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Abstract— Current biometric capture methodologies were born
in a laboratory environment. In this scenario you have coop-
erative subjects, large time capture windows, and staff to edit
and mark up data as necessary. However, as biometrics moves
from the laboratory these factors impinge upon the scalability
of the system. In this work we developed a prototype biometric
tunnel for the capture of non-contact biometrics. The system is
autonomous to maximise subject throughput and self-contained
to allow flexible deployment and user friendlyness. Currently we
deploy 8 cameras to capture the 3D motion (specifically gait)
and 1 camera to capture the face of a subject. The gait and face
information thus extraced can be used for subsequent biometric
analysis. Interaction between the various system components is
performed via the use of an agent framework. Performance anal-
ysis of the current system shows that we can currently achieve
a moderate throughput of 15 subjects per hour. Additionally,
analysis performed upon the biometric features extracted from
a small population show them to be potent for recognition.

I. INTRODUCTION

Deployment of large scale biometric systems is already
upon us. They are increasingly being adopted by border entry
points and workplaces. Whilst they have been shown to be
efficacious on small samples, they have yet to be demonstrated
on large populations. One of the key challenges that needs to
be solved in this scalability issue is to significantly increase the
throughput of individuals. This can be achieved in two main
fashions : faster biometric capture or less human intervention.
One obvious way of increasing the capture rate of biometric
information is to use non-contact methods such as face or
gait. Face is a well known biometric that has been shown
to be a rich discriminator of individuals [1], [2]. Gait is a
new biometric that has shown promising results whilst being
detectable from a distance [3], [4]. By making the system
autonomous the requirement for a human operator can also be
removed. Autonomous or smart rooms have been previously
studied [5]. They are typically concerned with tracking of
individuals to customise their interaction with the environment.

This paper aims to extend the smart room concept to bio-
metric capture. However, instead of performing tracking, the
environment will return biometric features. The environment,
hereafter known as the biometric tunnel, will perform on-
line capture of face and gait. Face will be found directly
from images and gait information will be extracted via a 3D
reconstruction. When the tunnel is fully automated, we shall
develop identification results. Here we describe the underlying
design and operation, especially with a view to a smart room
or access control scenario. In biometric applications it is
imperative that no information is lost as this may result in
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Fig. 1. An overview of the biometric tunnel.

erroneous identification. For this reason the biometric tunnel
is designed to capture full video rate (30 fps) information from
both modalities. This requirement will place a large burden on
the system and underlying architecture. The paper is organised
as follows. Section II provides an overview of the biometric
tunnel. It focuses on the hardware and software as well as the
major algorithms tying them together. Results and performance
measures of the tunnel are presented in section III. Finally,
section V provides conclusions from this work.

II. THE BIOMETRIC TUNNEL

The main features of our biometric tunnel are 1) self-
containment, 2) autonomous capture and feature extraction,
and 3) scalability. These three features will allow us to capture
large data sets as required for real world biometric systems.
A system overview is shown in figure 1. Before biometric
capture is performed, the system must first be calibrated.
This is followed by the various processes that make up
the biometric capture system. Our architecture also makes a
further distinctions on the basis of processing requirements.
Local processes are carried out on a single computer and
require no extra information. In contrast, global processes
require distributed processing and gathering of information
from multiple sources. Due to the distributed nature of pro-
cessing within the system an agent framework was developed
to mediate the interactions [6]. In this framework, agents are
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Fig. 2. The current tunnel (a) plan view (b) prototype

both clients of and service providers for other agents. Inter-
agent communications are mediated by a common middleware.
Additionally, locking mechanisms are provided to prevent
multiple access to hardware devices such as cameras. The
figure explicitly labels the various agents developed for the
tunnel. Figure 2 shows the current tunnel prototype. It consists
of a distributed array of 8 cameras, which are connected in
pairs to local computers for efficient processing. Additional
computers are used to control the entry and exit detection
system and to coordinate the tunnel’s activities. The remainder
of this section explains the various components of the tunnel.

