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Abstract— When constructing buildings, frequent inspection
and detailed visual documentation are important but may not
be feasible in remote or dangerous environments. We describe a
networked robotic camera system that can automatically monitor
construction details and allow remote human experts to zoom in
on features as construction proceeds to archive the construction
process over time, thereby reducing travel cost and human
risk. We describe system architecture, interface design, data
structures, and algorithms for such systems. We also report initial
experimental results from cameras at two outdoor construction
sites.

Index Terms— automation, construction, networked robots,
pan-tilt-zoom camera, panoramic display.

I. I NTRODUCTION

Construction of large buildings and structures such as
bridges involves a complex and highly precise sequence of op-
erations. Small errors in alignment, reinforcement, or materials
can result in extremely costly repairs or catastrophic failures.
Regular inspection and documentation are well-established
aspects of construction practice but may not be feasible when
construction is performed in remote and dangerous envi-
ronments. This paper describes a networked robotic camera
system that can automatically monitor construction details,
allowing human experts to identify key features to track as
construction proceeds and a panoramic interface that provides
a visual archive of the construction process over time to reduce
travel costs and human risk.

Recent developments in wireless telecommunications facil-
itate easily deployable low-bandwidth connectivity to remote
construction sites. A new class of low-cost networked pan-tilt-
zoom robotic video cameras allows fast deployment of systems
that can provide high resolution images from a wide field of
view in the remote environment.

One example is the Panasonic WV-CW864A camera. With
22x zoom motorized optical lens, 360◦ pan range, and 90◦ tilt
range, this robotic camera can provide resolution up to 500
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Fig. 1. Top Figure (a) illustrates system architecture; camera motion is
determined by a combination of preset points, human inspector commands,
and motion detector inputs. The resulting video sequences are aligned and
inserted into the evolving panorama. Lower Figure (b) illustrates panoramic
interface, the inset frame is a sample detail captured by the robotic camera
and insertion algorithms.

million pixels per steradian, two orders of magnitude higher
than the best available fixed position omnidirectional camera,
at a fraction of the cost.

As illustrated in Figure 1, our system automatically steers
a networked pan-tilt-zoom camera to inspect and document
construction activities. The input is a set of preset image
features, human inspector commands, and on-site motion
detectors. The resulting “foveal” video images are aligned



and inserted into a coherent panoramic display. Figure 1(b)
illustrates the evolving panorama interface.

The evolving panorama can structure and organize the
documented video frames, but minor errors in camera position
can produce large registration errors. For example, accurate
registration of a640 × 480 image at zoom = 10x into a
panorama requires angular position accuracy within0.00625◦,
100 times more than the accuracy that is currently available
in commercial robotic cameras. Furthermore, if stored naively,
the evolving panorama can consume a large amount of mem-
ory. For example, the evolving panorama in Figure 1(b) could
have a maximum resolution of28800 × 9600 at zoom=10x.
We describe system architecture, interface design, and the
Frame Graph (FG), a new data structure and algorithms that
efficiently manage the evolving panorama.

We report experiment results from two testing sites.

II. RELATED WORK

1) Multiple-Camera System and Wide Angle System:
When low/variable image resolution is acceptable, an evolving
panoramic display can be maintained with a single wide-angle
camera using a fish eye lens or parabolic mirror [2], [10],
[20], [6]. When sufficient bandwidth is available, an evolving
high-resolution panorama can be maintained with multiple
fixed cameras. Swaminathan and Nayar [16] use four wide
angle cameras to monitor a360◦ field of view. Similarly, Tan,
Hua, and Ahuja [17] combine multiple cameras with a mirror
pyramid to create a single-perspective and high resolution
panoramic video. Liu, Kimber, and Foote [9] combine four
fixed cameras with a robotic camera that can selectively zoom
in on details. Our approach could be combined with one or
more fixed cameras, but since bandwidth is limited, we focus
on using only one robotic camera to monitor the environment.

