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Abstract—Multimedia conferencing is the conversational 

exchange of multimedia content between multiple parties. It has a 

wide range of applications (e.g.  Massively Multiplayer Online 

Games (MMOGs) and distance learning). Many multimedia   

conferencing applications use video extensively, thus video mixing 

in conferencing settings is of critical importance. Cloud computing 

is a technology that can solve the scalability issue in multimedia 

conferencing, while bringing other benefits, such as, elasticity, 

efficient use of resources, rapid development, and introduction of 

new applications. However, proposed cloud-based multimedia 

conferencing approaches so far have several deficiencies when it 

comes to efficient resource usage while meeting Quality of Service 

(QoS) requirements. We propose a solution to optimize resource 

allocation for cloud-based video mixing service in multimedia 

conferencing applications, which can support scalability in terms 

of number of users, while guaranteeing QoS. We formulate the 

resource allocation problem mathematically as an Integer Linear 

Programming (ILP) problem and design a heuristic for it. 

Simulation results show that our resource allocation model can 

support more participants compared to the state-of-the-art, while 

honoring QoS, with respect to end-to-end delay. 

Index Terms—Resource Allocation, QoS, Video Mixing as SaaS, 

Multimedia Conferencing Application 

I. INTRODUCTION 

Multimedia conferencing1 can be defined as conversational 
and real time exchange of multimedia content, such as, audio 
and video, between several parties [1]. It has three main 
architectural components, namely signaling, media handling, 
and conference control [2]. Video mixing is a functionality 
provided by the media handling component. It mixes different 
video sources from conferencing participants to reach one video 
stream as output.  

Several conferencing applications exist, which use video 
extensively, such as, distance learning, video conferencing, and 
Massively Multiplayer Online Games (MMOGs). Therefore, 
video mixing is of critical importance in conferencing 
applications. There might be thousands or hundreds of thousands 
of participants scattered over large geographical areas in some 
conferencing applications like MMOGs [3], thus requiring 
scalability. Furthermore, the pressure of cost reduction brings 
about the need for efficient use of resources. 

Cloud computing is an emerging paradigm for provisioning 
computing and storage infrastructure and services with three key 
facets: Software as a Service (SaaS), Platform as a Service 
(PaaS), and Infrastructure as a Service (IaaS) [3]. It has several 

                                                           
1 Here onwards referred to as conferencing. 

inherent benefits, such as, efficient use of resources, scalability 
and elasticity. These characteristics make it suitable for 
provisioning of conferencing applications.  

This paper deals with video mixing as a SaaS for 
conferencing applications. Fig. 1 depicts the assumed business 
model, where conferencing applications are offered as services 
to end-users. These applications rely on a conferencing service 
that is also offered as a SaaS. Video mixing as a service, offered 
to conferencing service providers, relies on geographical 
distributed IaaS, providing the actual resources (e.g. CPU, 
RAM, storage) needed for video mixing. The key component of 
IaaSs is in red in Fig. 1, which is the focus of paper, that is, the 
video mixing resource allocator (VMRA). 

VMRA is a dynamic resource allocation mechanism, since 
the demand for video mixing depends not only on the number of 
participants, but also on how the participants use the video 
resource. Furthermore, it caters to QoS, with respect to video 
mixing response time. It performs a fine-grained resource and 
virtual machine (VM) scaling, to improve efficiency in resource 
utilization, while meeting the QoS requirements of video mixing 
service in conferencing applications. 

We analyze our proposed resource allocation mechanism 
theoretically by modeling it as an optimization problem. 
Moreover, we design a heuristic for real-world scenarios. The 
results show that our mechanism outperforms current state-of-
the-art in maximizing resource utilization, while meeting QoS, 
across multiple IaaSs. In addition, compared to the 
state-of-the-art, in our model, a video mixer can accommodate 
higher numbers of participants without sacrificing QoS. 

II. REQUIREMENTS AND RELATED WORK 

A. Requirements 

A crucial requirement for video mixing as a service pertains 
to dynamic scalability, or accommodating the changing number 

 
Fig. 1. Business model 
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of participants. For example, in one study, the number of users 
in World of Warcraft (WoW), fluctuates between 1.5 and 2.5 
million over 10 hours [4]. Therefore, video mixing resource 
allocator should be able to dynamically scale required resources. 
Efficient use of resources is another important requirement. As 
an example, WoW uses more than ten-thousand servers, while 
most of the servers’ capacities remain idle most of the time [4]. 

