crafted by Byzantine attackers to disturb
the learning. In this paper, we propose a new FL scheme that
guarantees rigorous privacy and simultaneously enhances system
robustness against Byzantine attacks. Our approach introduces
sparsification- and momentum-driven variance reduction into
the client-level differential privacy (DP) mechanism, to defend
against Byzantine attackers. The security design does not violate
the privacy guarantee of the client-level DP mechanism; hence,
our approach achieves the same client-level DP guarantee as
the state-of-the-art. We conduct extensive experiments on both
IID and non-IID datasets and different tasks and evaluate the
performance of our approach against different Byzantine attacks
by comparing it with state-of-the-art defense methods. The results
of our experiments show the efficacy of our framework and
demonstrate its ability to improve system robustness against
Byzantine attacks while achieving a strong privacy guarantee.

Index Terms—Federated Learning, Byzantine Attack, Differen-
tial Privacy, Model Sparsification, Variance Reduction

I. INTRODUCTION

In the Internet of Things (IoT) era, vast volumes of data
are continuously generated and collected by myriad devices
embedded in our everyday environments. In conventional cen-
tralized machine learning (ML) systems, data from various
users (or their edge devices) are gathered and processed on
a central server for model training, which raises significant
concerns about data privacy. Federated learning (FL), a novel
distributed ML paradigm, presents an appealing solution to
protect users’ privacy [23]. In FL, edge devices collaboratively
learn a shared ML model while keeping their data locally,
thereby mitigating privacy leakage and reducing the need
for data transmission. The enhanced privacy and efficiency
offered by FL have prompted its application in various data-
sensitive IoT scenarios [35], including communication [14],
network [40], business [12], etc.

However, vanilla FL has been demonstrated to be susceptible
to various security and privacy vulnerabilities [18], [21], with
Byzantine attack [7], [30] and privacy inference attack [31]
standing out as two of the most prevalent. In Byzantine attacks,
a number of devices (or clients) participating in FL can act
maliciously and disrupt the training of the shared ML model.

In a typical training round of FL, devices download the shared
global model maintained by a central server and update it
locally using their own data, after which the server collects
and aggregates these local model updates to obtain the global
model update. This process, however, exposes a vulnerability
to malicious devices. Such devices can subtly manipulate their
local model updates to prevent or mislead the convergence of
the shared global model. Notably, it has been shown that even a
single malicious device can alter the trained global model [3].
In the privacy inference attack, both devices and the server
involved in FL can infer information about the local data of
the devices by observing these model updates, thereby posing a
privacy risk. For example, [25] shows that the malicious server
and device can infer whether a particular individual data record
was included in the training dataset with high accuracy.

Current countermeasures for Byzantine attacks and privacy
inference attacks in FL mainly focus on two distinct directions:
1) improving the robustness of the global model against ma-
licious model updates and 2) providing privacy protection for
each device’s local dataset. To provide Byzantine robustness,
existing works emphasize designing Byzantine-robust aggre-
gators [3], [10], [38] to filter out or moderate suspicious local
updates uploaded by Byzantine devices at the central server.
For privacy protection, the differential privacy (DP) mechanism
[6] is a common practice that adds calibrated noise to the
model updates before sharing, achieving a rigorous privacy
guarantee for each device in FL. Besides, a few works attempt
to orchestrate Byzantine robustness and privacy; however, they
typically struggle to excel in both aspects simultaneously or
operate under the assumption of a trusted central server. For
instance, [33] demonstrates that incorporating “weak” differ-
ential privacy can mitigate poisoning attacks in distributed
systems and enhance model robustness. However, the applied
differential privacy noise in their work is deemed “weak” and
does not provide a meaningful privacy guarantee. Flame [26]
is a state-of-the-art defense method against poisoning attacks.
It utilizes clustering and adaptive clipping strategies, combined
with client-level differential privacy, to enhance system robust-
ness. However, it falls short of achieving a balance between
privacy and robustness. Secure aggregation [4] is co-designed
with Byzantine robustness aggregators, but secure aggregation
assumes the server is trusted.

In this work, our objective is to design a federated learning
system that is both Byzantine-robust and privacy-preserving.
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We assume that both the clients and the server are semi-honest.
Specifically, the central server and clients are ”honest-but-
curious,” which means they honestly follow the training proto-
col but may be curious about the private local datasets; and a
fraction of clients (less than 50%) are also malicious/Byzantine,
who do not honestly follow the local model training protocol
and can generate arbitrary malicious local updates. Inspired
by [26], we explore the potential advantages of using the
DP mechanism for Byzantine robustness, particularly when
a strong privacy guarantee is required. We target the cross-
device FL system with client-level DP and aim to improve
its robustness against Byzantine attacks without violating its
privacy guarantee. The main challenge here is the high variance
of the aggregated model update introduced by local stochastic
gradients of benign clients, Byzantine attackers, and DP noise.