2) Image Mosaicing Techniques:Generating a single wide-
field panoramic image from a set of overlapping images is
sometimes referred to as “image mosaicing” [3], [12]. Given
a set of overlapping images, the objective is to find the
best set of transform parameters for each image. Our earlier
paper [15] provides a comprehensive overview of three types
of approaches including direct method, frequency domain
registration, and “feature based” method.

3) Constructing a 3D Scene from Video Frames:Con-
structing a 3D scene from either calibrated or un-calibrated
video frames is a very popular problem in both robotics
and computer vision [11], [18]. The similarity between this
problem and our problem is that both use overlapping frames
to establish transformation matrices. The difference is that 3D
modeling requires frames captured from different perspectives
whereas panorama construction prefers frames from a single
perspective. For two given frames, a 3D model can only be
constructed for intersection region of the two frames whereas
a panorama generated from our problem covers union region
of the two frames.

4) Dynamic Panorama:A dynamic panorama refers to a
updateable panorama built from a pre-recorded sequence of
consecutive video images [7], [19], [21]. Current methods
do not take the image registration error into consideration.

Therefore, it either has limited number of frames or relies on
extensive frame matching computation which can not process
live video data. Hence, the dynamic panorama has to be pre-
computed off-line before streaming and has been referred as
film-based panorama in [6].

The idea of dynamic panorama also inspires work on
developing panorama video streaming protocol. Kim et al [8]
develop a panorama video streaming protocol for a pan-tilt
camera system. They capture live video using a fixed lens
camera and assume camera pan and tilt readings are accurate
enough to register frames. They expand MPEG algorithm by
slicing camera horizonal field of view into vertical strips and
propose inter-strip and intra-strip compression ideas. Their
work has not addressed image registration error accumulation
problem and do not support spherical panorama.

5) Our Previous Related Work and Contribution:In previ-
ously reported work, we developed camera control interfaces
for multiple simultaneous tele-operators [13], [14]. In [15],
we reported an algorithm to address the registration frame
selection problem based on the balance of registration error
and computation speed. In this paper, we present a frame
sequence management data structure with its supporting algo-
rithms, system architecture, and experiment results from two
testing sites.

III. SYSTEM ARCHITECTURE AND INTERFACEDESIGN

As illustrated in Figure 1(a), our system has two parts:
camera control part and display-documentation part. The cam-
era control part accepts three types of commands: preset
features, inputs from motion detector, and occasional inspector
commands.

The programmable preset features ensure that the camera
periodically patrols and searches for interesting regions. It
includes two type of camera control commands: fixed locations
and particular features. The former are good for a complete
coverage of the known and fixed locations of the construction
site whereas the later are good for the known and dynamic
points of interest. For example, the later can help to track the
motion of an excavator.

Sporadic motions are captured by motion detectors, which
also generate camera control commands. The motion detectors
could be real pyroelectric sensors that are installed in the scene
or just a motion detector built on image analysis [5].

Inspectors may also want to control the camera directly
from time to time. With the highest priority, the inspector
commands can always overrule autonomous commands from
preset features and motion detectors. The priority sequence for
the three types of commands is also configurable. Weighted
by their priorities, commands are feeded into a frame selection
module. Using the method in [13], [14], the frame selection
module generates a single camera control command based on
priority, geometric relationship between different commands,
and previous camera visits.

At the same time, the system updates panorama and docu-
ments frame sequences. Both video data and camera pan-tilt-
zoom values are transmitted to our system. Frame sequences
are generated by projecting video frames onto a spherical
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surface for alignment. The up-to-date part of the evolving
panorama is stored in memory for display and the historical
part of the evolving panorama is stored in hard disk. Frame
insertion, archiving, and adjustment algorithms are developed
to manage the frame sequences and will be discussed below.