Moreover, meeting QoS requirements, such as jitter, 
throughput, and end-to-end delay, is crucial in video mixing as 
a service. In our study, we focus on end-to-end delay. Based on 
International Telecommunication Union (ITU), total end-to-end 
delay in conferencing should not exceed 400 msec [5]. Video 
mixing response time is a critical component of the total end-to-
end delay in conferencing. It can be defined as the time between 
arrival of video mixing request and departure of video mixing 
result back to the user. Video mixing resource allocator should 
consider it in order to appropriately provision resources. In 
addition, it brings the need of relying on video mixing as a 
service from multiple geographically distributed IaaSs. 

B. Related Work 

1) Traditional Resource Allocation for Video Mixing 

Most existing resource allocation solutions have been 
proposed for peer-to-peer (P2P) conferencing and centralized 
multimedia conferencing [6]. Yuen and Chan [7] attempt to 
reduce worst-case video transmission delay from different video 
sources to users. They propose an algorithm to select peers as 
mixers to achieve minimum overall delay. However, their 
algorithm does not account for video mixing response time. 
Chen et al. [8] also propose P2P multi-party video conferencing 
solution to achieve low end-to-end delay. They optimize the 
streaming rates of all the peers subject to network bandwidth 
constraints. Their study reduces end-to-end delay without 
tackling the specifics of video mixing. 

Multipoint Control Unit (MCU) [9] is a media handling 
component that could include video mixing as a functionality. 
Traditionally, all video mixing requests are handled by a single 
MCU, where resources are allocated in a static manner. Thus, 
this approach is not scalable and uses resources inefficiently. 

2) Resource Allocation for Video Mixing in Cloud 

Liao et al. [10] focus on minimizing video transmission 
delay and consequently the total end-to-end delay. Their 
heuristic reduces average and maximum end-to-end delay by 
choosing a network of servers and clients as mixers, reducing the 
delay between conference endpoints. However, since they 
allocate all available resources to the mixer, their resource 
allocation scheme does not meet the efficient resource usage 
requirement. Zhang et al. [6] propose minimizing mean end-to-
end delay by choosing the best physical servers . They find the 
ideal geographic server locations and map to the closest physical 
server candidates. Efficient resource usage is a limitation of their 
work, as they allocate the entire server resources as a mixer. 
Moreover, they do not consider video mixing response time in 
their end-to-end delay. 

Taheri et al. [1] propose a cloud infrastructure that relies on 
conferencing substrates. Their architecture enables different 
conferencing applications to be built using virtualized 

conferencing substrates that can be provided by different 
substrate providers. Li et al. [11] offer conferencing as a cloud-
based service. They follow the structure of Service Oriented 
Architecture (SOA) to propose a design for cloud-based 
conferencing. However, none of these work tackle video mixing 
resource allocation. 

3) Other Approaches  

Negralo, et al. [12] and Weng and Wang [13] have addressed 
the resource allocation problem for conferencing applications. 
Others ([14], [15], [16]) focus more on optimizing resource 
allocation to reduce cost. Nan et al. [14] used a queuing model  
to optimize resource allocation. They studied VM allocation 
problem for multimedia application providers and minimized the 
resource cost under the end-to-end delay requirement [15]. 
Sembiring and Beyer [16] propose a dynamic cloud resource 
allocation to different multimedia tasks with respect to system 
efficiency and QoS. However, none of these literatures rely on 
fine-grained resource scaling. Moreover, they do not tackle the 
specifics of video mixing. 

Compared to the state-of-the-art, our work fills the need of a 
resource allocation scheme for cloud-based conferencing 
applications that (i) considers the specifics of video mixing as a 
service, (ii) meets the QoS requirements, and (iii) scales 
dynamically, while using resources in an efficient way. 

III. SYSTEM MODEL 

Our system model includes cooperation, video mixing, and 
mathematical models. In our mathematical model, we define 
VMRA as an Integer Linear Programming (ILP) problem.  

