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Abstract—Mitigating Denial-of-Service (DoS) attacks is vital for
online service security and availability. While machine learning
(ML) models are used for DoS attack detection, new strategies are
needed to enhance their performance. We suggest an innovative
method, combinatorial fusion, which combines multiple ML
models using advanced algorithms. This includes score and rank
combinations, weighted techniques, and diversity strength of
scoring systems. Through rigorous evaluations, we demonstrate
the effectiveness of this fusion approach, considering metrics
like precision, recall, and Fl-score. We address the challenge
of low-profiled attack classification by fusing models to create a
comprehensive solution. Our findings emphasize the potential of
this approach to improve DoS attack detection and contribute to
stronger defense mechanisms.

Index Terms—Cognitive diversity (CD), combinatorial fusion
analysis (CFA), Denial of Services (DoS), machine learning (ML),
rank function, rank-score characteristic (RSC) function, and
score function

I. INTRODUCTION

DoS attacks threaten online service availability and stability,
making server protection crucial [[I]. With evolving digital
threats, more sophisticated and frequent attacks require strong
countermeasures to secure networked infrastructure [2]]. While
many ML models have been used, there’s a need for innovative
approaches to enhance detection and performance.

While ML has shown promise in various cybersecurity
applications, including denial DoS detection, it is important
to recognize its limitations [3|]. Among these limitations, with
regard to DoS detection, is the interpretability and explainabil-
ity. Specifically, some ML algorithms, especially deep learning
models, are considered black boxes, making it difficult to inter-
pret their decision-making process. This lack of interpretability
and explainability can hinder trust and make it challenging
to understand why a particular decision or prediction (e.g.,
whether a networking flow is malicious or benign) was made.

To overcome such limitations, a holistic approach combining
ML with other techniques, network-level mitigations, anomaly
detection, and expert knowledge can be employed to enhance
the accuracy and robustness of DoS detection systems. In this
paper, we introduce a novel methodology based on leveraging
the cutting-edge approach of combinatorial fusion, which har-
nesses recently developed algorithms and techniques for model
fusion. Our objective is to combine multiple ML models using
combinatorial fusion analysis to achieve superior DoS attack
detection performance and interpretability.
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The key contributions of this paper are summarized as
follows.

« Examine the key ML models commonly used for DoS at-
tack detection. Such an examination serves as the ground
truth for integrating the combinatorial fusion analysis
(CFA) approach into our ML-based DoS detection.

o CFA approach: Develop an innovative approach based
on CFA for combining multiple ML models in DoS
attack detection. Our methodology encompasses various
techniques, including advanced score combination, rank
combination, weighted combination, and the considera-
tion of diversity strength across multiple scoring systems.

« Conduct performance evaluations to assess the effective-
ness of our CFA. Through comparative analyses, we
showcase the significant improvements achieved in terms
of detection accuracy, false positive rates, and overall
precision.

By leveraging the power of the recently developed com-
binatorial fusion approach and its associated algorithms, our
study aims to push the boundaries of DoS attack detection. We
anticipate that our findings will contribute to the advancement
of more robust and effective defense mechanisms against DoS
attacks, bolstering the uninterrupted availability and security
of critical online services.

II. RELATED WORK

DoS attack detection continuously gains attention in cyber-
security, with diverse methods proposed to enhance accuracy
[4]. Escalating DoS attacks prompted increased focus by
researchers [5]]. Many studies employ ML algorithms for DoS
attack detection, using models like SVMs, Random Forests,
and Naive Bayes. These models analyze network patterns,
using features like packet rates, sizes, and volume to differen-
tiate normal and attack traffic [|6]. Further, CNNs, RNNs, and
variants extract intricate patterns and temporal dependencies
from network traffic [3]], showing promise in accurate attack
identification. Ensemble methods like Bagging, Boosting, and
Stacking also gained traction, combining models to enhance
prediction [7]. These approaches counter individual model
limitations, boosting accuracy and robustness.

In recent years, model fusion techniques, such as com-
binatorial fusion analysis (CFA), have emerged as practical
means of combining multiple ML models’ performance [§],



[9l. These approaches leverage algorithms and metrics specif-
ically designed to integrate the outputs of different models,
considering their diversity and individual performance. The
goal is to leverage diverse models’ collective knowledge and
expertise to achieve higher accuracy and detection rates [10].
While previous studies have remarkably contributed to DoS
attack detection, our work focuses on the emerging CFA. To
the best of our knowledge, this is the first work that adopts
CFA for examining the performance of ML models-based DoS
attack detection. By combining the strengths of multiple ML
models using advanced fusion techniques, we aim to achieve
more accurate and reliable detection results.