To address this challenge, we introduce a novel FL scheme
that combines sparsification- and momentum-driven variance
reduction techniques with the client-level DP mechanism. We
first reduce the variance of the local stochastic gradient training
process using local momentum, which is proved to be essential
for improving the robustness. Then, we integrate top-k model
sparsification into the commonly used client-level DP mecha-
nism without violating its privacy guarantee. This integration
allows us to reduce the impact of Byzantine and DP pertur-
bations on the aggregated model update. Through extensive
experiments on multiple datasets, our method demonstrates
remarkable performance in terms of both robustness and pri-
vacy. Particularly, our approach surpasses existing Byzantine-
robust aggregators, showcasing its superiority. When applied
to the Fashion-MNIST dataset with 20% Byzantine clients, our
approach achieves an impressive testing accuracy improvement
of up to +67.34%, while ensuring that the privacy loss of
each client is bounded by 1.01 after the training. The main
contributions of this work can be summarized as follows:

• We propose a novel FL approach named FedVRDP to
defend against Byzantine model poisoning attacks and
privacy inference attacks in FL. FedVRDP is designed
to achieve Byzantine robustness and differential privacy
simultaneously with minimal modifications to the existing
commonly-used FL framework FedAvg [23].

• FedVRDP combines sparsification- and momentum-driven
variance reduction techniques with the client-level DP
mechanism. We provide a theoretical analysis to illustrate
the variance sources present in the aggregated local up-
dates of the DP-based FedAvg baseline when Byzantine
clients are involved and mitigate the pivotal factors that
contribute to increased variance.

• In FedVRDP, the design for improving robustness against
Byzantine attackers does not compromise the privacy
guarantee of the client-level DP mechanism in FL. As
a result, FedVRDP attains the same client-level DP assur-
ance as the state-of-the-art (SOTA) FL scheme with client-
level DP. Simultaneously, FedVRDP markedly enhances
the system’s resilience against Byzantine attacks, thereby
upholding both robustness and privacy simultaneously.

• We evaluate our approach across IID and non-IID datasets
through extensive experiments, and compare the results
with those of SOTA defense methods. The results under-
score our approach’s effectiveness in improving Byzantine
robustness and privacy protection.

The rest of the paper is organized as follows. Backgrounds
and preliminaries on FL and DP are described in Section II.
Section III introduces the problem setting and discusses the
existing solutions. Section IV presents our proposed method
FedVRDP, and Section V shows the experimental results.
Finally, Section VI reviews the related work, followed by the
conclusion in Section VII.

II. BACKGROUNDS AND PRELIMINARIES

A. FL System & FedAvg

We consider a typical FL system of n clients (e.g., IoT
devices) and a central server, and the clients collaboratively
train a global model x ∈ Rd with dimension d under the
coordination of the server. Assume each client i ∈ [n] holds
a local private dataset Di. The goal of FL is to solve the
following optimization problem:

min
x∈Rd

f(x) :=
1

n

∑
i∈[n]

fi(x). (1)

where fi(x) := Ez∈Di [l(x; z)] represents the local loss of
client i, and l(x; z) is the loss as a function of the model
parameter x and a datapoint z sampled from Di. Note that, for
i ̸= j, the datasets Di and Dj may have different distributions.

To solve the problem in (1), the whole system runs T rounds
of FL training protocol. Initially, the server stores a global
model x0. In the t-th round, the server randomly selects a
subset St of s clients and sends them the latest global model xt.
The selected clients then update the global model xt using their
local datasets. For example, in the classic and most widely-
used FL algorithm, Federated Averaging (FedAvg) [23], each
selected client performs τ iterations of SGD to update the
global model as follows:

xt,r+1
i = xt,r

i − η · gt,r
i ,∀r = 0, . . . , τ − 1, (2)

Here, xt,r
i represents the local model of client i during local

training, which is initialized as xt,0
i = xt. η is the non-negative

local learning rate, and gt,r
i := (1/B)

∑
z∈ξt,ri

∇l(xt,r
i , z) is

the stochastic gradient over a mini-batch ξt,ri of B data points
sampled from Di. After local training, the clients compute the
model update ∆t

i := xt−xt,τ
i and send it to the server. In the

t-th round, the server updates the global model xt as follows:

xt+1 = xt − 1

s

∑
i∈St

∆t
i. (3)

where s = |St| is the number of selected clients at round t.



B. Differential Privacy (DP) & Client-level DP Mechanism

The classic notion of DP, (ϵ, δ)-DP, is defined as follows:

Definition 1 ((ϵ, δ)-DP [6]). Given privacy parameters ϵ > 0
and 0 ≤ δ < 1, a randomized mechanismM satisfies (ϵ, δ)-DP
if for any two adjacent datasets D,D′ and any subset of outputs
O ⊆ range(M), Pr[M(D) ∈ O] ≤ eϵ Pr[M(D′) ∈ O] + δ.

Let D denote the union of all local datasets of the clients
in FL. For client-level DP, two datasets D and D′ are adjacent
datasets if D ∪ {Dj} or D \ {Dj} is identical to D′ for a
local dataset Dj . In other words, D and D′ differ by at most
one local dataset. The client-level DP provides rigorous privacy
protection to the entire local dataset of a client in the setting of
FL, such that the maximum private information that an arbitrary
privacy attacker can infer is bounded.