A. Cooperation Model 

We consider a large-scale distributed cloud infrastructure to 
support conferencing applications and video mixing as a service, 
consisting of users, separate zones and an IaaS in each zone	�, 
as depicted in Fig. 2. We illustrate users scattered across a large 
geographical area, wanting to join a conferencing application, 
such as MMOG. We assume that in each zone	�, there is a data 
center providing IaaS, where each data center consists of a 
number of servers (��), hosting VMs. Furthermore, we assume 
that zones are interconnected in a full mesh manner. The same 
assumption applies to VMs in a data center, as shown in Fig. 2.  

Users in each zone will connect to their local data center to 
join a conferencing application. Each user is considered as a 
video source, sending video and requesting video mixing 
service. The challenge lies in allocating the resources for video 
mixing to achieve optimal resource utilization, while 
guaranteeing QoS requirements. 

B. Video Mixing Model 

VMRA decides to add resources to existing VMs or create a 
new VM when a video source is added to a data center. Adding 
resources is done in fine granularity. This implies that VMRA 
will add minimal required resources in an elastic manner. It will 
also balance the load between all the VMs in a data center. After 
provisioning appropriate resources, a video source will join a 
VM, that is, a video mixer and video mixing will start. The video 
mixing process is illustrated in Fig. 3. 
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Our video mixing model follows the Fork/Join parallelism 
technique [17]. All video mixing requests in a data center fork 
off to several other mixing processes, which are concurrently 
executed in each VM, until they finally join into a single mixed 
video. VMs mix their video sources in parallel.  Therefore, the 
required time for this step depends on the maximum number of 
video sources connected to any VM ���� in zone	�.  

Each VM will send the result to other VMs in the same data 
center. This intra-zone video exchange time is in	�	
� . Next, each 
VM mixes the incoming videos from other VMs with the result 
of its own mixed video source. The time for this step depends on 
the total number of VMs in the data center.  

Here, mixed video of a data center is ready and sent to all 
other data centers. This inter-zone video exchange time is 
in	��
� . Then, VMs will start mixing the incoming videos from 
other zones with the one of their own zone. Here, the required 
time depends on the total number of zones and the mixed video 
across all zones is ready to be sent back to the users.  

C. Mathematical Model 

This subsection, presents our VMRA problem formulation, 
which is modeled as an ILP problem.  

1) Problem Statement 

Given a data center with �� servers and �� users (video 
sources), let ��	
��� and ��	
��� represent the time and the 
resource required to mix �	video sources, respectively. Also, let �	
�  and ��
�  denote the time to exchange a video across VMs 
and zones, respectively. �� are the resources dedicated to VM 
operation, hence, they cannot be utilized for video mixing. There 
are thresholds �ε on QoS, pertaining to the maximum acceptable 
video mixing response time, and �ε on server resource capacity, 
respectively. Find the minimum number of VMs, while 
efficiently using resources and respecting QoS. 

We model this as an ILP problem, where we assume a video 
mixer to be analogous to a VM. Tables I and II delineate the 
inputs and variables of our problem, respectively.  

2) Objectives 

We assume the operational cost of a VM, in terms of non-
utilizable resources, supersedes the cost of resources required for 
handling the video mixing request of a participant, as in (1). 
Furthermore, we assume homogeneous costs of video mixing 
resources across servers. Therefore, the operational cost	��, 
associated with a VM, inhibits the introduction of a new VM, in 

the event of a new participant arrival. That is, a new VM is only 
instantiated if an incoming request cannot be handled by 
increasing the resource of an existing VM.  �� ≫ ���	
	����� � ��	
���� (1)

Equation (2) depicts our multiple objectives. Primarily, we 
minimize the allocated resources across all zones, by minimizing 
the number of VMs. On the other hand, the time to mix videos 
in zone �	depends on the maximum number of users connected 
to a VM (��). We balance the load between VMs to decrease the 
overall video mixing time. Note that these are competing 
objectives. Therefore, we prioritize minimizing the number of 
VMs by normalizing �� with the maximum number of users in 
zone �. 

��������	 �	���	, !	 ����
"#
 $�

%#
	$� & (2)

3) Constraints 
VMs and users cannot be split across multiple servers and 

VMs, respectively.  Equation (3) ensures that a VM exists on a 
single server. Similarly, (4) allows a user to connect to a single 
VM. Furthermore, if there are users connected to a VM, that VM 
should exist on one server, as depicted in (5) and (6). 