Figure 1(b) illustrates the interface design. It is usually
displayed in high resolution and wide angle monitors. In
our settings, we use a pair of 19-inch LCD monitors with a
combined resolution of2560× 1024 to visualize the evolving
background panorama. With a resolution of640 × 480, the
live video window is superimposed on top of the evolving
panorama. To provide a good spatial reference, the position of
the live video window changes as the camera moves around.

IV. H ARDWARE AND SOFTWARE

(a)  Canon VCC3 (b)  Canon VCC4 (c)  Panasonic HCM 280 

Fig. 2. The Pan-Tilt-Zzoom cameras tested with our system.

We have tested our system using three types of Pan-Tilt-
Zoom cameras as illustrated in Figure 2. Table I lists the
specifications of the three cameras. Among those parameters,
pan range, tilt range, and lens Horizontal Field Of View
(HFOV) determine the overall coverage of the panorama.
Image resolution, size of CCD sensor, and focus length are
used to establish coordinate projection model between image
coordinate and world coordinate. Maximum speed of the
camera determines how fast a camera can travel between
different pan-tilt-zoom settings.

Using DirectX 9.0 SDK, our software has been developed
for windows-based platform using Microsoft Visual Studio
.Net 2003. It runs on Win32 compatible platforms. The testing
machining used is a PC with 1Ghz AMD Athlon CPU, 512Mb
RAM, and 100Mbs network connection.

V. A LGORITHMS

To build the system, we need to solve both the camera
control problem and the panorama-based documentation prob-
lem. Since the camera control problem has been addressed
in [14] and the incremental frame registration problem has
been addressed in [15], we concentrate on how the panorama
is managed by Frame Graph, which is a new data structure,
and its algorithms including frame insertion, archiving, and
adjustment. We begin with inputs and assumptions.

A. Inputs and Assumptions

Since we use the incremental frame registration method
introduced in [15], we follow the same assumptions. For
completeness of this paper, we brief them here.

1) Definition of Frame Sequence:When the camera is
moving, images are blurred and must be discarded. Once the
camera has stopped, we define aframe sequenceas a sequence
of camera frames from some fixed pan-tilt-zoom setting,

F = {C, p, t, z, X}, (1)

whereC stands for the frame content data set including the
beginning time and ending time of the frame sequence,(p, t, z)
are the approximate camera pan, tilt, and zoom values obtained
from the camera, andX is a set of unknown image alignment
parameters.

Since the camera does not move for the duration of a frame
sequence, we compute the alignment parameters using the first
image of each frame sequence and use the same alignment
parameters to transform the last image of the sequence to
update the panorama. Below, we refer to the “frame” as the
first image from a frame sequence.

2) Definition of an Evolving Panorama:The evolving
panorama includes all previous frame sequences inserted in
temporal order. Each panorama has a reference frame. The
positional parametersX of other frame sequences are com-
puted with respected to the reference frame. The reference
frame is also the first frame of the panorama.

3) Known Camera Intrinsic Parameters:Frame resolution,
camera focus length, and CCD sensor size are known.

4) Approximate Camera Pan, Tilt, Zoom Position:As noted
above, camera pan-tilt-zoom(p, t, z) parameters are inherently
approximate because of the accuracy limitation in camera
potentiometers.

5) Pair-wise Alignment: Define mjl as the number of
overlapping pixels between framej and framel, the pair-wise
alignment algorithm outputs the relative offsetXjl between
the two frames. We use anO(mjl) time feature-based method,
which runs linear to the number of overlapping pixels.

6) Minimum Variance Matching (MVM) Algorithm:When
frame j enters the system, it may have many overlapping
frames, which define overlapping frame setMj . Computing
its alignment parameters with respect to entire setMj is
computationally expensive and does not necessarily yield a
good result. In [15], we present an algorithm to choose
M̂j ⊆ Mj , which is an optimal subset of the existing frames
to register framei and minimize its registration error. The
MVM algorithm runs atO(k log k) time for k = |Mj |. The
MVM algorithm limits the total number of overlapping pixels
betweenM̂j and framej to be no more thanp pixels.