III. METHODOLOGY

A. Problem Abstraction

TABLE I: Types of network traffic in the LYCOS-IDS dataset
and their training and testing sets.

Traffic Encoding  Train set  Test set
Benign 0 330474 110158
Bot 1 550 183
DDoS 2 71761 23920
DoS Goldeneye 3 5073 1691
DoS Hulk 4 119241 39747
DoS Slowhttptest 5 3649 1216
DoS Slowloris 6 4255 1418
FTP Patator 7 3001 1000
Heartbleed 8 7 2
Portscan 9 119197 39732
SSH Patator 10 2218 739
Webattack Bruteforce 11 1020 340
Webattack Sql Injection 12 9 3
Webattack XSS 13 489 163
Total 660944 220,312

Modern DoS attacks (e.g., UDP, DNS, SYN, NTP) jeopar-
dize networking environments. Existing approaches target DoS
detection but struggle with evolving DoS attacks. Addressing
this demands advanced classification using fusion, stats, and
recent attack data. This tailors defense systems to distinct
attack features. Intrusion detection algorithms should evolve
beyond old datasets and traditional methods. Dynamic DoS
nature mandates a comprehensive approach, moving from
detection to classification and effective responses [11].

CFA is an emerging approach for combining results from
multiple scoring systems. These systems are described by a
set of statistical attributes or variables at the data level or
by a group of algorithms or models at the computational
informatics level. In this paper, we leverage the CFA ap-
proach to combine the results from six base ML models,
namely Linear Discriminant Analysis (A), Gaussian Naive
Bayes (B), Logistic Regression (C), K Nearest Neighbor (D),
Decision Trees (E), and Random Forest (F). The CFA approach
is a process of ensemble reinforcement learning, where all
possible rank and score combinations are considered to find
the optimal combination of the candidate models. We apply
this approach to address the problem of DoS detection. To
determine the most effective model fusion performance, our

methodology utilizes the emerging CFA approaches, which
involve considering both the score and rank functions for
each model (i.e., scoring system) and applying metrics such
as average score combination, average rank combination, and
weighted combination that factor in the diversity strength or
the performance of each scoring system. Last, we employ a
2-model combination to fuse 6 models, pairing them 2 at a
time.

B. Dataset

We use the LYCOS-IDS2017 dataset created through the
LycoSTand flow extractor [12]. These datasets contain five
days’ worth of network flow entries, each comprising 83
features. In total, there are 1,837,498 entries in the dataset.
To prepare the data for analysis, we used a 75% split for the
training set and 25% for the test set as shown in Table
The types of network traffic in the dataset and their training
and testing sets are summarized by Table [ After training
the six ML models on the training data, we assessed their
performance on unseen data by applying the test dataset to
each model. The prediction probabilities for each model across
the different classes were collected. By convention, the class
with the highest probability was selected as the final prediction
for each data entry. These probabilities represent the models’
confidence level in their predictions for the individual data
items. The probabilities generated by the six scoring systems
are considered scores for each individual data entry. This score
information formed a new dataset, including the original data
items and the six probabilities obtained from the models. The
CFA algorithm leveraged this new dataset to derive valuable
insights using various CFA approaches discussed later in the

paper.

C. Data Pre-processing and Exploratory Analysis (Probabili-
ties and Confidence Scores)

Probabilities and confidence scores are vital in ML models,
especially for classification. They offer insight into prediction
likelihood and confidence for each label. Models like logistic
regression, SVM with probability outputs, and ensembles like
Random Forests and Gradient Boosting provide more than
just class labels. They yield probabilities or confidence scores
for each class, enhancing classification information. Further,
probabilities reflect a model’s certainty in class predictions.
A 0.8 probability for Class A indicates strong belief, while
0.2 suggests lower confidence. This nuanced information aids
decisions, especially in uncertain or multi-class scenarios.
Evenly distributed probabilities signal ambiguity, while high
single-class probabilities show confidence.