			��	, ' 1%#
	$� ∀1 ' ) ' �� (3) 

			�* ,� + 1"#
 $� ∀1 ' � ' �� (4) 

			�* ,� ' , ⋅ .��	, %#
	$� /"#

�$� ∀1 ' ) ' �� (5) 

			�* ,� 0 ��	, %#
	$�

"#
�$� ∀1 ' ) ' �� (6) 

Video mixing required resources, that is, the VMs operating 
resources and their connected number of users, is bounded by 
the server resource capacity	�ε, in (7).   

			�� ⋅ .��	, "# / ! 	��	
1∑ �
3 ⋅	 ∑ 4 �3 5 ' � 					 (7)

 
Fig. 2. Communication model b/w VMs in a data center and across zones 
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Note that the product ∑ ��	, "# $� ⋅ ∑ * ,��"#�$�  in (7) is 
non-linear. Therefore, we linearize (7) by replacing it with 
constraints (8)-(13).  

			�* ,� + 6 "#
�$� ∀1 ' ) ' �� (8)

			7	, ' �� ⋅ �	,  ∀1 ' � ' ��	,∀1 ' ) ' �� (9)			7	, ' 6  ∀1 ' � ' ��		,∀1 ' ) ' �� (10)			7	, 0 6 ���81 � �	, 9 ∀1 ' � ' ��	,∀1 ' ) ' �� (11)			7	, 0 0 ∀1 ' � ' ��	,∀1 ' ) ' �� (12)

			�� ⋅ .��	, "#
 $� /! 	��	
1∑ ;<,=3#=>? 5 ' �ε						∀1 ' � ' ��	 (13)

The maximum number of users,	��, in a zone � influences the 
video mixing time. Equation (14) finds	�� , for each zone.  

			�* ,� ' ��"#
�$� ∀1 ' ) ' �� (14)

Video mixing response time for a zone	�, depends on the 
maximum number of users connected to a single VM in that zone 
(	��	
�@#��. Note that VMs should mix the output of video 
mixing from other VMs too, therefore, the video mixing 
response time will also be influenced by the total amount of VMs 
across all servers in	�. This time is given by	��	
�∑ ∑ 
<,=3#=>?B#<>? �, 
with an inter-zone exchange time of	�	
�. Furthermore, VMs 
should mix the incoming videos from all other zones, time for 
which is represented by	��	
�C�, with an intra-zone exchange 
time of	��
�. Equation (15) ensures that this total video mixing 
response time for each zone	�, abides by the QoS threshold	�ε. 			��	
�@#� ! 	�	
� ! 	��	
�∑ ∑ 
<,=3#=>?B#<>? � ! ��
� ! ��	
�C� ' �ε 

																																										∀1 ' � ' E (15) 

VMRA executes in each zone separately. However, because 
video mixing as a service relies on multiple IaaSs, the total 
number of zones will influence VMRA’s decision. Based on 
(15), different response times across zones are attributed to the 
different values of ��	
�@#� and ��	
�∑ ∑ 
<,=3#=>?B#<>? �. Zone � will 

send its mixed video to other zones and wait to receive from 
them. Waiting time in (16) will add to the video mixing response 
time of zones that perform video mixing faster than the other 
zones. Thus, the video mixing response time will be equal to the 
maximum response time across all zones. 

			
FGH
GI�JK	 LM��	
8@N9 !	��	
1∑ ∑ 
<,=3N=>?BN<>? 5O �

M��	
�@#� !	��	
1∑ ∑ 
<,=3#=>?B#<>? 5O P				∀1 ' Q ' E
0, �R	�JK ' 0

    (16) 

IV. VMRA HEURISTIC 

Based on (1), VMRA always processes a new mixing request 
by adding required resources to the existing VMs unless it 
cannot satisfy the QoS requirement or there are not enough free 
resources on the server. In this case VMRA instantiates a new 
VM and balances the load between VMs in the data center. Load 
balancing helps minimizing the maximum number of connected 
users to each VM. We achieve this by employing MinMax our 
objective, that is, the minimization of the maximum number of 
users on VMs and consequently, based on (15), it decreases the 
total response time.  