Results from [15] prove that the optimal alignment parame-
ter Xj of framej is a weighted sum of of pair-wise alignment
results,

Xj =

∑
l∈M̂j

(
mjl(Xl + Xjl)

)
∑

l∈M̂j
mjl

, (2)

whereXl is the known alignment parameter for framel.

B. Frame Graph

Our evolving panorama is a collection of parameterized
frame sequences stored in Frame Graph (FG), which is a
variation of planar 2D graph. In an FG, nodej contains,
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Camera pan tilt zoom focus length F-number max speed HFOV CCD
VCC3 −90◦ ∼ +90◦ −30◦ ∼ +25◦ 10x 4.2 ∼ 42mm f/1.8 to 2.9 70◦/sec 4◦ ∼ 46◦ 1/4in
VCC4 −100◦ ∼ +100◦ −30◦ ∼ +90◦ 16x 4 ∼ 64mm f/1.4 to 2.8 70◦/sec 3◦ ∼ 47.5◦ 1/4in

HCM 280 −175◦ ∼ +175◦ 0◦ ∼ −120◦ 21x 3.8 ∼ 79.8mm f/1.6 to 3.6 200◦/sec 2.6◦ ∼ 51◦ 1/4in
TABLE I

A comparison of technical specifications of the 3 Pan-Tilt-Zoom cameras tested in our system.

• node ID j,
• frame sequenceFj ,
• rectangleRj that describes the image coverage area, and
• total number of pixels of imagemj .

Edgeejl links nodej and nodel, which contains,

• edge ID in format ofjl,
• indicator variableIjl to show if the edge has been used

for alignment, where

Ijl =





0 no alignment

1 frame j is aligned to frame l

−1 frame l is aligned to frame j

• relative offsetXjl between nodej and nodel if Ijl 6= 0,
• number of overlapping pixelsmjl, and
• rectangle that describes the overlapped areaRjl.

(a) (b) (c) 

(d) (e) (f) 

b a c 

d e f 
(g)   

 normal frames 
Reference frame  

Alignment edge 
No alignment Edge  

Fig. 3. An example of Frame Graph with six frames. Figure (a e) are frames
and Figure (b) is the corresponding FG.

Figure 3 illustrates a sample FG with six frame sequences.
For frame sequencej, its Mj is just its edge set and̂Mj is
just the set of edges that haveIjl = 1. Alignment edges and
nodes formulate a Directional Acyclic Graph (DAG) with its
only sink located at the reference frame. As a data structure,
FG also has a set of maintenance algorithms including frame
insertion, archiving, and adjustment.

C. Frame Insertion Algorithm

Each time after the camera changes its pan-tilt-zoom set-
tings, a new frame sequence will be generated and needs to be
inserted into the FG. As illustrated in Figure 1, frame insertion
algorithm contains three parts: computing intersection frames,
choosing the optimal alignment frames, and performing pair-
wise alignment. As stated in Section V-A.6, our previous work

has addressed the second problem but not the frame insertion
problem as whole.

On the other hand, according to thep− pixel limit imposed
by the MVM algorithm in Section V-A.6 and the complexity
bound of the pair-wise algorithm in SectionV-A.5, the overall
pair-wise alignment time isO(p). The remaining part is to
find the existing frames that intersect the new frame, which is
to find Mj for new framej.