Moreover, these probabilities assist in post-processing tasks
such as thresholding, ranking, and model fusion. Thresh-
olds adjust predictions for precision-recall trade-offs. Rank-
ing classes by probabilities helps select top-k likely classes,
important for uncertainty. Combining models’ predictions via
weighted voting or using probabilities as weights enhances
ensemble accuracy and robustness. In this paper, we collect



the probabilities associated with each prediction, the highest
probability among all the classes for the various data points.
Treating these probabilities as scores for each data point, we
explore different CFA metrics to combine them. Our goal is
to identify the optimal approach for combining these scores
across multiple models to develop an effective combined
model.

D. Performance Evaluation of Scoring Systems

By employing conventional ensemble methods, we can
combine multiple ML classification models and evaluate their
performance using specific metrics. The approaches used here
are voting-based ensembles and collective confidence.

In voting-based ensembles, multiple classification models
are trained independently on the same dataset. During the pre-
diction phase, each model generates its own set of predictions
for a given input, and the final prediction is determined based
on a voting mechanism. There are two main types of voting-
based ensembles, majority voting (each model in the ensemble
casts a vote for the predicted class) and weighted voting (each
model’s prediction is weighted based on its performance). In
collective confidence approach, instead of treating predictions
as discrete class labels, we can consider each model’s confi-
dence scores. One common approach is to calculate the average
probability for each class across all models and select the class
with the highest average probability as the final prediction.
This approach accounts for the collective confidence of the
models. Alternatively, the probabilities can be weighted by
the performance of each model, similar to the weighted voting
approach, to assign more importance to models with better
performance.

Choosing between weighted voting and using probabilities
depends on the problem and model traits. Finding the right
approach might need trial and error. In our paper, we employ
the weighted combination of probabilities/confidence scores as
the CFA metric, named weighted combination by performance,
for two-model fusion. Model weights, assigned by recall
scores, prioritize accurate detection of all attack instances.
Lastly, Stacking is a advanced ensemble method where a meta-
model learns to combine predictions from base models. En-
semble techniques enhance performance by leveraging model
strengths, capturing diverse viewpoints and complex patterns.
Careful experimentation and validation are essential to find the
practical model combination for a classification problem. Next,
details are provided for the key components leveraged from
CFA, namely, rank score characterization (RSC) for the ML
models, diversity between RSC functions (scoring systems),
and rank combination vs. score combination.

A scoring system A on the data set D = {d1,da,...,d,},
comprising a score function s4 and a derived rank function
r 4, was proposed in [13]]. By sorting the values in descending
order in the score function s4 : D + R, a rank function
ra: D w— N, where N = {1,2,3,...n}, is obtained. The RSC

function f4 : N +— R upon scoring system A is expressed as
follows:
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Fig. 1: Rank score function graph for the six scoring systems.
The area between any two RSC functions represents their
diversity.

Cognitive Diversity (CD) between the six systems
(A,B,C,D,E,F) is defined as the difference between the
RSC functions of these systems [14]. We explore the diversity
of the RSC functions for each pair of these six scoring systems.
Precisely, we will calculate CD between each pair of the six
models. The CD between two scoring systems A; and A; is
denoted by C'D(A;, A;), which is based on the RSC function
of A; and A; that are denoted by fa, and f4,, respectively.
Given the rank k € {1,2,...,n}, CD is defined as:

n

> (fa k) = fa, ()2 @
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The diversity strength of scoring system A is defined as
the average CD between A and all other systems. Let D; =
{di1,da,...,d,} C D be the labels of each cross-validation split
for the scores jel, ..., P generated by the systems, we obtain
the RSC functions of our six scoring systems as:

1) The score function, s; (d), gives a real number to each
d in Dj;, which is the score given by the model M;, to
the label for jy;, split. Having the scores given by each
model for each d in D; provides the score function.

2) Sort sy;(d) into descending order and assigning ranks to
each candidate in D; based on the sorted scores results
in a rank function rj;(d). We rank the scores for each
model/scoring system to obtain the rank function.

3) Compare score functions from multiple scoring systems
by applying linear normalization, which is the following
transformation from si;(d) : D — R to sp;(d) : D —



[0,1] where s;(d) = %,&D and Spar =
max{sy;(d)|deD}
and Spin = min{sy;(d)|deD}.

4) Derive the RSC functions by sorting the normalized
scores for each scoring system in descending order, using
the rank values as keys (aka computational derivation of
RSC function).

5) Plot RSC functions on the same x-y coordinate plane to
depict their diversity. The x-axis and the y-axis represent
the ranks and normalized scores, respectively (Fig. [I).