VMRA checks the available resources when it decides to 
instantiate a new VM. Moreover, it checks the possibility of 
satisfying QoS requirement, by adding a new VM. Our heuristic 
is as described in Algorithm 1. We consider the constants and 
variables shown in Table I and Table II as the input to this 
algorithm. 
Algorithm 1. Video mixing resource allocation  
Input:  �S�_� = M; // Max number of users that can be served in DC U = 0; // number of VMs , = 1;	// number of used servers �W + �ε; // available resources on server , 
Remain_User = 0; // auxiliary variable to scatter users between VMs 
Output: U, X,�S�_� 
1. For each m ∈ M do 
Phase 1: Test if there is a VM with lower users than �� 

2. If (�W 	0  R
mix(1)

) Then 
3.   For j =1 → 	U  do 
4.     If (6 < V

Z 

) Then 
5.        	6 ← 6 ! 1 
6.     Break, serve next m 
7.    end for 
8. end if 
Phase 2: Create first VM in DC 
9. If (U==0) Then 
10.   U	 ← 	1 
11.   6� ← 1 
12.   �� 	← 1 
13. end if 
Phase 3: Test response time by increasing �� without adding VM 
14. Else if (�W 0 R

mix(1)
AND Response time(�� ← �� ! 1,	U)'�ε)Then 

15.   6� ← 6� ! 1  
16.   �� ← �� ! 1 
17. end else if 
Phase 4: Test response time by adding a new VM on the same server 
18. Else if (�W 	0 R

mix(1) 
+ R

O
) Then 

19.   If (Response time(�� ← [ �\��],	U	 ← 	S ! 1)' �ε) Then 

TABLE I. Problem inputs 

Input   Definition E   number of zones ��   number of servers in zone � ��   number of users i.e. video sources in zone � �	
�   time to send a video between VMs in a zone  ��
�    time to send a video between zones, E + 1 ⇒ ��
�= 0 ��	
���	   time to mix � video sources,	��	
���	+	0	�ε   QoS threshold (acceptable mixing response time) ��	
���   required resources for mixing �	video sources in a VM ��   non-utilizable VM operating resources �ε   threshold on the maximum amount of resources on a server ,   large enough constant  

 
TABLE II. Problem variables 

Variable   Definition K 
		�� ×�� binary 
matrix, where 		�	, + `1,  �R a�bc�b � ℎeafa �� )0,  efℎ�bg�a�  

h 
		�� ×�� binary 
matrix, where 		* ,� + `1,  �R 6a�b � �a 7e���7f�i fe �� )0,  efℎ�bg�a�  ��   Maximum number of users that are connected to a VM in zone � X   A vector where 6  is the number of users connected to VM ) 

j 
		�� ×�� matrix, 
where 		c	, + `6 ,  �R a�bc�b � ℎeafa �� )0,  efℎ�bg�a�  
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20.    	U	 ← 	S ! 1 
21.    Remain_User ←	m 
22.    For j = U → 1 do 
23.         6 ← Remain_User / j 
24.         Remain_User ← Remain_User �	6  
25.    end for 

26.    �� ← [�\ ] 27.   end if 
28.   Else 
29.     �S�" ← � � 1 
30.     Break, DC cannot serve m users 
31.   end else 
32. end else if 
Phase 5: Test response time by adding new VM on the other server 

33. Else If ( (N
z

 -, > 0) AND (�W 	0  R
mix(1) 

+ R
O
)) Then 

34.   If (Response time(�� ← [ �\��],	U	 ← 	S ! 1)≤ �ε) Then 
35.    , ← 	, + 1 
36.    U ← 	S + 1 
37.    Remain_User←	m 
38.    For j = U → 1 do 
39.         6 ← Remain_User / j 
40.         Remain_User ← Remain_User −	6  
41.    end for 

42.    �� ← [�\ ] 43.   end if 
44.   Else 
45.     �S�" ← � − 1 
46.    Break, DC cannot serve m users 
47.   end else 
48. end else if  
49. Else 
50.   �S�" ← � − 1 
51.   Break, DC cannot serve m users 
52. end for each 
Return U, X,�S�_� 

In phase 1, VMRA tries to find a VM with lowest number of 
connected users. If VMRA finds such a VM, it will add required 
resources to that VM and assigns the new user to it.  In phase 2, 
the first user wants to join. So, VMRA will create the first VM 
and assign that user to it. VMRA will reach phase 3 if all the 
VMs have the same number of users. Here, VMRA checks the 
available resources and the feasibility of satisfying QoS 
requirements, if it assigns a new user to one of the existing VMs. 
This assignment is crucial as it increases	�� , thus, impacting the 
video mixing time.  

