
This paper has been accepted for presentation in IEEE CNSM 2015 - 11th International Conference on Network and Service Management to be
held on 9-13 November, 2015, Barcelona, Spain. This is an author copy. The respective Copyrights are with IEEE.

A Resource Allocation Mechanism for Video Mixing
as a Cloud Computing Service in Multimedia

Conferencing Applications
Abbas Soltanian†, Mohammad A. Salahuddin†‡, Halima Elbiaze‡, Roch Glitho†

†Concordia University, Montreal, Quebec, Canada, ‡Université du Québec À Montréal, Montreal, Quebec, Canada
ab_solta@encs.concordia.ca, mohammad.salahuddin@ieee.org, elbiaze.halima@uqam.ca, glitho@ciise.concordia.ca

Abstract—Multimedia conferencing is the conversational

exchange of multimedia content between multiple parties. It has a

wide range of applications (e.g. Massively Multiplayer Online

Games (MMOGs) and distance learning). Many multimedia

conferencing applications use video extensively, thus video mixing

in conferencing settings is of critical importance. Cloud computing

is a technology that can solve the scalability issue in multimedia

conferencing, while bringing other benefits, such as, elasticity,

efficient use of resources, rapid development, and introduction of

new applications. However, proposed cloud-based multimedia

conferencing approaches so far have several deficiencies when it

comes to efficient resource usage while meeting Quality of Service

(QoS) requirements. We propose a solution to optimize resource

allocation for cloud-based video mixing service in multimedia

conferencing applications, which can support scalability in terms

of number of users, while guaranteeing QoS. We formulate the

resource allocation problem mathematically as an Integer Linear

Programming (ILP) problem and design a heuristic for it.

Simulation results show that our resource allocation model can

support more participants compared to the state-of-the-art, while

honoring QoS, with respect to end-to-end delay.

Index Terms—Resource Allocation, QoS, Video Mixing as SaaS,

Multimedia Conferencing Application

I. INTRODUCTION

Multimedia conferencing1 can be defined as conversational
and real time exchange of multimedia content, such as, audio
and video, between several parties [1]. It has three main
architectural components, namely signaling, media handling,
and conference control [2]. Video mixing is a functionality
provided by the media handling component. It mixes different
video sources from conferencing participants to reach one video
stream as output.

Several conferencing applications exist, which use video
extensively, such as, distance learning, video conferencing, and
Massively Multiplayer Online Games (MMOGs). Therefore,
video mixing is of critical importance in conferencing
applications. There might be thousands or hundreds of thousands
of participants scattered over large geographical areas in some
conferencing applications like MMOGs [3], thus requiring
scalability. Furthermore, the pressure of cost reduction brings
about the need for efficient use of resources.

Cloud computing is an emerging paradigm for provisioning
computing and storage infrastructure and services with three key
facets: Software as a Service (SaaS), Platform as a Service
(PaaS), and Infrastructure as a Service (IaaS) [3]. It has several

1 Here onwards referred to as conferencing.

inherent benefits, such as, efficient use of resources, scalability
and elasticity. These characteristics make it suitable for
provisioning of conferencing applications.

This paper deals with video mixing as a SaaS for
conferencing applications. Fig. 1 depicts the assumed business
model, where conferencing applications are offered as services
to end-users. These applications rely on a conferencing service
that is also offered as a SaaS. Video mixing as a service, offered
to conferencing service providers, relies on geographical
distributed IaaS, providing the actual resources (e.g. CPU,
RAM, storage) needed for video mixing. The key component of
IaaSs is in red in Fig. 1, which is the focus of paper, that is, the
video mixing resource allocator (VMRA).

VMRA is a dynamic resource allocation mechanism, since
the demand for video mixing depends not only on the number of
participants, but also on how the participants use the video
resource. Furthermore, it caters to QoS, with respect to video
mixing response time. It performs a fine-grained resource and
virtual machine (VM) scaling, to improve efficiency in resource
utilization, while meeting the QoS requirements of video mixing
service in conferencing applications.

We analyze our proposed resource allocation mechanism
theoretically by modeling it as an optimization problem.
Moreover, we design a heuristic for real-world scenarios. The
results show that our mechanism outperforms current state-of-
the-art in maximizing resource utilization, while meeting QoS,
across multiple IaaSs. In addition, compared to the
state-of-the-art, in our model, a video mixer can accommodate
higher numbers of participants without sacrificing QoS.