Next, we investigate the superiority between rank com-

bination and score combination. The rank combination
can outperform the score combination under rigorous con-
straints/conditions [9]]. We explore the conditions for which
efficient performance combinations can be obtained in favor
of larger CD values between each pair of the six ML models.
Here, we integrate the results of m scoring systems, each with
its own score function sy, (d) and rank function ry;(d) for data
label j, where k represents the scoring system index. Such
techniques include score combination (SC), rank combination
(RC), voting (V), average combination (AC), and weighted
combination (WC). We compute SC, RC, AV, and WC based
on the following weighting metrics.

1) Average Combination (AC): The average score combi-
nation and average rank combination are computed as
ss(d) = 3272 [wisij(d)], and sp(d) = 3277, [wir;(d))]
where w; = %, and s, and spi are the score and rank
functions of SC and RC respectively.

2) Weighted combination by diversity strength (WCDS):
Weighted score combination by diversity strength
(WSCDS) and weighted rank combination by diversity
strength (WRCDS) are the two metrics considered here,
and the weights are calculated as follows.

weight of model i +, AC
Wi = SUIgn of weights {N“A) weps @
g SN ds(A;)”

(weight of model 1) * s;;(d)
sum of weights

For WRCDS, replace s;;(d) with r;;(d) and w; with -

WSCDS;;(d) =

IV. EVALUATION

We assess model performance and efficiency at the class
level, particularly in smaller sampled classes. Precise detection
and classification of every attack are crucial, as even one
missed attack can be harmful. Thus, our analysis emphasizes
recall as a vital criterion. We employ diverse CFA metrics to
combine models, harnessing strengths and addressing weak-
nesses. We calculate average score combination (ASC) and
average rank combination (ARC) using the top 10 flows from
220,312, selected based on ASC and ARC metrics. These flows
show high confidence in the fusion model’s predictions. A
small subset of the CFA dataset has all models with the highest
probability scores, indicating lack of diversity. This tie results

Recalls for each individual model at the class level of granularity
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Fig. 2: Performance of models at the class level of granularity.

in identical top-ranking positions for both metrics. Although
they yield the same outcome at rank 1, differences arise
as rankings progress due to score variations. These metrics
demonstrate distinct behavior with diverse scoring systems.

The weighted score combination by diversity strength and
weighted rank combination by diversity strength are calculated,
where the flows represent the first 10 out of a total of 4187
top-ranked flows. These flows are the ones in which the fusion
model exhibits the highest confidence level in its prediction.
Due to a lack of model diversity at the top-performing data
items, the two above metrics produced the same output at rank
position 1. However, the results vary as we move down the
ranks. Table [lI| shows the two-model combination, weighted
score combinations by performance (recalls) for the data items
dy - dip. Recall focuses on the model’s ability to find all
positive instances, measured per each attack class for all
models. Last, Table summarizes the rankings of the WSCP
results presented in the tables mentioned above for the data
items d; - d1o. Building upon these tables, we aim to identify
a model that performs well not only on the commonly observed
attacks but also on the low-profiled ones.

While most models individually performed well against
many attacks, they faced difficulty with low-profile attacks.
Conversely, models excelling at low-profile attacks struggled
with other attack types. This prompted us to consider model fu-
sion, leveraging strengths and offsetting weaknesses. Our goal
was to create a robust, comprehensive model by combining
individual outputs, capable of effectively handling low-profile
attacks and other traffic. Our method modifies the soft Voting
Classifier as a metric for generating combined predictions.
We average probability scores across classes for each model,
using model recall values as weights for accurate aggregation.
This advanced CFA technique, called weighted combination
by performance, incorporates each model’s recall performance
at the attack level, enhancing fusion with model-specific attack
data.

By assigning higher weights to models with higher recall
rates for a given attack, we aimed to prioritize the models
that were more adept at correctly identifying all attacks,
including the low-profiled ones. This CFA strategy proved to



TABLE II: Two model combination - Weighted score combinations by performance (recalls) for the data items d; - dig.