Client-level DP is a widely employed privacy enhancement
in cross-device FL [24], and the FedAvg embedded with the
client-level DP mechanism is known as DPFed. Specifically,
the local model update of the client i in DPFed is clipped and
perturbed by adding Gaussian noise drawn from the distribution
N (0, C2σ2) to each coordinate as follows:

∆t
i := ClipC(x

t − xt,τ
i ) +N (0, C2σ2 · Id), (4)

where σ is the noise multiplier and ClipC(x) = x ×
min(1, C/∥x∥2) represents a model clipping function with
threshold C. The model perturbation described in (4) is often
used with secure aggregation [4] to amplify the client-level pri-
vacy guarantee in the cross-device FL setting. Secure aggrega-
tion ensures that the server only learns an aggregated function
of the clients’ local model updates, typically represented as the
sum (i.e.,

∑
i∈St ∆t

i). To prevent privacy leakage from the sum
of local model updates, Gaussian noise is added. By doing so,
DPFed can achieve (ϵ, δ)-DP by choosing an appropriate noise
multiplier σ according to Theorem 1.

Theorem 1 (Privacy Guarantee of DPFed [13]). Suppose
the client is sampled without replacement with probability
q := s/n at each round. For any ϵ < 2 log(1/δ) and δ ∈ (0, 1),
DPFed satisfies (ϵ, δ)-DP after T communication rounds if
σ2 ≥ 7q2T (ϵ+ 2 log(1/δ))/ϵ2.

III. PROBLEMS AND EXISTING SOLUTIONS

The vanilla FL training process (i.e., FedAvg described in
Section II-A) is exposed to threats from both privacy attacker
and Byzantine attacker. In this section, we define the privacy
attacker and Byzantine attacker by specifying their attack goals,
capabilities, and existing solutions.

A. Problem Setting

The objective of the privacy inference attacker is to deduce
sensitive information about clients’ local data by observing
the shared model updates. In terms of their capabilities, these
attackers could possess diverse prior information and computa-
tional resources, and they might collaborate with one another.
However, their actions do not encompass injecting fabricated
data into the system. These adversaries could be either clients

or servers within the FL system, adhering to the designated
training protocol but maintaining curiosity about the local data
of others. To defend against such strong privacy attackers, the
client-level DP mechanism is one of the mainstream solutions.
This mechanism leverages additive Gaussian noise to limit the
amount of information that attackers can infer, providing a
rigorous (ϵ, δ)-DP guarantee that ensures each client’s privacy
loss in FL is bounded by ϵ after training.

Given its rigorous privacy protection, we adopt DPFed [8]
- FedAvg embedded with client-level DP mechanism - as our
base system for this study, with an aim to enhance its resilience
against Byzantine attacks. More precisely, starting with the
DPFed system that is guaranteed to achieve (ϵ, δ)-DP, our
focus is on developing novel designs to improve its robustness
against Byzantine attackers.

The objective of a Byzantine attacker within the FL is
to undermine the overall performance of the trained global
model as much as possible, also known as the untargeted
model poisoning attack. In essence, the capability of Byzantine
clients involves maliciously altering their SGD processes and
potentially collaborating with each other. However, they remain
unaware of the model updates of benign clients due to the
application of secure aggregation [19]. In this study, we explore
a more pragmatic situation wherein a Byzantine client might
diverge from the standard local SGD process (as defined in
Equation (2)), manipulating it to create harmful model updates.
Notably, altering the local SGD process is a more feasible
avenue for Byzantine attackers in DPFed than tampering with
the DP mechanism, as the honesty verification method [2]
can be used to verify that the release DP statistic was com-
puted correctly and the private randomness generated faithfully,
even when using secure aggregation. Here, Byzantine clients
can manipulate their local data or model parameters, causing
the local SGD process to output malicious model updates.
This potential threat emphasizes our investigation of devising
Byzantine-robust strategies in the DPFed system, ensuring a
balance between data privacy and system integrity.

B. Byzantine Robustness of DPFed: Free but Limited!

Prior studies [26], [33] have demonstrated the effectiveness
of incorporating “weak” differential privacy to enhance model
robustness through the introduction of noise during feature
learning. Motivated by these findings, we investigate the poten-
tial benefits of leveraging higher DP noise levels to improve
robustness. To evaluate this, We conduct experiments using
the Fashion-MNIST [36] and employ a 7-layer convolutional
neural network (CNN). We specifically use AGR attack [30],
a powerful Byzantine attack method that aims to divert the
estimated benign aggregate in a malicious direction by gen-
erating a malicious perturbation. For further details, please
refer to Section V-A. In our evaluation, we test the client-
level DP mechanism’s robustness in DPFed against Byzantine
attacks, comparing it with FedAvg and Bulyan [10]. Bulyan is
a Byzantine-robust aggregator that enhances the robustness of
the FedAvg algorithm by identifying, screening, and treating



Fig. 1: Performances of FedAvg under Byzantine attack (AGR
attack [30] specifically) in the image classification task, com-
pared with FedAvg and Bulyan [10].

local model updates that are deemed ”benign” in the presence
of Byzantine attacks. To ensure fairness in our comparison, we
incorporate model clipping into the FedAvg baseline using the
same threshold C = 1.0. The key distinction between DPFed
and the baseline method lies in the additive Gaussian noise.
In our experiments, we set the noise multiplier σ as 0.1 for
DPFed. We report the average results over 5 runs.