II. REQUIREMENTS AND RELATED WORK

A. Requirements

A crucial requirement for video mixing as a service pertains
to dynamic scalability, or accommodating the changing number

Fig. 1. Business model

This paper has been accepted for presentation in IEEE CNSM 2015 - 11th International Conference on Network and Service Management to be
held on 9-13 November, 2015, Barcelona, Spain. This is an author copy. The respective Copyrights are with IEEE.

of participants. For example, in one study, the number of users
in World of Warcraft (WoW), fluctuates between 1.5 and 2.5
million over 10 hours [4]. Therefore, video mixing resource
allocator should be able to dynamically scale required resources.
Efficient use of resources is another important requirement. As
an example, WoW uses more than ten-thousand servers, while
most of the servers’ capacities remain idle most of the time [4].

Moreover, meeting QoS requirements, such as jitter,
throughput, and end-to-end delay, is crucial in video mixing as
a service. In our study, we focus on end-to-end delay. Based on
International Telecommunication Union (ITU), total end-to-end
delay in conferencing should not exceed 400 msec [5]. Video
mixing response time is a critical component of the total end-to-
end delay in conferencing. It can be defined as the time between
arrival of video mixing request and departure of video mixing
result back to the user. Video mixing resource allocator should
consider it in order to appropriately provision resources. In
addition, it brings the need of relying on video mixing as a
service from multiple geographically distributed IaaSs.

B. Related Work

1) Traditional Resource Allocation for Video Mixing

Most existing resource allocation solutions have been
proposed for peer-to-peer (P2P) conferencing and centralized
multimedia conferencing [6]. Yuen and Chan [7] attempt to
reduce worst-case video transmission delay from different video
sources to users. They propose an algorithm to select peers as
mixers to achieve minimum overall delay. However, their
algorithm does not account for video mixing response time.
Chen et al. [8] also propose P2P multi-party video conferencing
solution to achieve low end-to-end delay. They optimize the
streaming rates of all the peers subject to network bandwidth
constraints. Their study reduces end-to-end delay without
tackling the specifics of video mixing.

Multipoint Control Unit (MCU) [9] is a media handling
component that could include video mixing as a functionality.
Traditionally, all video mixing requests are handled by a single
MCU, where resources are allocated in a static manner. Thus,
this approach is not scalable and uses resources inefficiently.

2) Resource Allocation for Video Mixing in Cloud

Liao et al. [10] focus on minimizing video transmission
delay and consequently the total end-to-end delay. Their
heuristic reduces average and maximum end-to-end delay by
choosing a network of servers and clients as mixers, reducing the
delay between conference endpoints. However, since they
allocate all available resources to the mixer, their resource
allocation scheme does not meet the efficient resource usage
requirement. Zhang et al. [6] propose minimizing mean end-to-
end delay by choosing the best physical servers . They find the
ideal geographic server locations and map to the closest physical
server candidates. Efficient resource usage is a limitation of their
work, as they allocate the entire server resources as a mixer.
Moreover, they do not consider video mixing response time in
their end-to-end delay.

Taheri et al. [1] propose a cloud infrastructure that relies on
conferencing substrates. Their architecture enables different
conferencing applications to be built using virtualized

conferencing substrates that can be provided by different
substrate providers. Li et al. [11] offer conferencing as a cloud-
based service. They follow the structure of Service Oriented
Architecture (SOA) to propose a design for cloud-based
conferencing. However, none of these work tackle video mixing
resource allocation.

3) Other Approaches

Negralo, et al. [12] and Weng and Wang [13] have addressed
the resource allocation problem for conferencing applications.
Others ([14], [15], [16]) focus more on optimizing resource
allocation to reduce cost. Nan et al. [14] used a queuing model
to optimize resource allocation. They studied VM allocation
problem for multimedia application providers and minimized the
resource cost under the end-to-end delay requirement [15].
Sembiring and Beyer [16] propose a dynamic cloud resource
allocation to different multimedia tasks with respect to system
efficiency and QoS. However, none of these literatures rely on
fine-grained resource scaling. Moreover, they do not tackle the
specifics of video mixing.

Compared to the state-of-the-art, our work fills the need of a
resource allocation scheme for cloud-based conferencing
applications that (i) considers the specifics of video mixing as a
service, (ii) meets the QoS requirements, and (iii) scales
dynamically, while using resources in an efficient way.

III. SYSTEM MODEL

Our system model includes cooperation, video mixing, and
mathematical models. In our mathematical model, we define
VMRA as an Integer Linear Programming (ILP) problem.