D; AB AC AD AE AF BC BD BE BF CD CE CF DE | DF | EF
dy 1 0.76258 1 1 1 0.77052 1 1 1 0.77067 | 0.77069 | 0.77077 1 1 1
da 1 0.99976 1 1 1 0.99976 1 1 1 0.99976 | 0.99976 | 0.99976 1 1 1
ds 1 0.54627 1 1 1 0.56144 1 1 1 0.56172 | 0.56175 | 0.56191 1 1 1
dy 1 0.54597 1 1 1 0.56115 1 1 1 0.56143 | 0.56146 | 0.56162 1 1 1
ds 0.99996 | 0.55247 1 1 1 0.52705 | 0.99996 | 0.99996 | 0.99996 | 0.56771 | 0.56774 0.5679 1 1 1
dg 1 0.54641 1 1 1 0.56158 1 1 1 0.56186 0.5619 0.56205 1 1 1
dy 1 0.98708 1 1 1 0.98635 1 1 1 0.98752 | 0.98752 | 0.98753 1 1 1
dg 1 0.98739 1 1 1 0.98727 1 1 1 0.98741 | 0.98744 | 0.98744 1 1 1
do 1 0.53821 1 1 1 0.53929 1 1 1 0.53991 | 0.53991 | 0.53991 1 1 1
dip | 0.76986 | 0.76639 | 0.78936 | 0.78938 | 0.78945 | 0.98505 | 0.99962 | 0.99962 | 0.99962 | 0.99845 | 0.99845 | 0.99845 1 1 1
TABLE III: Rankings of the WSCP results presented in Table [II| for the data items d; - dig.
D; AB AC AD AE AF BC BD BE BF CD CE CF DE | DF | EF
dy 1 114936 1 1 1 105351 1 1 1 115227 116010 115949 1 1 1
do 1 16485 1 1 1 13230 1 1 1 17815 17547 17270 1 1 1
ds 1 176670 1 1 1 157873 1 1 1 175125 175153 175236 1 1 1
dy 1 179070 1 1 1 159554 1 1 1 177513 177561 177623 1 1 1
ds 176598 152728 1 1 1 207139 184970 185096 184279 152473 152519 15495 1 1 1
dg 1 175530 1 1 1 157132 1 1 1 174123 174147 174181 1 1 1
dr 1 37075 1 1 1 37065 1 1 1 38823 39053 38739 1 1 1
ds 1 36857 1 1 1 36161 1 1 1 38925 39134 38825 1 1 1
dg 1 197884 1 1 1 181049 1 1 1 198636 198655 198640 1 1 1
dig 219277 110590 | 218958 | 218912 | 218977 38342 199530 199659 198672 39536 39833 39516 1 1 1
TABLE IV: Performance evaluation of individual models at the class level of granularity.
A B C D E F
class Precision Recall Flscore Precision Recall Flscore Precision Recall Flscore Precision Recall Flscore Precision Recall Flscore Precision Recall Flscore
0 0.995305 0933387 0963352 | 0994616 0.169366  0.289444 | 09739 0913225 0942587 | 0.999228 0.998502  0.998865 | 0.996296 0.998638 0997466 | 0.999691 0999328  0.99951
1 0995305  0.933387  0.963352 | 0.096706 0.994536  0.176271 0 0 0 0.983696  0.989071  0.986376 | 0.994536  0.994536  0.994536 1 1 1
2 0.042553 0065574  0.051613 | 0.983337  0.999164  0.991187 | 0.783516  0.737625 0759879 | 0.992537 0.978554  0.985496 | 0.999958 1 0.999979 1 1 1
3 0999791  0.999833  0.999812 | 0.356379  0.966292  0.520714 | 0.589041  0.81372  0.683387 | 0.960603 0.980485 0.970442 | 0.968347 0.976937  0.972623 | 0.969873  0.989947  0.979807
4 0.778788  0.911886  0.840098 | 0.98708 0974564  0.980782 | 0.723168 0.862027 0786516 | 0.986929 0995396  0.991144 | 0.999874  0.999723  0.999799 1 0.999824  0.999912
5 0.811881  0.809211  0.810544 | 0.099778  0.814967  0.17779 | 0.684392  0.814967 0743994 | 0.966503 0972862 0.969672 | 0.9801  0.972039  0.976053 | 0.981224  0.988487  0.984842
6 0.816667 0794781  0.805575 | 0.034563  0.834274  0.066377 | 0.375488  0.33921 0356428 | 0.975456 0980959 ~ 09782 | 0.991507 0.988011  0.989756 | 0.992928 0990127  0.991525
7 0.688797 0996  0.814391 | 0.996004  0.997 0996502 | 0.531576 0968  0.686281 | 0.996004  0.997  0.996502 | 0.999001 1 0.9995 1 1 1
0.333333 1 05 1 1 1 0 0 0 1 05 0.666667 1 1 1 1 1 1
9 0958722 09926 0975367 | 0471534 0997257  0.64031 | 099932  0.998339 0998829 | 0.999321 0.999799  0.99956 | 0.999648  0.999924  0.999786 | 0.999648  0.99995  0.999799
10 0541325 0983762  0.698367 | 0.941482 0979702 0960212 | 0.851852 0.622463 0719312 | 0.987887 0993234 0.990553 | 099594 099594  0.99594 | 0.998645 0.997294  0.997969
11 0017903  0.061765  0.027759 | 0.037879  0.102941  0.05538 0 0 0 0706941  0.808824  0.754458 | 0.594937 0.414706 0488735 | 0.715013  0.826471  0.766712
12 0001724  0.333333  0.003431 | 0.04918 1 0.09375 0 0 0 0 0 0
13 0.052947  0.97546  0.100442 | 0.274874 1 0431217 0 0 0 0452991 0.325153 0378571 1 0018405  0.036145 | 046789 0312883  0.375
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Fig. 3: Recalls of each of the 15 combined models using weighted score combination by performance at the class level of