A. Camera Calibration

As the tunnel will be performing 3D reconstruction upon
the image data, camera calibration is essential. Calibration
is the process of finding the camera model (K), pose (R),
and position (t) of a camera. This information is used to
project points in the world space, X = (X, Y, Z, 1)T , to image
coordinates, x = (x, y, 1)T , as follows:

x = PX = K[R|t]X (1)

Additionally, real camera lenses have imperfections which
distort the image coordinates. The largest of these are due to
radial distortion effects. Radial distortion is due to curvature
of the lens as you move from the focal centre. After radial
distortion the image coordinates become :

xd = xc + (1 + κ1r + κ2r
2 + · · ·)x (2)

Here xc is the lenses optical centre, r is the distance from
the optical centre and κi are the radial distortion parameters.
The camera is fully calibrated when K, R, K, and κi are

known. Typically these parameters are found via the use of a
target with known geometric properties. The biometric tunnel,
illustrated in figure 2(b), is used as the target for our calibration
process. There are 4 steps to our calibration procedure :
find radial distortion, find intrinsic parameters, find extrinsic
parameters, and optimise over all cameras. These will now be
briefly discussed.

Figure 3(a) shows an image of the tunnel from one of the
cameras. The edge information (figure 3(b)) computed via a
Canny edge detector is then used to find the values of the
radial distortion parameters. Specifically, it can be computed
by finding the correction required to straighten long curves
in the image. This is an ideal application for the Hough
Transform [7] which is an efficient line finder. For a given
edge image the image is radially corrected for different radial
distortion parameters. Within each corrected image a score is
assigned on the basis of the number of straight lines. These
are accumulated for different sets of κi and the maximum is
chosen. In our application we use two terms (κ1 and κ2) are
sufficient to correct the image.

Starting with a radially corrected image the vanishing lines
are used to estimate the intrinsic parameters of the camera.
This method is similar to that of Cipolla [8] however we use
an automated procedure to compute the vanishing lines. The
Hough transform is employed to find the line segments in
the edge image. By extending the segments to infinity the
intersections of the lines can be found. These intersections are
clustered into the 3 vanishing points using a weighted mean to
ameliorate the effect of outliers. The orthocentre of the triangle
created by linking the 3 vanishing points is then found. This
is the centre of focus of the camera. From the orthocentre
the focal scale factors can also be found. The orthocentre
and focal scale factors together are the intrinsic parameters
of the camera. These are illustrated in figure 3(d). Knowing
that the top vanishing point corresponds to the z-axis and that
the y-axis is aligned with the track the pose of the camera
can be found. This leaves an ambiguity in the sign of x and y
for the pose due to the fact that the camera could be inward
or ourward facing. To solve this some knowledge about the
environment is employed. It known that camera positions are
are on the walls and looking towards the tunnels centre. By
forming P from equation 1 using the possible values of t (the
corners or centre of the walls) the sign ambiguity in R can be
found along with t. Thus, the extrinsic parameters have been
found from the geometric properties of the environment.

The final step of the calibration process is to globally
optimise the results. As the pattern in the environment is
spatially unique the locations of the corner points of the pattern
can be defined by assigning world point coordinates to them.
These can also be located in the camera images. A simplex op-
timisation is then used to minimise the difference between the
projected world points and the image points by manipulating
K, R, t, and κi. When multiple cameras are being examined a
final simplex optimisation is performed to minimise the errors
of all the cameras. As the calibration parameters are optimised
for known real world dimensions the calibration is termed
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Fig. 3. Steps in the calibration procedure (a) original image (b) edge detected image (c) radially corrected image (d) vanishing lines (e) world coordinates
overlaid on image (f) axes and volume of interest overlaid on image

metric. This means that measurements taken in the calibrated
cameras will have a one to one relationship with measurements
in the real world.

To implement the algorithm the gait camera agents were
used to grab images and perform all the local calibration
processes. The resulting parameters and the image data is then
passed to another computer where the global optimisation is
performed. Due to the distributed nature of this process it is
very fast.

B. Person Detection

In order to detect an individual entering the tunnel, a simple
detection system based upon break-beam detectors has been
developed. One sensor is mounted at the entry and another
at the exit of the tunnel as illustrated by dotted lines in
figure 2(a). The detector units are interfaced to the parallel
port as it conveniently provides inputs and outputs on the
same connector. Pin 2 was used to reset the detector and Pin
11 was set low when a person enters the tunnel. A simple
break beam detection agent was written to control the person
detector. Internally it has two states. The first is the detector
is off and the second is the system is primed and is actively
polling. The state is toggled by setting the correct pins on the
parallel port. If in the active state and the beam is broken a
notification is sent to a controlling agent.