A. Cooperation Model

We consider a large-scale distributed cloud infrastructure to
support conferencing applications and video mixing as a service,
consisting of users, separate zones and an IaaS in each zone	�,
as depicted in Fig. 2. We illustrate users scattered across a large
geographical area, wanting to join a conferencing application,
such as MMOG. We assume that in each zone	�, there is a data
center providing IaaS, where each data center consists of a
number of servers (��), hosting VMs. Furthermore, we assume
that zones are interconnected in a full mesh manner. The same
assumption applies to VMs in a data center, as shown in Fig. 2.

Users in each zone will connect to their local data center to
join a conferencing application. Each user is considered as a
video source, sending video and requesting video mixing
service. The challenge lies in allocating the resources for video
mixing to achieve optimal resource utilization, while
guaranteeing QoS requirements.

B. Video Mixing Model

VMRA decides to add resources to existing VMs or create a
new VM when a video source is added to a data center. Adding
resources is done in fine granularity. This implies that VMRA
will add minimal required resources in an elastic manner. It will
also balance the load between all the VMs in a data center. After
provisioning appropriate resources, a video source will join a
VM, that is, a video mixer and video mixing will start. The video
mixing process is illustrated in Fig. 3.

This paper has been accepted for presentation in IEEE CNSM 2015 - 11th International Conference on Network and Service Management to be
held on 9-13 November, 2015, Barcelona, Spain. This is an author copy. The respective Copyrights are with IEEE.

Our video mixing model follows the Fork/Join parallelism
technique [17]. All video mixing requests in a data center fork
off to several other mixing processes, which are concurrently
executed in each VM, until they finally join into a single mixed
video. VMs mix their video sources in parallel. Therefore, the
required time for this step depends on the maximum number of
video sources connected to any VM ���� in zone	�.

Each VM will send the result to other VMs in the same data
center. This intra-zone video exchange time is in	�	
� . Next, each
VM mixes the incoming videos from other VMs with the result
of its own mixed video source. The time for this step depends on
the total number of VMs in the data center.

Here, mixed video of a data center is ready and sent to all
other data centers. This inter-zone video exchange time is
in	��
� . Then, VMs will start mixing the incoming videos from
other zones with the one of their own zone. Here, the required
time depends on the total number of zones and the mixed video
across all zones is ready to be sent back to the users.

C. Mathematical Model

This subsection, presents our VMRA problem formulation,
which is modeled as an ILP problem.

1) Problem Statement

Given a data center with �� servers and �� users (video
sources), let ��	
��� and ��	
��� represent the time and the
resource required to mix �	video sources, respectively. Also, let �	
� and ��
� denote the time to exchange a video across VMs
and zones, respectively. �� are the resources dedicated to VM
operation, hence, they cannot be utilized for video mixing. There
are thresholds �ε on QoS, pertaining to the maximum acceptable
video mixing response time, and �ε on server resource capacity,
respectively. Find the minimum number of VMs, while
efficiently using resources and respecting QoS.

We model this as an ILP problem, where we assume a video
mixer to be analogous to a VM. Tables I and II delineate the
inputs and variables of our problem, respectively.

2) Objectives

We assume the operational cost of a VM, in terms of non-
utilizable resources, supersedes the cost of resources required for
handling the video mixing request of a participant, as in (1).
Furthermore, we assume homogeneous costs of video mixing
resources across servers. Therefore, the operational cost	��,
associated with a VM, inhibits the introduction of a new VM, in

the event of a new participant arrival. That is, a new VM is only
instantiated if an incoming request cannot be handled by
increasing the resource of an existing VM. �� ≫ ���	
	����� � ��	
���� (1)

Equation (2) depicts our multiple objectives. Primarily, we
minimize the allocated resources across all zones, by minimizing
the number of VMs. On the other hand, the time to mix videos
in zone �	depends on the maximum number of users connected
to a VM (��). We balance the load between VMs to decrease the
overall video mixing time. Note that these are competing
objectives. Therefore, we prioritize minimizing the number of
VMs by normalizing �� with the maximum number of users in
zone �.

��������	 �	���	, !	 ����
"#
 $�

%#
	$� & (2)

3) Constraints
VMs and users cannot be split across multiple servers and

VMs, respectively. Equation (3) ensures that a VM exists on a
single server. Similarly, (4) allows a user to connect to a single
VM. Furthermore, if there are users connected to a VM, that VM
should exist on one server, as depicted in (5) and (6).