Figure 1 illustrates that, at low Byzantine client percentages
(PBC), FedAvg outperforms DPFed. This result indicates that
while adding DP noise protects privacy, it also causes a
noticeable rise in system error. As the PBC increases, the test
accuracy of FedAvg significantly decreases, with a marked per-
formance decline observed at a PBC of 10%. From this point
onwards, DPFed outperforms FedAvg up to a PBC of 25%,
beyond which both FedAvg and DPFed completely diverge.
Although DPFed provides robustness against the Byzantine
attack when the PBC is small, its performance decreases
quickly as the PBC increases. Moreover, DPFed is unable
to outperform the Byzantine-robust aggregator, with a notable
performance gap between them. This informs us that while
the client-level DP mechanism provides a certain degree of
Byzantine-robustness for free, this benefit is quite limited.
These findings lead us to an important question: ”How can we
enlarge the robustness benefit of client-level DP mechanism
while preserving the same privacy guarantee?”

IV. ACHIEVING BYZANTINE-ROBUSTNESS WITH
VARIANCE- REDUCED CLIENT-LEVEL DP MECHANISM

In the rest of this paper, we answer the above question by
introducing new designs to the client-level DP mechanisms and
proposing a new FL algorithm that can achieve high Byzantine
robustness and strong privacy guarantee simultaneously.

A. Importance of Variance Reduction

We first analyze the variance or perturbations in the aggre-
gated local updates of DPFed with Byzantine clients. Assume
that up to B (B < n/2) clients in the system are Byzantine.
Let B denote the set of Byzantine clients, and H denote the set
of benign clients. For ease of illustration, we consider the case

of τ = 1 and full participation so that the local gradient of each
client will be calculated, processed through the client-level DP
mechanism, and then sent to the server for aggregation. Let
gt
i denote the stochastic local gradient of benign client i ∈ H

in round t, btj denote the arbitrary update of Byzantine client
j ∈ B, ∇fi(xt) be the true local gradient of client i ∈ [n],
∇f(xt) be the true gradient of f(xt). The discrepancy between
the aggregated local updates ∆t := (1/n)

∑
i∈[n] ∆

t
i and the

true gradient is decomposed as

E∥∆t −∇f(xt)∥2 ≤ 4

n−B

∑
i∈H

E
∥∥gt

i −∇fi(xt)
∥∥2

+
2

B

∑
j∈B

E
∥∥btj∥∥2 + dC2σ2

s
+ 4κ2. (5)

Here, the expectation E[·] is taken over the mini-batches
ξri ,∀i ∈ [n], r ∈ {0, . . . , τ − 1} at round t and the DP noise,
and we assume that the true local gradient is bounded, i.e.,
∇fi(x) ≤ κ2,∀i ∈ [n]. The detailed proof is given in the
appendix1. From the error decomposition result in (5), we make
the following observations:

• During Byzantine attacks, the aggregated model update
error mainly arises from benign clients’ local stochastic
gradient variance (first term), Byzantine perturbation (sec-
ond term), and DP perturbation (third term).

• DP perturbation can be significantly large for large models
as it is proportional to the model dimension d.

• The use of model clipping in DPFed can restrict the
malicious perturbations from Byzantine attackers. More
specifically, with clipping, the malicious model can be
bounded as E

∥∥btj∥∥2 ≤ C.
• Both DP and Byzantine perturbations can be mitigated by

choosing a small clipping threshold. But, the variance of
the gradient will increase if C is too small to make the
stochastic gradient deviate from the true local gradient.

These insights shed light on how the interplay of different
variances can influence the accuracy of the aggregated model
update in DPFed under Byzantine attacks, which informs our
new design for DPFed to improve Byzantine robustness.

B. Our Approach

Inspired by these observations, we introduce our approach
that employs sparsification and momentum techniques to de-
crease the variance of the aggregated update effectively.

1) Local Variance Reduction with Momentum: To improve
the accuracy of the aggregated update, we first reduce the vari-
ance of stochastic gradients using local momentum. Momentum
SGD and its variants, such as Adam [20], have proven to be
highly effective in various ML applications by reducing the
variance of stochastic gradients. In light of these advantages,
we adopt momentum SGD as the local optimizer on the client
side to mitigate the total variance of the aggregated update and
accelerate the convergence of our algorithm.

1https://goo.by/CxcGT



In the context of cross-device FL, clients participate peri-
odically, and there is a possibility that the local momentum
histories from the current training round may become outdated
for future training, especially when the client sampling rate is
low. Thus, initializing local momentum at each training round’s
start becomes essential for its effectiveness.

2) Mitigating DP and Byzantine Perturbations with Sparsi-
fication: Next, we focus on mitigating the errors arising from
DP and Byzantine perturbations. To reduce the DP perturbation
in large deep neural network (DNN) models, we co-design
top-k sparsification with the client-level DP mechanism in
DPFed. This integration is motivated by the dimension reduc-
tion property of model sparsification, as the DP perturbation
is proportional to the model dimension d, which can be large
for DNN models. In our approach, the client applies top-k
sparsification to its model update before the client-level DP
mechanism, retaining only the top-k parameters with the largest
absolute values and setting the rest to zero, as defined in
Definition 2. During the DP mechanism, only the selected k
parameters are subjected to perturbation by adding Gaussian
noise. Consequently, the DP perturbation error decreases from
dC2σ2/s to kC2σ2/s.