C. Background Subtraction

Removal of a subject from their background is a common
computer vision process. The methodology used here is a
small modification of a commonly employed technique [9].
While not as robust as other techniques [10] it is significantly
faster. As a first step, an estimate of the background is needed.
Normally the mean image is employed. However we use a

median image as it is more robust to slight variations in
lighting. Furthermore, it can be computed in the presence
of moving objects. This image is computed in RGB colour
space. Once a background estimate is computed, removing
the subject is a two step process: image differencing and
shadow suppression. Image differencing allows most of the
background pixels to be removed in a single pass leaving only
the pixels that have changed from the background estimate.
These remaining pixels are either the subject or artifacts due
to lighting variations. In HSV space a shadow can be seen as a
darkening of the value and a consequent decrease in saturation.
This property is used to reclassify the candidate subject pixels
as either background or foreground.

Implementation of background subtraction is carried out
completely locally. However, it is mediated via control signals
from an external agent. Background subtraction is performed
on a frame by frame basis on the individual gait camera
agents. To improve performance and reduce computation we
exploit the fact that the cameras are calibrated. In the target
application, the subject will only walk on the track in the
central region of the tunnel. Thus, we can project a volume
about this track into the cameras viewpoint. This can be
used as a Boolean mask which will define regions where the
background subtraction will be performed. In this fashion we
can reduce the search space by roughly one third. Additional
operations are also required. Firstly, the background estimate
needs to be able to be recomputed on demand. This is due to
small variations in lighting occurring over time. Secondly, the
resulting background subtracted data needs to be transmitted
for further processing. The data transmitted as full RGB data.
To reduce the load on the network this is reduced to a
bounding box about the subject. However, note that despite
these reductions the volume of transmitted data can still be



large which can cause network congestion problems.

D. Gait Reconstruction

As the cameras completely surround the subject a 3D recon-
struction can be performed. Reconstruction is achieved using
a methodology known as voxel-based shape from silhouette
[11]. The silhouette refers to the image of the person in the
environment after background subtraction has been performed.
Simply put the algorithm is a restatement of equation (1).
For each camera view a 3D point or voxel, X, is projected
to the camera coordinate system (x = PX). If X is found
to be inside the silhouette in a sufficiently large (normally
all) number of views then the voxel is a valid point in the
original object. Whilst conceptually simple this algorithm is
complex to perform in an efficient manner. This is due to the
fact that for each voxel the projection needs to be performed
for each of the cameras. For N voxels and C cameras
this involves a maximum of NC matrix multiplications. The
burden of computation can thus be reduced by precomputing
image coordinates for each of the voxels. To further increase
computation speed we perform two hierarchical passes of the
voxel data. A low resolution pass to roughly localise the
subject within a bounding volume and a high resolution pass
performed within this volume. Whilst there is benefit to be had
from a fully hierarchical approach such as octrees we found
this two pass approach to be sufficient for this application.

As evidenced in the system overview (figure 1) the re-
construction process requires data from gait camera agents.
Specifically the subject silhouette from each of the cameras is
required. This information is sent via the network to a central
reconstruction agent. A point to note here is that even for
small amounts of video data sent from each camera it becomes
very easy to saturate the network card on the reconstruction
computer. As an example, 8 cameras working at 30 fps with
each supplying roughly one third of a 640× 480 RGB image
will result in 70 Mb/s of data sent to the network card. Thus it
is impossible to reconstruct the data in real time with this sort
of data rate. Instead we concentrate on servicing the incoming
data so as not to saturate the card and then when all data is
received perform the reconstruction. This results in a small
delay of approximately the time the subject spends in the
tunnel (3 s) before the reconstruction can be completed. For
biometrics applications this is acceptable.