Assume there aren nodes in the FG at the moment. Ifn
is small, anO(n) linear brute-force search can identify the
set. However,n grows as the number of frame sequences
accumulates. ComputingMj efficiently requires an indexing
data structure. Since we want to find out all overlapping
frames, each of which is represented by a rectangle, this
formulates a range search problem with the query window
defined by the new frame. However, a regular 2D range
searching problem [1] only reports points that intersect a
query rectangle whereas the queried objects are also rectan-
gles in our problem. A simple solution is to store center
points of all existing frames and enlarge the query rectan-
gle, which is similar to compute Minkowski Sums [4] for
each queried rectangle. Therefore, we can identify setMj

in O(log2 n + k) for k = |Mj |. With Mj , we can establish
the edges between the new node and the existing nodes. The
complete frame insertion algorithm is described as follows,

Frame Insertion Algorithm

ComputeMj using range search, O(log2 n+k)
Add edges to FG, O(k)
Run MVM Algorithm to getM̂j O(k log k)
Run pair-wise alignment algorithm for each edge in̂Mj ,

O(p)
Update alignment edges, O(k)
Insert the center point of the new frame to the range tree.

O(log2 n)

Theorem 1: If a range tree is used as indexing data struc-
ture, it takesO(log2 n+k log k+p) time to insert a new frame
to a Frame Graph.

D. Frame Archiving Algorithm

A new frame may cover an old frame. If a frame has been
mostly covered by its later neighboring frames, we should
archive the frame to hard disk to reduce the number of nodes
in the FG. Definept ≥ 1 be the minimum number of pixels a
frame has to contribute to the panorama, frame archiving algo-
rithm is performed right after new framej has been inserted,
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Frame Archiving Algorithm

For each nodel ∈ Mj O(k)
Compute region̄Rl = {∪iRli, i ∈ Ml, ti > tl}, O(k)
If pixel number(Rl − R̄l) < pt,

archive nodel and its edges O(k)
deletel from the range tree O(log2 n)

End If
End For

Theorem 2: It takesO(k2 + k log2 n) time to find and
archive the old frames that are covered by a new frame.

E. Frame Adjustment Algorithm

On the other hand, a new frame may provide better
alignment choice to its overlapping frames which leads to
frame adjustment algorithm. After framej enters the sys-
tem, there is a subset of overlapping imagesMj − M̂j that
are not used to align framej. Based on [15], we know
that the frames with big alignment errors are located in
the subset. The frame adjustment algorithm is targeted at
the worst aligned framel in set Mj − M̂j . Define Ml

and M̂l be the set of overlapping frames and the set of
alignment frames for framel respectively. Letmjl be the
number of overlapping pixels between framel and framej.

Frame Adjustment Algorithm

Find the nodel ∈ Mj − M̂j , O(k)
UpdateM̂l using the MVM Algorithm in Section V-A.6,

O(1)
If j ∈ M̂l,

Run pair-wise alignment algorithm between framel and
framej, O(mjl)

Update alignment edges for framel, O(k)
Recursively adjust frames that aligned to framel O(n)

End If

As illustrated in the algorithm, for the adjusted framel,
we only need to perform one pair-wise alignment between
frame l and framej, which yieldsXjl according to Section
V-A.5. Equation 2 tells us thatXl can be refined incrementally
because of the weighted sum format. Changing ofXl leads
to the adjustment of all other frames that either directly or
indirectly aligned to framel. Sincen > k, the total complexity
of the frame adjustment algorithm is,

Theorem 3: It takesO(n+mjl) time to adjust the alignment
parameters of framel and other effected frames after framej
enters the system.

VI. EXPERIMENTS AND RESULTS

Our system is incrementally built on the lessons learned
from experiments. The initial developments started in April
of 2002. After one year’s development and test, we deployed
our first construction camera system in June 2003 to mon-
itor Stanley Hall construction in UC Berkeley. At 285,000
square feet and 11 floors, the new Stanley building is the
largest campus construction project in 20 years. The $162
million project is a large-scale research and teaching building
scheduled to open in 2006. The camera used is a Canon

VCC3 model. Figure 4(a) describes the site. At that time, we
focused on building the camera control part and over 93060
frames have been recorded in the subsequent 2 years. Our data
shown that the most frequent users were construction project
managers. From their feedback, we noticed that there is a great
interest for high-resolution panoramic video inspection and
documentation system.