Definition 2 (Top-k Sparsification). For a parameter 1 ≤
k ≤ d and vector x ∈ Rd, the top-k sparsifier topk :
Rd → Rd are defined as: [topk(x)]j = [x]π(j) if j ≤
k, otherwise [topk(x)]j = 0, where π is a permutation of [d]
such that |[x]π(j)| ≥ |[x]π(j+1)| for j ∈ [1, d− 1].

Besides the DP error reduction, sparsification can also help
to reduce the Byzantine perturbations. Intuitively, sparsifica-
tion limits the number of parameters the attacker can alter,
which reduces the attacker’s action space. Theoretically, as
E
∥∥topk(btj)∥∥2 ≤ E

∥∥btj∥∥2, using sparsification on the model
updates allows us to use a smaller clipping threshold C so that
both Byzantine perturbation and DP perturbation are mitigated.

Privacy is vital when combining top-k sparsification and
the client-level DP mechanism. Sorting private values dur-
ing coordinate selection entails concealing private information
within the chosen k indexes. Moreover, it is also necessary to
force Byzantine clients to follow the sparsification protocol.
To address these challenges, we adopt a protocol where the
selection of the top k coordinates occurs globally on the server
using the privacy-preserving global model. This design choice
compels clients to consistently submit the same k coordinates
to the server in each training round without privacy violation.
Note that Byzantine clients can arbitrarily manipulate and send
k coordinates to the server. Any Byzantine client that deviates
from the sparsification protocol - for instance, by sending more
than k parameters - can be easily identified and rectified.

3) Our Algorithm: Based on the aforementioned building
blocks, we propose our algorithm, FedVRDP (Federated Learn-
ing with Variance-Reduced Client-level DP Mechanism), and
outline the pseudo-code in Algorithm 1. Specifically, in the t-th
round of the training, the selected clients download the current
global model xt along with a binary sparsification mask mt.

Algorithm 1 FedVRDP: Federated Learning with Variance-
Reduced Client-level DP Mechanism
Require: parameters n, s, η, α, C, σ, τ , T , k, initial point x0

1: Generate initial mask m0 randomly
2: for t = 0 to T − 1 do
3: Server randomly samples a set of s clients (denoted by
St) and broadcasts xt and mt to them

4: for each clients i ∈ St in parallel do
5: yt

i ← VRDP-Update(xt,mt)
6: end for
7: xt+1 ← xt − (1/s)

∑
i∈St yti

8: mt+1 ← TopMask(xt+1, k) ◁ Generate mask
9: end for

10: return xT

VRDP-Update(xt, mt):
11: xt,0

i ← xt, vt,0
i ← 0d

12: for r = 0 to τ − 1 do
13: Compute a mini-batch stochastic gradient gt,r

i

14: vt,r+1
i ← (1− κ)vt,r

i − κgt,r
i

15: xt,r+1
i ← xt,r

i − ηvt,r
i ◁ Momentum SGD

16: end for
17: ∆′ ← (xt − xt,τ

i )⊙mt ◁ Sparsify local update
18: ∆t

i ← ClipC(∆
′) +N (0, C2σ2 · Ik) ◁ Clip & perturb

19: return ∆t
i

The mask vector mt ∈ {0, 1}d is used to record the top k
coordinates for sparsification, and its j-th coordinate equals
1 if that coordinate is selected to be kept at round t and
0 otherwise. The mask vector mt is initialized by randomly
selecting k coordinates before the beginning of the first round
of training. Subsequently, it is determined by calculating the top
k coordinates of the global model. Upon receiving the global
model and mask, selected clients conduct the variance-reduced
client-level DP update (i.e., VRDP-Update) in parallel on their
local datasets. Specifically, each client performs momentum
SGD for τ iterations (i.e., lines 12-16) to obtain a global model
update xt − xt,τ

i locally. This local update is then sparsified
using the mask (line 17). Here ⊙ represents the dot product of
two vectors, so only the values of the selected k coordinates
will be kept on the local update, and other values will be zeroed
out. After sparsification, the sparsified model update is clipped
using threshold C with a commonly used clipping strategy [6],
to mitigate the presence of abnormal parameters. To achieve
client-level DP, the clipped model update will be perturbed by
adding Gaussian noise (line 18). Note that only the non-zero
elements in the clipped model update will be perturbed by DP
noise and sent to the server via secure aggregation. For ease
of expression, the secure aggregation protocol is not explicitly
described in Algorithm 1 as it is not in our design scope. Still,
we provide the details of the secure aggregation protocol [4]
in the appendix. Finally, on the server side, local updates of
selected clients are averaged and used to update the global
model (line 7), and a new sparsification mask is generated
for the next round by calculating the top k coordinates of the
updated global model, i.e., the TopMask step in line 8.



Notably, the newly proposed local momentum update and
sparsification process do not violate any privacy guarantee of
the client-level DP mechanism. Indeed, our algorithm achieves
exactly the same privacy guarantee as DPFed. By choosing
σ ≥

√
7(s/n)2T (ϵ+ 2 log(1/δ))/ϵ2, our algorithm achieves

(ϵ, δ) client-level DP for each client after T rounds of training,
according to Theorem 1.

