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Abstract— Our objective is to automatically track and
capture photos of an intruder using a robotic pan-tilt-
zoom camera. In this paper, we consider the problem of
automated position estimation using a wireless network
of inexpensive binary motion sensors. The challenge is to
incorporate data from a network of noisy sensors that
suffer from refractory periods during which they may be
unresponsive. We propose an estimation method based
on Particle Filtering, a numerical sequential Monte Carlo
technique. We model sensors with conditional probability
density functions and incorporate a probabilistic model
of an intruder’s state that utilizes velocity. We present
simulation and experiments with passive infrared (PIR)
motion sensors that suggest that our estimator is effective and
degrades gracefully with increasing sensor refractory periods.

Index Terms - Security, Sensor Networks, Particle Filter,
Tracking, Sensor Fusion.

I. INTRODUCTION

Many new technologies for automated security, wireless
networks, and sensing have emerged since the terrorist
attacks of 9/11. Automation of security systems is an
active area of research that also raises fundamental pri-
vacy concerns. In this paper we consider the problem of
automatically tracking an intruder.

New robotic cameras can be servoed to observe high-
resolution detailed images of activity over a wide field of
view. For example, the Panasonic KX-HCM280 pan-tilt-
zoom camera (commercially available for under $1000.00)
can capture up to 500 Mpixels per steradian. We are ex-
ploring how these cameras can be automatically controlled
for security applications using a new class of inexpensive
binary sensors with built-in wireless communications.

Commercially available passive infrared (PIR) motion
sensors (available for under $25.00 from x10.com) cover a
field of view of 120 degrees. Wireless motion sensors like
these are subject to two significant drawbacks: (1) they
are binary and (2) after being triggered by motion in their
field of view, they suffer from a refractory period of several
seconds during which they are unresponsive. Since these
and related sensors provide only coarse information about
the presence or absence of an intruder, we propose a prob-
abilistic tracking model based on Particle Filtering, where
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Fig. 1. True vs. estimated intruder path for one randomized simulator
run. Position and orientation of a network of fourteen motion sensors is
indicated with solid dots and arrows. The true intruder path is indicated
with hashed circles and dashed lines. The estimated intruder path is
indicated with grey circles and solid lines. The bold-edged circles indi-
cates the intruder’s estimated and true starting points. Error is the spatial
distance between true and estimated intruder position. In our simulation
experiments, we report the distribution of error values.

many sampled estimates (“particles”) based on distributions
of sensor response and intruder state are simultaneously
estimated and fused to produce an aggregate point estimate
of intruder position. Recent advances in computer pro-
cessing make particle filtering feasible in real time. Using
the estimate of the intruder’s location the robotic camera
actuates to document the intruder’s movements for later
analysis.

II. RELATED WORK

There is an extensive literature on pursuit and evasion
strategies for capturing an intruder. These range from
locating a stationary intruder in an unknown room [1]
to pursuit-evasion games, where a pursuing robot hunts
a mobile evader that intelligently works to avoid capture.
Examples and surveys can be found in [2], where the
pursuer has a line of sight optical sensor, and [3], where
the pursuer must avoid being seen by the evader. In our



problem, the environment is known and binary sensors are
fixed and distributed through the environment in advance.

Many tracking systems make use of fixed video cameras
that monitor an area with fixed resolution. Background
subtraction techniques can be used to find moving objects
in the video stream. Once these are identified, modeling and
filtering is performed to extract body parts or differentiate
between distinct objects in a scene. Examples of such
systems can be found in [4], [5], [6].

Another approach uses combinations of different types
of sensors. In these systems, these sensor types are often
explicitly chosen to complement each other. This can
be formulated as a multi-modal sensing problem as [7]
describes. In this problem, the sensor types have different
false positive and negative rates, as well as different sensing
ranges. At each time step, only one mode of sensing can
be used to locate an object. It is important to note that this
work attempts to detect and localize a static object, rather
than track a moving one.

Jeffery et al. present in [8] another multi-modal ap-
proach, where they use sound-detecting motes, PIR motion
detectors, and RFID tags to track people. There is an
additional constraint that the RFID tags were worn by
the people being tracked. This leads us to yet another
approach, refining a technology down to tracking a mobile
tag attached to an object. For instance, [9] describes a
scheme for tracking a tag which emits a near-infrared
signal.