			��	, ' 1%#
	$� ∀1 ') ' �� (3)

			�* ,� + 1"#
 $� ∀1 ' � ' �� (4)

			�* ,� ' , ⋅ .��	, %#
	$� /"#

�$� ∀1 ') ' �� (5)

			�* ,� 0 ��	, %#
	$�

"#
�$� ∀1 ') ' �� (6)

Video mixing required resources, that is, the VMs operating
resources and their connected number of users, is bounded by
the server resource capacity	�ε, in (7).

			�� ⋅ .��	, "# / ! 	��	
1∑ �
3 ⋅	 ∑ 4 �3 5 ' � 					 (7)

Fig. 2. Communication model b/w VMs in a data center and across zones

Request
arrival

Video exchange
between zones

Fig. 3. An example of our video mixing model

VM allocation
and video mixing

Video exchange
between VMs

Video mixing
completed

Inter zone mixing

Intra zone mixing

Tint+ Tmix (k)

User Virtual
machine

Time

Text+ Tmix (k)

Intra zone mixing

Zone Server

This paper has been accepted for presentation in IEEE CNSM 2015 - 11th International Conference on Network and Service Management to be
held on 9-13 November, 2015, Barcelona, Spain. This is an author copy. The respective Copyrights are with IEEE.

																																																																∀1 ' � ' ��

Note that the product ∑ ��	, "# $� ⋅ ∑ * ,��"#�$� in (7) is
non-linear. Therefore, we linearize (7) by replacing it with
constraints (8)-(13).

			�* ,� + 6 "#
�$� ∀1 ') ' �� (8)

			7	, ' �� ⋅ �	, ∀1 ' � ' ��	,∀1 ') ' �� (9)			7	, ' 6 ∀1 ' � ' ��		,∀1 ') ' �� (10)			7	, 0 6 ���81 � �	, 9 ∀1 ' � ' ��	,∀1 ') ' �� (11)			7	, 0 0 ∀1 ' � ' ��	,∀1 ') ' �� (12)

			�� ⋅ .��	, "#
 $� /! 	��	
1∑ ;<,=3#=>? 5 ' �ε						∀1 ' � ' ��	 (13)

The maximum number of users,	��, in a zone � influences the
video mixing time. Equation (14) finds	�� , for each zone.

			�* ,� ' ��"#
�$� ∀1 ') ' �� (14)

Video mixing response time for a zone	�, depends on the
maximum number of users connected to a single VM in that zone
(��	
�@#��. Note that VMs should mix the output of video
mixing from other VMs too, therefore, the video mixing
response time will also be influenced by the total amount of VMs
across all servers in	�. This time is given by	��	
�∑ ∑
<,=3#=>?B#<>? �,
with an inter-zone exchange time of	�	
�. Furthermore, VMs
should mix the incoming videos from all other zones, time for
which is represented by	��	
�C�, with an intra-zone exchange
time of	��
�. Equation (15) ensures that this total video mixing
response time for each zone	�, abides by the QoS threshold	�ε. 			��	
�@#� ! 	�	
� ! 	��	
�∑ ∑
<,=3#=>?B#<>? � ! ��
� ! ��	
�C� ' �ε

																																										∀1 ' � ' E (15)

VMRA executes in each zone separately. However, because
video mixing as a service relies on multiple IaaSs, the total
number of zones will influence VMRA’s decision. Based on
(15), different response times across zones are attributed to the
different values of ��	
�@#� and ��	
�∑ ∑
<,=3#=>?B#<>? �. Zone � will

send its mixed video to other zones and wait to receive from
them. Waiting time in (16) will add to the video mixing response
time of zones that perform video mixing faster than the other
zones. Thus, the video mixing response time will be equal to the
maximum response time across all zones.

			
FGH
GI�JK	 LM��	
8@N9 !	��	
1∑ ∑
<,=3N=>?BN<>? 5O �

M��	
�@#� !	��	
1∑ ∑
<,=3#=>?B#<>? 5O P				∀1 ' Q ' E
0, �R	�JK ' 0

 (16)

IV. VMRA HEURISTIC

Based on (1), VMRA always processes a new mixing request
by adding required resources to the existing VMs unless it
cannot satisfy the QoS requirement or there are not enough free
resources on the server. In this case VMRA instantiates a new
VM and balances the load between VMs in the data center. Load
balancing helps minimizing the maximum number of connected
users to each VM. We achieve this by employing MinMax our
objective, that is, the minimization of the maximum number of
users on VMs and consequently, based on (15), it decreases the
total response time.