E. Face Detection

To detect the individual’s face in the tunnel, the end camera
is employed (see figure 2(a)). This camera looks down the
length of the tunnel and thus can capture clear views of the
face for most of the tunnel. To help in this procedure a zoom
lens is employed. This is adjusted to capture faces over a wide
range of subject heights. The detection algorithm employs
a multipass approach with several simple algorithms passed
upon the incoming images. Firstly, background subtraction is
performed. As there will only be one subject at a time in the
tunnel the largest moving region corresponds to the subject. By
employing the resulting silhouette as a mask the search space

can thus be reduced for subsequent algorithms. Finding the
face is then relatively straightforward and employs a number
of empirical algorithms. Firstly, the width of the silhouette
is computed for the entire height. For an individual walking
toward the camera there will be a large step change in the
width at the point of the shoulders. Implementing this notion
yields a revised estimate for the silhouette of just the head.
The head is rejected if it doesn’t match known anatomical
proportions for a head, or the size is incorrect (too small or
too large), or the head is not in roughly the centre of the
environment.

Implementation of this step is completely local and was
implemented in a face camera agent. Potentially it could be a
global process where the data from a background subtraction
agent could be employed. However, resulting delay would be
wasteful of network bandwidth and cpu cycles. Thus, the agent
performs the processing steps outlined above in a hierarchical
fashion to yield a face image.

III. RESULTS

While no large scale collection of data has yet been
performed upon the biometric tunnel, we have performed
sufficient experiments to demonstrate the tunnel’s capability.
The test system consists of 8 cameras (640×480 at 30 fps) for
gait capture and a single high resolution camera (1024 × 768
at 30 fps) for face capture. The tunnel is a 5 m × 3 m purpose
built enclosure inside our laboratory.

The first set of experiments test the functionality of the
individual system components. The results for system cali-
bration are shown in figures 3(e) and 3(f). The rectangular
prism illustrates the common viewable area for all cameras.
The world coordinate axes and origin as applied to the tunnel
are also illustrated. Figure 4(a) shows a single frame from
one camera upon which background subtraction has been
performed. Full 3D reconstruction of the subject from all
8 cameras is illustrated for a single frame in figure 4(b).
The physical size of the voxels in the person corresponds
to 1 cm3. The person is reconstructed inside a volume which
corresponds to the prism in figure 3(f). Finally, figure 4(c) is
a single frame from the face detection system.

In order to evaluate the performance of the system, timings
were performed on the system’s bottlenecks. By doing this
we can estimate the overall system performance and thus the
physical throughput of the system. The results for each of the
critical components to collect a single frame of data are:

component time (ms)

capture 33
background subtraction 270
transmission 12
reconstruction 250
face finding 385
save image 60
save voxel data 1300

total 2310
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Fig. 4. Example data available from biometric tunnel (a) background subtraction (b) 3D reconstruction (c) facial capture
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Fig. 5. Finding extrema from a single frame (a) distance to perimeter (b) extrema found (c) trace of person in tunnel (d) extracted facial features

In all cases these figures are aggregate statistics gathered
from approximately 100 trials. Clearly, it is not possible to
perform real time processing of people using the current
system. However, it will be possible to run close to real time.
Assuming that a typical sequence consists of approximately
90 frames (3 seconds in tunnel) then further analysis can be
performed. If processing is restricted to face alone the tunnel
can process 52 people in an hour. Using gait alone, we can
process 21 people an hour. Combined face and gait yields a
throughput of 15 people an hour.

As the target application is biometrics, we examined fea-
tures from the sequences and examined their performance on
a small database of 6 people. This may seem small but is
sufficient for the application of biometrics within a restricted
environment such as a smart room or household. The features
extracted were used to describe the face and gait of the
individual.

In order to extract gait information a series of processes
were carried out. For a single silhouette image the centroid
(or average point), (cx, cy) was found. From this the Eu-
clidean distance, d(i), from the centroid to the points on the
perimeter was computed. Low pass filtering d(i) to produce
d̂(i) suppresses noise in the silhouette (see figure 5(a). The
local maxima of d̂(i) correspond to the head, feet, and hands
of the subject (see figure 5(b)). Restricting ourselves to the
leading leg and the head only we can reconstruct the 3D
motion of these points. From the 3D data several metrics can
be extracted. These include the bodies centroid (cx, cy, cz),
the top of the head (hx, hy, hz), and the leading foot location
(lx, ly, lz).