Our development of evolving panorama has started since the
summer of 2003. We have deployed a Canon VCC4 camera
in UC Berkeley Alpha Lab. As a test of concept, we built
small panorama that were consisted of 8 frames. We soon
have identified the problem that camera pan-tilt-zoom values
can not provide adequate accuracy for frame registration and
traditional static panorama generation method is either too
slow to fit speed requirement or limited to simple small scale
cylindrical panoramas. At the same time, we superimpose a
live video on top of the panorama to provide a “context +
focus” type of interface.

In September of 2004, we installed a Panasonic HCM 280
camera on top of MLK Student Union Building to view
Berkeley Sproul Plaza, which is a very populated location
in UC Berkeley Campus. This installation provides us the
opportunity to test the combination of live video window
with a panorama background in public. We received positive
feedbacks from the one month and half test.

Shortly after the successful test in Sproul Plaza, we have
moved our Canon VCC3 camera from the Stanley Hall con-
struction site to a new CITRIS II building construction site
in UC Berkeley. This $120 million project will add additional
145580 square feet research and teaching space to Berkeley
campus at the of year 2007. The new installation is requested
by construction contractors. Figure 4(b) illustrates the camera
view at a resolution of2600 ∗ 900 pixels. In the meaning
time, our development in algorithms significantly reduces the
panorama construction and update time. It took 3 minutes to
construct the 8-frame panorama in October of 2003 but only
9.7 seconds to construct the 21-frame panorama in Figure 4(b)
based on our latest results. After the panorama is constructed,
it only takes 331 milliseconds to update it, which is as fast as
the camera can be tele-operated. We are currently upgrading
the system using a Canon VCC4 camera to achieve higher
resolution. More experiments and results will be reported in
the future revisions of this paper.

VII. C ONCLUSIONS ANDFUTURE WORK

We present an automated video inspection and documenta-
tion system for construction sites using a networked robotic
camera. Controlled by preset features, inputs from motion
detectors, and occasional inspected commands, our system
automatically scans and records regions of interests in a
construction site. We construct an evolving panoramic display
from the captured frame sequences. Whenever the camera
changes its pan-tilt-zoom settings, we update the panorama by
inserting a new frame sequence to our Frame Graph, which
consists of a data structure and a set of algorithms to manage
frame sequences. We report system details and results from
our 3-year experiments in 2 testing sites.
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(a) 

(b) 
Fig. 4. Panoramas from two testing sites.
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and S. McNally for help on camera installations and experiments.
Thanks are given to X. Ling, and V. Jan for implementing part of the
project. We thank B. Lin, A. Dahl, J. Schiff, I. Chen, K. Paulsen,
J. Young, M. Gosalia, T. Shlain, G. Gershoni, J. Lecavalier for
their contributions in Demonstrate system development and camera
installation. Our thanks to A. Raima, L. Wilbur R. Volz, R. Gutierrez-
Osuna, T. Ioerger, R. J. Luntz, P. Wright, D. Plautz, C. Cox, D. Kim-
ber, Q. Liu, J. Foote, L. Wilcox, Y. Rui, K. “Gopal” Gopalakrishnan,
R. Alterovitz, and I. Y. Song for insightful discussions and feedback.

REFERENCES

[1] P. Agarwal and J. Erickson. Geometric range searching and its relatives.
In B. Chazelle, J. E. Goodman, and R. Pollack, editors,Advances in
Discrete and Computational Geometry, volume 23 of Contemporary
Mathematics, pages 1–56, Providence, RI, 1999. American Mathemati-
cal Society Press.

[2] S. Baker and S. K. Nayar. A theory of single-viewpoint catadioptric
image formation.International Journal of Computer Vision, 35(2):175
– 196, November 1999.

[3] R. Benosman and S. B. Kang.Panoramic Vision. Springer, New York,
2001.