V. EXPERIMENTAL EVALUATION

In this section, we assess the effectiveness of our method in
mitigating Byzantine attacks and showcase its ability to achieve
Byzantine-robustness and privacy guarantee concurrently, all
while incurring no additional computing costs.

A. Experimental Settings

Datasets and Models. We assess our approach using two
common benchmark datasets (listed in Table I) for differentially
private machine/federated learning. Fashion-MNIST [36], a
widely employed image classification dataset, comprises 10
image categories with 60,000 training samples and 10,000
testing samples. Each grayscale image is 28 × 28 pixels. Our
image classification task uses a CNN model with two 5 ×
5 convolutional layers, followed by 2 × 2 max pooling and
ReLU activation. It includes a fully-connected layer with a
512-dimensional output and a classifier head. This model has
approximately 1.6 million parameters. Our experiments employ
an IID and cross-device setup, dividing the dataset into 6,000
clients, each with 10 training samples.

The Shakespeare dataset [23], [29] is a natural non-IID
federated dataset for text generation tasks. The dataset consists
of 37784 data samples from 715 clients, each representing
a speaking role with at least two lines. We use a recurrent
neural network (RNN) model for this dataset, which takes a
sequence of characters as input and employs an embedding
layer to transform each character into an 8-dimensional feature
representation. These embedded characters are then processed
through two LSTM layers, each consisting of 256 nodes.
Finally, a densely connected softmax output layer is applied.
We adopt a vocabulary size of 90 in our experiments. Our
model is trained to predict a sequence of 80 characters by
taking in a sequence of 80 characters, where the input sequence
is shifted by one position. Consequently, the model has an
output dimension of 80 × 90, totaling around 0.8 million
parameters.

Configurations. Our experiments are conducted using Py-
Torch and executed on NVIDIA RTX A6000 GPUs. For both
datasets, the server randomly selects s = 100 clients to partic-
ipate in training during each round. We employ the SGD with
momentum as the local optimizer for our methods. Specifically,
for Fashion-MNIST, we set the momentum coefficient as 0.5,
and the local learning rate (η) is 0.125 and decays at a rate
of 0.99 in each round. The batch size is set as 10, and the
local epoch is set as 10, i.e., τ = 10. For Shakespeare, local
momentum is set at 0.9 with a local learning rate of 1.0,
decaying at 0.99 every 50 rounds. Batch size is 4, and local

epochs are 1. We set T = 180 and T = 1000 for Fashion-
MNIST and Shakespeare, respectively.

We calculate the end-to-end privacy loss using the API in
[39]. We set the privacy parameter δ following the method-
ologies employed in [28] and [1]. The default value of the
noise multiplier in our algorithm is set as σ = 1.4 for both
datasets. For the clipping threshold, as we mentioned, it can
reduce the Byzantine and DP perturbation, but it will also
lead to an increased gradient variance if it is too small. The
model compression in our approach allows us to use a smaller
clipping threshold. Therefore, for our approach, we tune the
clipping threshold and model compression ratio (defined as
p := k/d) for both datasets by doing a grid search and finally
have p = 0.3, C = 0.5 for the Fashion-MNIST dataset and
p = 0.3, C = 1.0 for the Shakespeare dataset.

Baselines. We compare our approach with the state-of-
the-art baselines, including four Byzantine-robust aggregators
(namely Trimmed Mean [38], Median [38], Krum [3] and
Bulyan [10]), SparseFed [27], which uses global model sparsi-
fication to achieve robustness against model poisoning attacks,
and Flame [26] which also applies DP noise to improve robust-
ness against model poisoning attacks. The Byzantine-robust
aggregators basically replace the averaging step of FedAvg
with a robust aggregation rule. For example, in the Trimmed
Mean method, the server collects the values of a specific
model parameter from all local model updates received from
the clients and arranges them in ascending order. To enhance
robustness, it removes extreme values using a parameter f .
In the experiments, we set the robustness parameter f = 10.
SparseFed is a defense method based on sparsification. It
employs top-k sparsification on the aggregated model update
and incorporates model clipping and global momentum with
error feedback to defend against model poisoning attacks.
Flame is close to our work in privacy protection, which utilizes
model clustering and DP mechanism on the server side to
defend against model poisoning attacks. It assumes that the
server is trusted.

Attacks. We implement two Byzantine attacks, namely the
Fang attack [7] and the AGR attack [30]. Fang attack is an
aggregator-known attack method that requires the knowledge
of the server’s aggregator. On the other hand, the AGR attack
provides a general framework for Byzantine attacks, making
it applicable to optimize attacks for any given aggregation
rule, regardless of whether full knowledge or partial knowledge
is available. Both attack methods formulate the attack as an
optimization problem, aiming to maximize the deviation of the
global model update in the opposite direction of the benign
updates. To ensure comprehensive evaluation, we consider the
most powerful versions of the attacks based on the principles
of the Cannikin Law (or Wooden Bucket Theory). For instance,
we utilize the Fang attack specifically designed for Krum to
evaluate the Krum and Bulyan defense methods, and we use
the AGR attack designed specifically for Median to evaluate
the performance of Median. In short, we always select the
Fang/AGR attack with the best-attacking performance to eval-



Dataset Distribution Client Client/Round Samples/Client Model Local Epoch Global Round
Fashion-MNIST IID 6000 100 10 CNN 10 180

Shakespeare non-IID 715 100 52 RNN 1 1000
TABLE I: Datasets, Models, and Learning Configurations.

uate the robustness of these defending methods.