granularity.

be highly effective in enhancing the overall performance of
our methodology. By incorporating the strengths of multiple
models, we established a balanced and robust classification
system that improved recall and reliability. Consequently, we

successfully leveraged the individual strengths of each model,
resulting in a more comprehensive and successful approach to
attack identification and classification.
Table [IV] highlights the performance of individual models,




with Model F' emerging as the highest performer overall.
However, it exhibited significant weaknesses in accurately
classifying the low-profile attack class 12. On the other hand,
Model B demonstrated a flawless performance in identifying
low-profiled attacks. Nonetheless, it fell short of effectively
classifying other types of attacks compared to other models.
Figures [2] and [3 visually depict the performance of the six
individual models and their two-model combinations across
various classes, allowing for a comparison of their respective
performances. A best performing models for each attack can
be found in Table [Vl

Among the various models, Model BE consistently out-
performed the others, exhibiting the highest recall rates for
both low-profiled attacks and other traffic categories. This
indicates that Model BE excels in accurately identifying and
classifying attacks, particularly in cases where limited training
data is available. However, it should be noted that Model BE
obtained a recall of only 0.1 for attack class 11 which is a
potential weakness. Model C'E’ demonstrated the highest recall
of 0.9555882 for attack class 11, surpassing all other models.
Motivated by this observation, we combined Models BE and
CE to explore the possibility of achieving improved recalls
across all attack classes. However, the fusion of these models,
Model BECE, did not significantly increase the recall for
Class 11.

Table |V| presents a summary of the performance for indi-
vidual and combined models. Notably, Model DF' achieved a
remarkable 100% recall for the attack class 4, surpassing the
performance of the best individual model in that category. This
highlights the effectiveness of the combined model approach
in achieving higher recall rates. Based on the CFA metric
employed, our recommended fusion model would be to use
Model DF for attack class 4 and then Model BE for all attack
classes except class 11, for which Model C'E is employed. This
combination would yield better overall performance in terms
of recall and outperform the individual models.

Last, while Model BE and Model CE successfully en-
hanced the recall rates for all attack classes, developing more
advanced fusion techniques may yield even better results.
Overall, our approach of combining models proved successful
in achieving our goal of developing a model that performs
well, particularly in recalling low-profiled attacks.

V. CONCLUSION

This work uses the fusion approach to enhance ML-based
DoS attack detection. Specifically, we targeted low-profile
attack detection, an area where single models faltered. By
merging multiple ML models with advanced CFA metrics,
we improved precision, recall, and Fl-score. This produced a
highly effective combined model that nearly perfectly detected
all attacks, including low-profile ones, achieving 100% recall.
Unlike most single models, our approach succeeded in this.
CFA methods hold promise for boosting DoS attack detection.
Future work can refine algorithms, explore more scoring
systems, and integrate emerging tech for stronger defense.

TABLE V: Best performing models for each class (by recalls).
Multiple models for a given class represents a tie.