[4] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry, Algorithms and Applications. Springer, 1991.

[5] D. J. Fleet, M. J. Black, Y. Yacoob, and A. D. Jepson. Design and use
of linear models for image motion analysis.International Journal of
Computer Vision, 36(3):171–193, Feb.-Mar. 2000.

[6] J. Foote and D. Kimber. Enhancing distance learning with panoramic
video. In Proceedings of the 34th Hawaii International Conference on
System Sciences, 2001.

[7] M. Irani, P. Anandan, J. Bergen, R. Kumar, and S. Hsu. Mosaic
representations of video sequences and their applications.Signal
Processing: Image Communication, 8(4):327–351, May 1996.

[8] B. Y. Kim, K. H. Jang, and S. K. Jung. Adaptive strip compression
for panorama video streaming. InComputer Graphics International
(CGI’04), Crete, Greece, June 2004.

[9] D. Kimber, Q. Liu, J. Foote, and L. Wilcox. Capturing and presenting
shared multi-resolution video. InSPIE ITCOM 2002. Proceeding of
SPIE, Boston, volume 4862, pages 261–271, Jul. 2002.

[10] S. K. Nayar. Catadioptric omnidirectional camera. InIEEE Conference
on Computer Vision and Pattern Recognition, pages 482–488, June 1997.

[11] M. Pollefeys, R. Koch, M. Vergauwen, and L. Van Gool. Metric 3D
surface reconstruction from uncalibrated image sequences. InProc.
SMILE Workshop (post-ECCV’98), pages 138–153. Springer-Verlag,
June 1998.

[12] Y. Y. Schechner and S. K. Nayar. Generalized mosaicing. InProceedings
of the 8th IEEE International Conference on Computer Vision, Vancou-
ver, British Columbia, Canada, volume 1, pages 17–24, July 2001.

[13] D. Song and K. Goldberg. Sharecam part I: Interface, system architec-
ture, and implementation of a collaboratively controlled robotic webcam.
In IEEE/RSJ International Conference on Intelligent Robots (IROS),
Nov. 2003.

[14] D. Song, A. Pashkevich, and K. Goldberg. Sharecam part II: Approxi-
mate and distributed algorithms for a collaboratively controlled robotic
webcam. InIEEE/RSJ International Conference on Intelligent Robots
(IROS), Nov. 2003.

[15] D. Song, N. Qin, and K. Goldberg. Algorithms for maintaining a
high-resolution panoramic display with a tele-operated robotic camera.
In (Submitted to) 1st International Conference on Robotics: Science
and Systems, Massachusetts Institute of Technology, Cambridge, Massa-
chusetts, June 2005.

[16] R. Swaminathan and S. K. Nayar. Nonmetric calibration of wide-angle
lenses and polycameras.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(10):1172–1178, October 2000.

[17] K.-H. Tan, H. Hua, and Ahuja N. Multiview panoramic cameras using
mirror pyramids. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26(7):1941– 946, July 2004.

[18] C. Tomasi and T. Kanade. Shape and motion from image streams under
orthography: a factorization method.International Journal of Computer
Vision, 9(2):137 54, 1992/11/. Copyright 2005, IEE.

[19] E. Trucco, A. Doull, F. Odone, A. Fusiello, and D. M. Lane. Dynamic
video mosaics and augmented reality for subsea inspection and moni-
toring. In Oceanology International, United Kingdom, March 2000.

[20] Y. Xiong and K. Turkowski. Creating image-based VR using a self-
calibrating fisheye lens. InIEEE Conference on Computer Vision and
Pattern Recognition, pages 237–243, June 1997.

[21] Z. Zhu, G. Xu, E. M. Riseman, and A. R. Hanson. Fast generation
of dynamic and multi-resolution 360-degree panorama from video
sequences. InIEEE International Conference on Multimedia Computing
and Systems, Florence, Italy, volume 1, pages 9400–9406, June 1999.

6