VMRA checks the available resources when it decides to
instantiate a new VM. Moreover, it checks the possibility of
satisfying QoS requirement, by adding a new VM. Our heuristic
is as described in Algorithm 1. We consider the constants and
variables shown in Table I and Table II as the input to this
algorithm.
Algorithm 1. Video mixing resource allocation
Input: �S�_� = M; // Max number of users that can be served in DC U = 0; // number of VMs , = 1;	// number of used servers �W + �ε; // available resources on server ,
Remain_User = 0; // auxiliary variable to scatter users between VMs
Output: U, X,�S�_�
1. For each m ∈ M do
Phase 1: Test if there is a VM with lower users than ��

2. If (�W 	0 R
mix(1)

) Then
3. For j =1 → 	U do
4. If (6 < V

Z

) Then
5. 	6 ← 6 ! 1
6. Break, serve next m
7. end for
8. end if
Phase 2: Create first VM in DC
9. If (U==0) Then
10. U	 ← 	1
11. 6� ← 1
12. �� 	← 1
13. end if
Phase 3: Test response time by increasing �� without adding VM
14. Else if (�W 0 R

mix(1)
AND Response time(�� ← �� ! 1,	U)'�ε)Then

15. 6� ← 6� ! 1
16. �� ← �� ! 1
17. end else if
Phase 4: Test response time by adding a new VM on the same server
18. Else if (�W 	0 R

mix(1)
+ R

O
) Then

19. If (Response time(�� ← [�\��],	U	 ← 	S ! 1)' �ε) Then

TABLE I. Problem inputs

Input Definition E number of zones �� number of servers in zone � �� number of users i.e. video sources in zone � �	
� time to send a video between VMs in a zone ��
� time to send a video between zones, E + 1 ⇒ ��
�= 0 ��	
���	 time to mix � video sources,	��	
���	+	0	�ε QoS threshold (acceptable mixing response time) ��	
��� required resources for mixing �	video sources in a VM �� non-utilizable VM operating resources �ε threshold on the maximum amount of resources on a server , large enough constant

TABLE II. Problem variables

Variable Definition K
		�� ×�� binary
matrix, where 		�	, + `1, �R a�bc�b � ℎeafa ��)0, efℎ�bg�a�

h
		�� ×�� binary
matrix, where 		* ,� + `1, �R 6a�b � �a 7e���7f�i fe ��)0, efℎ�bg�a� �� Maximum number of users that are connected to a VM in zone � X A vector where 6 is the number of users connected to VM)

j
		�� ×�� matrix,
where 		c	, + `6 , �R a�bc�b � ℎeafa ��)0, efℎ�bg�a�

This paper has been accepted for presentation in IEEE CNSM 2015 - 11th International Conference on Network and Service Management to be
held on 9-13 November, 2015, Barcelona, Spain. This is an author copy. The respective Copyrights are with IEEE.

20. 	U	 ← 	S ! 1
21. Remain_User ←	m
22. For j = U → 1 do
23. 6 ← Remain_User / j
24. Remain_User ← Remain_User �	6
25. end for

26. �� ← [�\] 27. end if
28. Else
29. �S�" ← � � 1
30. Break, DC cannot serve m users
31. end else
32. end else if
Phase 5: Test response time by adding new VM on the other server

33. Else If ((N
z

 -, > 0) AND (�W 	0 R
mix(1)

+ R
O
)) Then

34. If (Response time(�� ← [�\��],	U	 ← 	S ! 1)≤ �ε) Then
35. , ← 	, + 1
36. U ← 	S + 1
37. Remain_User←	m
38. For j = U → 1 do
39. 6 ← Remain_User / j
40. Remain_User ← Remain_User −	6
41. end for

42. �� ← [�\] 43. end if
44. Else
45. �S�" ← � − 1
46. Break, DC cannot serve m users
47. end else
48. end else if
49. Else
50. �S�" ← � − 1
51. Break, DC cannot serve m users
52. end for each
Return U, X,�S�_�

In phase 1, VMRA tries to find a VM with lowest number of
connected users. If VMRA finds such a VM, it will add required
resources to that VM and assigns the new user to it. In phase 2,
the first user wants to join. So, VMRA will create the first VM
and assign that user to it. VMRA will reach phase 3 if all the
VMs have the same number of users. Here, VMRA checks the
available resources and the feasibility of satisfying QoS
requirements, if it assigns a new user to one of the existing VMs.
This assignment is crucial as it increases	�� , thus, impacting the
video mixing time.

If increasing	�� causes sacrificing QoS, VMRA decides to
instantiate a new VM on the same server or on other servers
based on available resources, in phase 4 and 5, respectively. If
there are available resources, but VMRA cannot find any
feasible solution to satisfy QoS, it will stop accepting new users
in both phases 4 and 5.