Traffic | Individual Combined using WSCP

0 F (99.93) CF (99.92)

1 F (100) AE, AF, BE, CE, DE, DF, EF, BECE
(100)

2 F (100) BF, CE, CF, DE, BECE, EF (100 )

3 A (99.98) DF (99.05)

4 F (99.98) DF (100)

5 F (98.85) DF (98.52)

6 F (99.01) CF (99.01)

7 E, F (100) | AE, BE, CE, CF, DE, BECE, EF (100)

8 A,B,E, F | AB, AC, AD, AE, AF, BC, EF, BD (100)
BE, BF, CD, CE, CF, DE, DF, EF, BECE

9 F (100) BF, CF (100)

10 F (99.73) CF (99.73)

11 F (82.65) CE (95.59)

12 B (100) BF, BECE, BC, BD, BE (100)

13 B (100) AB, BC, BE (100)

Advancing in this field ensures secure online services despite
evolving threats.

REFERENCES

[1] B. B. Gupta and A. Dahiya, Distributed Denial of Service (DDoS)
Attacks: Classification, Attacks, Challenges and Countermeasures. CRC
press, 2021.

[2] M. Rahouti, K. Xiong, N. Ghani, and F. Shaikh, “SYNGuard: Dynamic
threshold-based SYN flood attack detection and mitigation in software-
defined networks,” IET Networks, vol. 10, no. 2, pp. 76-87, 2021.

[3] M. Mittal, K. Kumar, and S. Behal, “Deep learning approaches for
detecting DDoS attacks: A systematic review,” Soft Computing, pp. 1-37,
2022.

[4] W. Zhijun, L. Wenjing, L. Liang, and Y. Meng, “Low-rate DoS attacks,
detection, defense, and challenges: a survey,” IEEE Access, vol. 8, pp.
43920-43943, 2020.

[5] J. David and C. Thomas, “Discriminating flash crowds from DDoS
attacks using efficient thresholding algorithm,” JPDC, vol. 152, pp. 79—
87, 2021, Elsevier.

[6] T.E. Ali, Y.-W. Chong, and S. Manickam, “Machine learning techniques
to detect a DDoS attack in SDN: A systematic review,” Applied Sciences,
vol. 13, no. 5, p. 3183, 2023.

[71 V. Deepa, K. M. Sudar, and P. Deepalakshmi, “Design of ensemble
learning methods for DDoS detection in SDN environment,” in ViTECoN.
IEEE, 2019, pp. 1-6.

[8] D. F. Hsu, Y.-S. Chung, and B. S. Kristal, “Combinatorial fusion
analysis: methods and practices of combining multiple scoring systems,”
in Advanced data mining technologies in bioinformatics. 1GI Global,
2006, pp. 32-62.

[9] D. FE. Hsu, B. S. Kristal, and C. Schweikert, “Rank-score characteristics
(RSC) function and cognitive diversity,” in International Conference on
Brain Informatics. Springer, 2010, pp. 42-54.

[10] L. Hurley, B. S. Kiristal, S. Sirimulla, C. Schweikert, and D. F. Hsu,
“Multi-layer combinatorial fusion using cognitive diversity,” IEEE Ac-
cess, vol. 9, pp. 3919-3935, 2020.

[11] Q. Tian, C. Guang, C. Wenchao, and W. Si, “A lightweight residual
networks framework for DDoS attack classification based on federated
learning,” in INFOCOM WKSHPS. 1IEEE, 2021, pp. 1-6.

[12] A. Rosay, F. Carlier, E. Cheval, and P. Leroux, “From CIC-IDS2017
to LYCOS-IDS2017: A corrected dataset for better performance,”
in [EEE/WIC/ACM WI-IAT. ACM, 2021, p. 6. [Online]. Available:
https://doi.org/10.1145/3486622.3493973

[13] D. Hsu, J. Shapiro, and I. Taksa, “Methods of data fusion in information
retreival: Rank vs. score combination,” DIMACS TR 2002, Tech. Rep.,
2002.

[14] D.F. Hsu, B. S. Kristal, Y. Hao, and C. Schweikert, “Cognitive diversity:
A measurement of dissimilarity between multiple scoring systems,”
Journal of Interconnection Networks, vol. 19, no. 01, p. 1940001, 2019.


https://doi.org/10.1145/3486622.3493973

	Introduction
	Related Work
	Methodology
	Problem Abstraction
	Dataset
	Data Pre-processing and Exploratory Analysis (Probabilities and Confidence Scores)
	Performance Evaluation of Scoring Systems

	Evaluation
	Conclusion
	References