B. Experimental Results

Effectiveness of FedVRDP. We first evaluate the effec-
tiveness of our method in defending against the Fang attack
and AGR attack, aiming to demonstrate its superiority over
existing defense approaches. Table II presents the test accuracy
results obtained when subjecting our method to a Byzantine
attack on the Fashion-MNIST dataset. We consider a powerful
attack setting where 20% of the clients in the FL system are
Byzantine. We also note the experiment’s runtime (i.e., the
duration) and report averaged results from 5 trials.

From the results, we can observe that among the defense
baselines, only the Bulyan shows some resistance to the Fang
attack, potentially benefiting from its multi-iteration model
cleaning approach. However, Bulyan is limited to scenarios
with less than 25% compromised clients, and it will become
ineffective beyond that threshold. Regarding the AGR attack,
the Trimmed Mean, Median, and SparseFed methods exhibit
behavior similar to that of a random classifier, with an accuracy
of around 10%. In comparison, our method outperforms Bulyan
and Krum by +15.43% and +10.81%, respectively. In terms of
running time, our method demonstrates an average increase of
6.6 and 5.4 minutes per round compared to the No Defense
setting and SparseFed, respectively. These results highlight
the advantages of our approach over Bulyan, which requires
significantly longer times of 69.9 and 68.7 minutes.

On the Shakespeare dataset, as demonstrated in Table III, our
method exhibits a significant performance advantage over other
Byzantine-robust approaches when subjected to Fang attack.
When facing AGR attack, our method achieves comparable
results to Bulyan, with only a slight difference of 0.1% in test
accuracy. It is worth noting, however, that the total training
duration of Bulyan is approximately three times longer than our
approach. Furthermore, our method prioritizes privacy preser-
vation, whereas Bulyan does not offer any privacy guarantee.
As a result, Bulyan may not be suitable if system efficiency
and client privacy are important considerations.

Defense Fang(%) AGR(%) Duration(Hrs)
FedAvg 85.94 0.24

No Defense 35.37 10.00 0.25/0.25
Trimmed Mean [38] 40.33 11.05 0.33/0.29

Median [38] 35.37 10.00 0.31/0.26
Krum [3] 29.44 66.53 0.28/0.46

Bulyan [10] 63.17 61.91 1.38/1.45
SparseFed [27] 23.76 10.00 0.28/0.26

Ours 74.62 77.34 0.41/0.31

TABLE II: Performance of FedVRDP against Byzantine attacks
on Fashion-MNIST, compared to state-of-the-art defenses.

Defense Fang(%) AGR(%) Duration(Hrs)
FedAvg 64.75 2.43

No Defense 34.77 36.86 2.43/2.43
Trimmed Mean [38] 39.05 46.16 2.76/2.60

Median [38] 35.18 37.18 2.67/2.45
Krum [3] 41.88 48.18 2.50/2.81

Bulyan [10] 44.48 55.94 7.81/8.10
SparseFed [27] 40.25 34.85 3.12/2.60

Ours 48.12 55.84 2.96/2.82

TABLE III: Performance of FedVRDP against Byzantine at-
tacks on Shakespeare, compared to state-of-the-art defenses.

Privacy Guarantee. In terms of privacy protection, we
compare the test accuracy of our method with that of DPFed
and Flame [26], both of which utilize DP techniques to ensure
system privacy or robustness. In our method, we apply a
noise multiplier σ of 0.14 to achieve the desired privacy
level. Similarly, for DPFed, a noise multiplier σ of 0.10 is
applied. In the case of Flame, we conduct experiments with
various noise multipliers and calculate its privacy loss [26].
Our experiment encompasses both the Fashion-MNIST and
Shakespeare datasets, allowing us to assess the performance of
our method under Byzantine attacks while operating within a
limited privacy budget. Specifically, we apply the Fang attack
and AGR attack with 25% Byzantine clients to evaluate the
robustness and privacy guarantees of our approach.

As shown in Table IV, DPFed achieves a strong differential
privacy guarantee, with privacy losses bounded by ϵ = 2.02
and 11.51 for Fashion-MNIST and Shakespeare, respectively.
However, it lacks resilience against Byzantine attacks when
a significant number of clients exhibit malicious behavior,
resulting in outputs that are nearly random. On the other
hand, Flame demonstrates robustness against Byzantine attacks
only when the level of differential privacy noise is trivial.
It becomes vulnerable to compromise when the magnitude
of the noise is substantial, leading to a failure to provide a
satisfactory privacy guarantee. In contrast, our method excels
in achieving excellent performance in both privacy protection
and Byzantine robustness across both the image classification
and word generation tasks.