This algorithm has a nested loop and its time complexity is
based on the number of iterations of each loop. Therefore, the
time complexity of our VMRA algorithm is	m(��	. U).

V. SIMULATION RESULTS

A. Comparison Baselines

We compare VMRA with (i) popular traditional MCU [9],
for video mixing, (ii) Nan et al. [14], cost minimization model
in cloud, for a single class service , and (iii) cloud-based MCU
(CMCU), which avoids upfront resource costs . However, since
these models do not support multi-zone video mixing, we
assume that each model is implemented in a zone and exchange
mixed video amongst each other, until all sources are mixed.

B. Environment and Settings

We assume a MMOG, where player’s video is shared in the
logic of the game and developed a custom simulator in JAVA.
We simulate multiple data centers and game players as

conferencing participants. VMRA heuristic runs on each data
center part in our simulator. Players send their video mixing
requests to the local data center and receive the result from it.
Total number of game players across all zones fluctuates, since
they can join or leave the game whenever they want to. For our
simulation, we assume a snap-shot of the number of players in
each zone. Our simulation parameters are depicted in Table III.

C. Results

We simulate our heuristic to check supported number of
users, resource utilization and video mixing response time.

1) Number of Users

It is evident from Fig. 4, that VMRA can serve more users in
a single zone in comparison to other baselines. This is because
VMRA has the leverage to increase resources whenever it
reaches the QoS threshold in contrast to the queuing model,
where the number of computation nodes is fixed. VMRA also
performs better than MCU and CMCU. Due to their centralized
nature, both MCU and CMCU models leverage a single server
entity and consequently are not equipped to handle large number
of users.

When we increase the number of zones, we have to account
for the inter-zone communication time of mixing videos. As a
result, to satisfy video mixing response time threshold, video
mixing as a service can serve a lower number of users in each
zone, while the number of zones increase. Although there is a
tradeoff between the number of zones and the number of users
that can be served in each zone, total number of users that can
be served across all zones will increase, as depicted in Fig. 5. In
addition, VMRA shows a better growth rate, thus it shows better
scalability, in terms of the number of users, in comparison to the
other models.

2) Resource Utilization and Video Mixing Response Time

Required resources for video mixing depends on the
maximum number of served users. Accordingly, we study two
different scenarios, each with a different number of video mixing
requests: (i) Meet-By-All - In this scenario, we assume that there
exists a maximum number of users, which can be served by all
the resource allocation models in a zone, while respecting QoS.
(ii) Meet-By-Some - In this scenario, we assume for all models,
the number of users to be the maximum supported by VMRA,
while respecting QoS. In this scenario, we relax the QoS
constraint for the other models, giving them the leverage to
support a higher number of users.

a) Resource Utilization: Meet-By-All Scenario

Fig. 6(a) and 6(b), depict the average and the maximum
allocated resources over the total available resources in a data
center, respectively. In MCU, because of upfront resource over
provisioning, there are always some idle resources, which
remain unutilized. However, because the allocated resources in
MCU are always at 100%, we do not show it in the resource

TABLE III. Simulation parameters

Parameter Value Parameter Value Parameter Value

E 1-6 ��	
(�) 7 msec ��	
(�) 20 MB (RAM)

�� 3 �ε 300 msec �� 400 MB (RAM)
�� 1-500 �	
� 10 msec �ε 10240 MB (RAM)
, M+1 ��
� 15 msec

This paper has been accepted for presentation in IEEE CNSM 2015 - 11th International Conference on Network and Service Management to be
held on 9-13 November, 2015, Barcelona, Spain. This is an author copy. The respective Copyrights are with IEEE.

allocation figures. Other baselines allocate resources as needed.
VMRA has better results compared to the other baselines, in
both average and maximum cases in this scenario. This is
because, the maximum number of users in this scenario is equal
to the number of users that MCU can support and just one
computation entity is enough to serve them. However, the
queuing model, based on our simulation settings, always uses 3
servers to accommodate users. Whereas, VMRA uses 2 VMs to
accommodate the same number of users, which leads to the
allocation of fewer resources, compared to the queuing model
and more resources, compared to MCU and CMCU. However,
because the total available resources in VMRA are more than
those of MCU and CMCU, the allocated resource percent is
lower in comparison to both.