In contrast to gait facial feature extraction is simple and

can be directly found from facial features. In this paper we
extracted the eyes and the mouth from the face. The eyes are
found using a circular Hough transform upon the edge detected
facial image. The lips are localised using colour information.
Using these features we extract two metrics : the inter-eye
separation (see) and secondly the distance between the eyes
and mouth (sem). As we are dealing with a sequence of face
images with the subject approaching the camera the features
need to be normalised by the face height, H , and width, W .
Thus :

s′
ee =

see

W
s′

em =
sem

H
(3)

Figure 5(c) show the derived metrics for an individual walking
through the tunnel. The motion of each of the points con-
forms closely to that measured from anatomical data [12].
Figure 5(d) shows the values of the face measures from a
sequence of an individual in the tunnel. Notice that they
are relatively linear and so should be sufficient for a simple
recognition experiment.

As the population is small it is necessary to reduce the
feature spaces for a biometric test. Since all our features are
computed across a sequence, mean features are derived. We
analyse the potency of the features by forming a confusion
matrix. A confusion matrix plots individual subjects on the
x and y axes with individual squares coloured according to
the subjects proximity in feature space. In this case highly
correlated features (belonging to the same subject) appear
darker in the diagram. Figure 6(a) shows the result looking
at each feature in turn and figure 6(b) shows the result using
two of the features (one gait and one face). Note that none of
the single features are good enough to uniquely identify the



(a)

(b)

Fig. 6. Confusion matrix selecting (a) one feature (left to right : centroid,
head, leading foot, eye to eye distance, eye to mouth distance) (b) two features
(left to right : centroid-eye to eye distance, head-eye to eye distance, foot-eye
to eye distance, centroid-eye to mouth distance, head-eye to mouth distance,
foot-eye to mouth distance).

individuals as evidenced by large blocks of the same colour.
However, when used in pairs the population can easily be
identified.

IV. DISCUSSION

The previous section demonstrated our biometric tunnel
working on a variety of problems from background subtraction
and 3D reconstruction to a simple biometric database. While
the data is cropped and reduced in size in as many places as
possible it is impossible to reduce the data any more without
compromising information. The framerate cannot be reduced
because this can result in blurring of gait and face which will
result in erroneous features being extracted. For these reasons
we have sacrificed system throughput in order to guarantee
correctness of the information. This is an important distinction
from tracking applications. It also demonstrates an important
lesson about hierarchical processing. Now, while it would be
possible to process all the information in a purely top down
fashion there is benefit in not doing so. This is due to the
fact that there are bottlenecks which would hold up the next
processing step. Generally, it seems that the most efficient
processing methodology, assuming complete data, is a mix
of parallel and serial processing.

V. CONCLUSIONS

This paper discussed the development of a prototype bio-
metric tunnel. The purpose being to capture high quality bio-
metric information from an individual as they interact with the
environment. Consequently, the biometric tunnel shares much
in common with tracking problems and smart environments.
The proposed tunnel was designed to be deployed in a secure
environment. Additionally, it potentially could be deployed in
places such as border crossings or airports where biometrics
are already being employed to help speed person authenti-
cation. In the case of the tunnel, non-contact biometrics are
captured to speed the processing of individuals. Specifically
we designed the system to capture face and gait. Additionally,
the tunnel is completely autonomous and requires no user
intervention.

Our face capture system is designed to capture multiple
snaps of the face. This is performed via a frontal face camera
which is running continuously while a subject is in the
environment. Processing is performed to select candidate faces
from each frame. Additionally by extracting many faces the
data is amenable to fusion. To describe gait we capture the
subject from multiple views simultaneously and perform 3D
reconstruction upon the resulting data. The resulting data is
explicitly corrected for camera distortion and will provide a
rich dataset for subsequent feature extraction.

The correctness of the system was demonstrated in the
results section via the example outputs and the biometric
example. The biometric example showed that the data gen-
erated is sufficient to distinguish a small population such as a
household. The current maximum throughput is approximately
15 people an hour. Roughly 50% of the time is currently
spent writing the data onto the hard drive. This is an obvious
area for improvement and is actively being explored currently.
Currently, the data is stored with little or no contextual
information. We are currently working on using semantic
web technologies to provide this context via metadata and an
ontology.
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