If increasing	�� causes sacrificing QoS, VMRA decides to 
instantiate a new VM on the same server or on other servers 
based on available resources, in phase 4 and 5, respectively. If 
there are available resources, but VMRA cannot find any 
feasible solution to satisfy QoS, it will stop accepting new users 
in both phases 4 and 5. 

This algorithm has a nested loop and its time complexity is 
based on the number of iterations of each loop. Therefore, the 
time complexity of our VMRA algorithm is	m(��	. U). 

V. SIMULATION RESULTS 

A. Comparison Baselines 

We compare VMRA with (i) popular traditional MCU [9], 
for video mixing, (ii) Nan et al. [14], cost minimization model 
in cloud, for a single class service , and (iii) cloud-based MCU 
(CMCU), which avoids upfront resource costs . However, since 
these models do not support multi-zone video mixing, we 
assume that each model is implemented in a zone and exchange 
mixed video amongst each other, until all sources are mixed.  

B. Environment and Settings 

We assume a MMOG, where player’s video is shared in the 
logic of the game and developed a custom simulator in JAVA. 
We simulate multiple data centers and game players as 

conferencing participants. VMRA heuristic runs on each data 
center part in our simulator. Players send their video mixing 
requests to the local data center and receive the result from it. 
Total number of game players across all zones fluctuates, since 
they can join or leave the game whenever they want to. For our 
simulation, we assume a snap-shot of the number of players in 
each zone. Our simulation parameters are depicted in Table III. 

C. Results 

We simulate our heuristic to check supported number of 
users, resource utilization and video mixing response time. 

1) Number of Users 

It is evident from Fig. 4, that VMRA can serve more users in 
a single zone in comparison to other baselines. This is because 
VMRA has the leverage to increase resources whenever it 
reaches the QoS threshold in contrast to the queuing model, 
where the number of computation nodes is fixed. VMRA also 
performs better than MCU and CMCU. Due to their centralized 
nature, both MCU and CMCU models leverage a single server 
entity and consequently are not equipped to handle large number 
of users. 

When we increase the number of zones, we have to account 
for the inter-zone communication time of mixing videos. As a 
result, to satisfy video mixing response time threshold, video 
mixing as a service can serve a lower number of users in each 
zone, while the number of zones increase. Although there is a 
tradeoff between the number of zones and the number of users 
that can be served in each zone, total number of users that can 
be served across all zones will increase, as depicted in Fig. 5. In 
addition, VMRA shows a better growth rate, thus it shows better 
scalability, in terms of the number of users, in comparison to the 
other models.  

2) Resource Utilization and Video Mixing Response Time 

Required resources for video mixing depends on the 
maximum number of served users. Accordingly, we study two 
different scenarios, each with a different number of video mixing 
requests: (i) Meet-By-All - In this scenario, we assume that there 
exists a maximum number of users, which can be served by all 
the resource allocation models in a zone, while respecting QoS. 
(ii) Meet-By-Some - In this scenario, we assume for all models, 
the number of users to be the maximum supported by VMRA, 
while respecting QoS. In this scenario, we relax the QoS 
constraint for the other models, giving them the leverage to 
support a higher number of users.  

a) Resource Utilization: Meet-By-All Scenario  

Fig. 6(a) and 6(b), depict the average and the maximum 
allocated resources over the total available resources in a data 
center, respectively. In MCU, because of upfront resource over 
provisioning, there are always some idle resources, which 
remain unutilized. However, because the allocated resources in 
MCU are always at 100%, we do not show it in the resource 

TABLE III. Simulation parameters 

Parameter Value Parameter Value Parameter Value 

E   1-6 ��	
(�)   7 msec ��	
(�)   20 MB (RAM) 