b) Video Mixing Response Time: Meet-By-All Scenario

The average video mixing response time for the Meet-By-
All scenario is shown in Fig. 7. As it can be seen, queuing model
shows better video mixing response time than VMRA. This is
because the objective of our model is maximizing resource
utilization while respecting QoS. Intuitively, for lower response
time, we should allocate more resources; however, this is in
contradiction to our objective. So, in VMRA, as long as video
mixing response time is lower than QoS threshold, it does not
reduce video mixing response time. On the other hand, MCU
and CMCU models have more video mixing response time, in
comparison to VMRA. This is directly attributed to the
centralized architecture of these models. Interestingly, the video
mixing response time for MCU and CMCU are the same. It
shows cloud has effect only on the amount of allocated resources
in CMCU and not on the video mixing response time.

c) Resource Utilization: Meet-By-Some Scenario

Recall, our model can serve the maximum number of users,
as shown in Fig. 5. Hence, in this scenario, we have as much
users as VMRA can serve. As depicted in Fig. 8(a) and 8(b), the
resource allocation of the queuing model performs better
compared to VMRA. This is because, VMRA will add more
resources to accommodate as many users as possible, within the
QoS threshold, while queuing model serves requests by
leveraging fixed number of servers.

d) Video Mixing Response Time: Meet-By-Some Scenario

Previous results show queuing model allocates lower amount
of resources in Meet-By-Some scenario compared to VMRA.
However, this model is not suitable for video mixing as a service
after comparing the corresponding video mixing response time.
This is because queuing model sacrifices QoS to serve the same
number of users, compared to VMRA. As shown in Fig. 9, if we
choose resource allocation based on queuing model for video
mixing as a service in cloud we have a high violation in terms of
QoS. Based on our simulation results, if we serve as much users
as VMRA can support using the queuing resource allocation
model, QoS will be sacrificed between 66% and 72%. The same
holds true when comparing with CMCU. In fact, VMRA
allocates more resources, compared to queuing model and
CMCU, to satisfy QoS for more users.

It is important to note that Fig. 6 and Fig. 8 reveal that to
accommodate larger number of users for video mixing, it is
desirable to have more data centers with fewer resources.
Furthermore, as evident from the results, our novel VMRA
addresses the specific needs of video mixing as a service, which
cannot be handled by generic cloud-based resource allocation
models.

VI. CONCLUSION

We propose a novel and scalable, with respect to number of
users, Video Mixing Resource Allocation (VMRA) model for
multimedia conferencing applications. We optimally utilize
leased resources and dynamically allocate and release resources
for changing number of users, while meeting QoS end-to-end
delay for video mixing response time. We model VMRA as an
optimization problem and design a heuristic for large-scale
scenarios. Simulation results show that our VMRA model
outperforms other resource allocation techniques for video
mixing because it considered both resource efficiency and video
mixing QoS requirements. Future work includes, extending the
VMRA model to account for VM instantiating time and
modeling the VMRA problem from the perspective of the
multimedia conferencing provider to have video mixing as a
service with minimum cost.

ACKNOWLEDGMENT
This work is supported in part by the NSERC SAVI

Research Network, the FQRNT Team Program, and the NSERC
Discovery grant program.

Fig. 7. Average video mixing response
time in Meet-By-All scenario

Fig. 8. (a) Average, (b) maximum allocated resources in a data center in
Meet-By-Some scenario

0

100

200

300

1 2 3 4 5 6

R
es

po
ns

e
tim

e
(m

s)

Number of zones
MCU CMCU
VMRA Queuing

0%
10%
20%
30%
40%
50%

1 2 3 4 5 6A
llo

ca
te

d
re

so
ur

ce
s

Number of zones
CMCU VMRA
Queuing

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6A
llo

ca
te

d
R

es
ou

rc
es

Number of zones
CMCU VMRA
Queuing

Fig. 9. Average video mixing response
time in Meet-By-Some scenario

0
300
600
900

1200
1500

1 2 3 4 5 6

R
es

po
ns

e
tim

e
(m

s)

Number of zones
MCU CMCU
Queuing VMRA(a) (b)

Fig. 4. Maximum users that can be
served in a zone

Fig. 5. Total number of users that can
be served across all zones

0
100
200
300
400
500

1 2 3 4 5 6

N
um

be
r

of
 u

se
rs

Number of zones
VMRA Queuing
MCU CMCU

0

500

1000

1500

2000

1 2 3 4 5 6

N
um

be
r

of
 u

se
rs

Number of zones
VMRA Queuing
MCU CMCU

0%
2%
4%
6%
8%

10%

1 2 3 4 5 6A
llo

ca
te

d
re

so
ur

ce
s

Number of zones
CMCU Queuing
VMRA

Fig. 6. (a) Average, (b) maximum allocated resources in a data center in
Meet-By-All scenario

0%

3%

6%

9%

12%

1 2 3 4 5 6A
llo

ca
te

d
re

so
ur

ce
s

Number of zones
CMCU Queuing
VMRA(a) (b)

This paper has been accepted for presentation in IEEE CNSM 2015 - 11th International Conference on Network and Service Management to be
held on 9-13 November, 2015, Barcelona, Spain. This is an author copy. The respective Copyrights are with IEEE.