Impact of Byzantine Clients Percentage. We evaluate the
performance of our method and baselines with respect to differ-
ent percentages of Byzantine clients. Specifically, we vary the

F-MNIST ShakespeareDefense σ
ϵ Fang(%) AGR(%) ϵ Fang(%) AGR(%)

0.001 - 69.38 73.27 - 42.19 54.67
0.01 - 19.58 73.48 - 41.63* 54.84Flame [26]
0.10 - 8.44* 7.51* - 1.36* 1.39*

DPFed 0.10 2.02 11.37 11.09 11.51 29.27 39.95
Ours 0.14 1.01 65.34 74.97 6.99 42.38 54.90

TABLE IV: Privacy and accuracy performance of our approach
under Byzantine attacks, compared with the related methods.
Results marked with * indicate that the training was interrupted,
and we do not report values of ϵ exceeding 50.



Fig. 2: Impact of the percentage of Byzantine clients on the
performance of our approach against Fang attack, compared
with the state-of-arts.

Fig. 3: Effect of Byzantine client percentage on our approach’s
performance against AGR attack, compared to STOA methods.
percentage of Byzantine clients from 10% to 20% and report
the corresponding testing accuracy of the defense methods on
Fashion-MNIST dataset in Figure 2 for the Fang attack and
Figure 3 for the AGR attack, respectively. We observe that
as the percentage of Byzantine clients increases from 10% to
20%, our method, along with Bulyan, can always maintain
a test accuracy above 60% against Fang attack, while other
methods exhibit accuracies below 60% when the percentage of
Byzantine clients exceeds 15%. Our method also demonstrates
stability against AGR attack and outperforms other methods
by a significant margin. As the percentage of Byzantine clients
increases from 10% to 20%, our testing accuracy under AGR
attack only drops by 3.15%.

VI. RELATED WORK

A. Byzantine-robust Federated Learning

The byzantine-robust aggregators have garnered consider-
able attention in recent years as an effective defense mech-
anism against various distributed attacks in federated learning
systems. Several approaches have been developed based on
heuristic-based statistical hypotheses, aiming to distinguish
Byzantine-compromised models from others. The method pro-
posed by [38] proposes utilizing the mean values of each
model coordinate on trimmed model candidates, demonstrating
stable performance in the face of overwhelming Byzantine
attacks. Another approach by [5] leverages the concept of
geometric median in a novel manner, offering enhanced sample

efficiency and applicability across a broader range of parame-
ters. Furthermore, [37] demonstrates that the marginal median
exhibits linear time complexity and does not require robustness
parameter f . Distance-based methods have also been explored,
including the approach introduced by [3], which relies on the l2
distance between each model and others to identify the closest
neighbor as the updated model. Additionally, [10] enhances
previous aggregators by combining statistical hypotheses and
distance metrics to reduce estimation errors, albeit at the
cost of increased computational requirements. Besides, [27]
employs top-k sparsification on the aggregated model update
and incorporates model clipping and global momentum with
error feedback to defend against model poisoning attacks. None
of the aforementioned methods provide a differential privacy
guarantee, as their primary focus lies in defending against
Byzantine attacks without considering privacy preservation. In
contrast, our method operates without making any assumptions
and achieves efficient performance by incorporating a variance-
reduced client-level differential privacy mechanism.

B. Federated Learning with Differential Privacy

Federated learning offers promise in reducing the need for
transmitting sensitive data to a central server. However, privacy
risks are noted within the FL framework. Notably, recent stud-
ies have demonstrated that adversaries can reconstruct private
information from local models using inference and inversion
attacks [31]. To address this concern, one common approach
is to introduce artificial noise, with differential privacy (DP)
mechanisms being a prominent example [15]–[17]. DP-based
FL approaches [8], [34], [11] aim to strike a balance between
privacy and convergence performance during the training pro-
cess. However, our approach aims to enhance the robustness
of the DP-based FL system against Byzantine attacks while
ensuring a strong privacy guarantee.

C. Co-design of Robustness and Privacy.

Several studies [32], [34] have investigated the use of secure
multi-party computation (MPC) combined with sophisticated
filters to address the challenges posed by Byzantine attack
and privacy inference attack at the same time. However, these
methods typically assume the presence of a trusted central
server, which may not be practical in certain scenarios. Other
approaches [26], [33] have attempted to enhance robustness
by introducing DP noise. Nevertheless, these methods have
encountered difficulties in maintaining the desired level of
privacy when using “weak” DP noise. [9] prove that the direct
composition of Byzantine robustness and DP noise in the
training of large models leads to practical infeasibility. Follow-
up works [22], [41] attempt to address the issue by proposing
novel model aggregation protocols. However, both of them
incurs large cumulative privacy loss after the training. In our
approach, we leverage sparsification to amplify the robustness
benefit of DP noise without degrading the privacy guarantee,
achieving high robustness and privacy simultaneously.



VII. CONCLUSION

This paper presents FedVRDP, a novel FL scheme that com-
bines sparsification- and momentum-driven variance reduction
techniques with the client-level DP mechanism. FedVRDP is
designed to defend against both Byzantine attacks and privacy
inference attacks. The scheme maintains the privacy guarantee
of state-of-the-art FL with client-level DP scheme while en-
hancing robustness against Byzantine clients. Thus, FedVRDP
achieves Byzantine-robustness and rigorous privacy protection
simultaneously. The numerical experiments demonstrate its
successful defense against multiple Byzantine attacks and high
privacy guarantees in both IID and non-IID datasets.
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