��   3 �ε   300 msec ��   400 MB (RAM) 
��   1-500 �	
�   10 msec �ε   10240 MB (RAM) 
,   M+1 ��
�    15 msec   
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allocation figures. Other baselines allocate resources as needed. 
VMRA has better results compared to the other baselines, in 
both average and maximum cases in this scenario. This is 
because, the maximum number of users in this scenario is equal 
to the number of users that MCU can support and just one 
computation entity is enough to serve them. However, the 
queuing model, based on our simulation settings, always uses 3 
servers to accommodate users. Whereas, VMRA uses 2 VMs to 
accommodate the same number of users, which leads to the 
allocation of fewer resources, compared to the queuing model 
and more resources, compared to MCU and CMCU. However, 
because the total available resources in VMRA are more than 
those of MCU and CMCU, the allocated resource percent is 
lower in comparison to both. 

b) Video Mixing Response Time: Meet-By-All Scenario  

The average video mixing response time for the Meet-By-
All scenario is shown in Fig. 7. As it can be seen, queuing model 
shows better video mixing response time than VMRA. This is 
because the objective of our model is maximizing resource 
utilization while respecting QoS. Intuitively, for lower response 
time, we should allocate more resources; however, this is in 
contradiction to our objective. So, in VMRA, as long as video 
mixing response time is lower than QoS threshold, it does not 
reduce video mixing response time. On the other hand, MCU 
and CMCU models have more video mixing response time, in 
comparison to VMRA. This is directly attributed to the 
centralized architecture of these models. Interestingly, the video 
mixing response time for MCU and CMCU are the same. It 
shows cloud has effect only on the amount of allocated resources 
in CMCU and not on the video mixing response time.  

c) Resource Utilization: Meet-By-Some Scenario 

Recall, our model can serve the maximum number of users, 
as shown in Fig. 5. Hence, in this scenario, we have as much 
users as VMRA can serve. As depicted in Fig. 8(a) and 8(b), the 
resource allocation of the queuing model performs better 
compared to VMRA. This is because, VMRA will add more 
resources to accommodate as many users as possible, within the 
QoS threshold, while queuing model serves requests by 
leveraging fixed number of servers.  

d) Video Mixing Response Time: Meet-By-Some Scenario  

Previous results show queuing model allocates lower amount 
of resources in Meet-By-Some scenario compared to VMRA. 
However, this model is not suitable for video mixing as a service 
after comparing the corresponding video mixing response time. 
This is because queuing model sacrifices QoS to serve the same 
number of users, compared to VMRA. As shown in Fig. 9, if we 
choose resource allocation based on queuing model for video 
mixing as a service in cloud we have a high violation in terms of 
QoS. Based on our simulation results, if we serve as much users 
as VMRA can support using the queuing resource allocation 
model, QoS will be sacrificed between 66% and 72%. The same 
holds true when comparing with CMCU. In fact, VMRA 
allocates more resources, compared to queuing model and 
CMCU, to satisfy QoS for more users.  

It is important to note that Fig. 6 and Fig. 8 reveal that to 
accommodate larger number of users for video mixing, it is 
desirable to have more data centers with fewer resources. 
Furthermore, as evident from the results, our novel VMRA 
addresses the specific needs of video mixing as a service, which 
cannot be handled by generic cloud-based resource allocation 
models. 

VI. CONCLUSION 

We propose a novel and scalable, with respect to number of 
users, Video Mixing Resource Allocation (VMRA) model for 
multimedia conferencing applications. We optimally utilize 
leased resources and dynamically allocate and release resources 
for changing number of users, while meeting QoS end-to-end 
delay for video mixing response time. We model VMRA as an 
optimization problem and design a heuristic for large-scale 
scenarios. Simulation results show that our VMRA model 
outperforms other resource allocation techniques for video 
mixing because it considered both resource efficiency and video 
mixing QoS requirements. Future work includes, extending the 
VMRA model to account for VM instantiating time and 
modeling the VMRA problem from the perspective of the 
multimedia conferencing provider to have video mixing as a 
service with minimum cost. 
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Fig. 7. Average video mixing response 
time in Meet-By-All scenario 

Fig. 8. (a) Average, (b) maximum allocated resources in a data center in 
Meet-By-Some scenario 
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Fig. 9. Average video mixing response 
time in Meet-By-Some scenario 
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Fig. 4. Maximum users that can be 
served in a zone 

Fig. 5. Total number of users that can 
be served across all zones 
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Fig. 6. (a) Average, (b) maximum allocated resources in a data center in 
Meet-By-All scenario 
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