REFERENCES
[1] F. Taheri, J. George, F. Belqasmi, N. Kara, and R. Glitho, “A cloud

infrastructure for scalable and elastic multimedia conferencing
applications,” in Network and Service Management (CNSM), 2014 10th

International Conference on, 2014, pp. 292–295.
[2] R. H. Glitho, “Cloud-based multimedia conferencing: Business model,

research agenda, state-of-the-art,” in Commerce and Enterprise

Computing (CEC), 2011 IEEE 13th Conference on, 2011, pp. 226–230.
[3] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break

in the clouds: towards a cloud definition,” ACM SIGCOMM Comput.

Commun. Rev., vol. 39, no. 1, pp. 50–55, 2008.
[4] V. Nae, R. Prodan, and T. Fahringer, “Cost-efficient hosting and load

balancing of massively multiplayer online games,” in Grid Computing

(GRID), 2010 11th IEEE/ACM International Conference on, 2010, pp. 9–
16.

[5] O. T. Time, “ITU-T Recommendation G. 114,” ITU-T May, 2000.
[6] S. Zhang, D. Niu, Y. Hu, and F. Liu, “Server selection and topology

control for multi-party video conferences,” in Proceedings of Network

and Operating System Support on Digital Audio and Video Workshop,
2014, p. 43.

[7] P. Yuen and G. Chan, “MixNStream: multi-source video distribution with
stream mixers,” in Proceedings of the 2010 ACM workshop on Advanced

video streaming techniques for peer-to-peer networks and social

networking, 2010, pp. 77–82.
[8] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li, “Celerity: a low-

delay multi-party conferencing solution,” in Proceedings of the 19th

ACM international conference on Multimedia, 2011, pp. 493–502.
[9] M. H. Willebeek-LeMair, D. D. Kandlur, and Z.-Y. Shae, “On multipoint

control units for videoconferencing,” in Local Computer Networks, 1994.

Proceedings., 19th Conference on, 1994, pp. 356–364.
[10] J. Liao, C. Yuan, W. Zhu, and P. A. Chou, “Virtual mixer: Real-time

audio mixing across clients and the cloud for multiparty conferencing,”
in Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE

International Conference on, 2012, pp. 2321–2324.
[11] J. Li, R. Guo, and X. Zhang, “Study on service-oriented Cloud

conferencing,” in Computer Science and Information Technology

(ICCSIT), 2010 3rd IEEE International Conference on, 2010, vol. 6, pp.
21–25.

[12] A. P. Negralo, M. Adaixo, L. Veiga, and P. Ferreira, “On-Demand
Resource Allocation Middleware for Massively Multiplayer Online
Games,” in Network Computing and Applications (NCA), 2014 IEEE 13th

International Symposium on, 2014, pp. 71–74.
[13] C.-F. Weng and K. Wang, “Dynamic resource allocation for MMOGs in

cloud computing environments,” in Wireless Communications and

Mobile Computing Conference (IWCMC), 2012 8th International, 2012,
pp. 142–146.

[14] X. Nan, Y. He, and L. Guan, “Optimal resource allocation for multimedia
cloud based on queuing model,” in Multimedia Signal Processing

(MMSP), 2011 IEEE 13th International Workshop on, 2011, pp. 1–6.
[15] X. Nan, Y. He, and L. Guan, “Optimal allocation of virtual machines for

cloud-based multimedia applications,” in Multimedia Signal Processing

(MMSP), 2012 IEEE 14th International Workshop on, 2012, pp. 175–
180.

[16] K. Sembiring and A. Beyer, “Dynamic resource allocation for cloud-
based media processing,” in Proceeding of the 23rd ACM Workshop on

Network and Operating Systems Support for Digital Audio and Video,
2013, pp. 49–54.

[17] J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel programming
models and tools in the multi and many-core era,” Parallel Distrib. Syst.

IEEE Trans. On, vol. 23, no. 8, pp. 1369–1386, 2012.