There are many ways to probabilistically estimate the
state of a system, for instance the location of an object,
via observations. Kalman Filtering [10] is one of the most
fundamental. It uses three models: a prior distribution of the
object’s initial state, a transition model describing how an
object transitions between states, and a observation model
describing the probability of an observation given some
object state. Kalman Filtering limits these functions to
linear function of Gaussians. Other tools have been derived
to relax these constraints, such as the Extended Kalman
Filter [11], and the Particle Filter [12]. There have also
been many specific variants of Particle Filters. A survey of
Particle Filters is presented in [13].

A well studied problem in robotics is Simultaneous
Localization and Mapping (SLAM). In this problem, a
mobile robot explores an unknown area. It must use its
sensors to build a complete map of its surroundings, and
simultaneously deduce its position with reference to these
surroundings. A book discussing many aspects of SLAM
can be found in [12]. Methods for leveraging sensors to
learn about the world apply, whether we are using the
robot to map a room or using a room of sensors to find an
intruder.

Robotic camera systems have also been researched ex-
tensively. There are other paradigms for camera control
that have been researched other than autonomous systems.
For instance in [14], [15], the problem of reconciling
simultaneous requests on a single camera from multiple
people. In this problem, requests for camera viewing lo-

cations are posed as rectangular regions over a panorama
of the camera’s range. They calculate the optimal frame to
control the camera by maximizing the overlap of the frame
requests. A related problem is the dynamic updating of the
panorama from captured frames [16].

Another relevant research topic is the Art Gallery Prob-
lem, where the objective is to place cameras in an art
gallery such that all points in the gallery can be viewed by
at least one camera. Thorough surveys of problems related
to the Art Gallery Problem can be found in [17], [18].

III. PROBLEM STATEMENT

In this section we formalize our problem. Our goal is to
track (and document) the progress of an intruder moving
through a known room using a sequence of binary sensor
readings.

A. Inputs and Assumptions

Setup: polygonal room geometry, probabilistic sensor
model, position and orientation of each sensor, probabilis-
tic model of intruder movements, dimensions of intruder
bounding prism. Input: time sequence of firing patterns
from binary sensors. Output: estimate of intruder path.

Setup occurs once during initialization, while input is
information that the system processes in real-time. Error
is the spatial distance between estimated intruder position
and actual intruder position. We report on the distribution
of error values.

1) Room Geometry: The geometry of the room is de-
scribed as a polygon represented by a set of vertices and
edges. We denote all points in the room by the set R. We
require that the room is star shaped so that a single robotic
camera can be placed to have direct line of sight to any
potential area the intruder may occupy. For now, we assume
that there are no obstacles in the room.

2) Robotic Camera: Our system uses a single, robotic
camera with a fixed base that focuses on specific areas
within the observable space. The camera has three degrees
of freedom: pan, tilt, and zoom.

3) Sensor Modeling: We have a set of N = {1...n}
binary sensors, where each sensor ¢ is modeled by two
conditional probability density functions (CPDFs), each
with a convex polygonal detection region R;. Every point
in the room must be covered by the region of at least one
sensor:

R C ORZ'
i=1

We use subset instead of equals because the union of the
sensor region can exceed the room.

Each sensor ¢ has a refractory period, whereby after
triggering, it usually becomes unable to trigger again for
another f; seconds. The X10 PIR sensors we used for our
experiments exhibit this problem.

We denote the generated sensor data by the set:

p={i: i€ N,teRt,
o »7/ " sensor ¢ triggers at time ¢



We process the sensor data generated from the intruder
every tp seconds, and thus we discretize time into iterations
that are tp seconds apart. Formally, the time ¢, of the 7’th
iteration is defined as :

VreN:t,=7-tp

We use a world-coordinate system to integrate data
across sensors. We overlay a uniform three-dimensional
grid which discretizes the world into cells j € {1...m}.

We define three indicator variables which are defined for
each iteration. The event that an intruder fully occupied
some world-space cell between the previous and current
iteration:

an intruder fully occupies cell
jattime t,t,—1 <t <t
0 otherwise

0. = 1 if 3¢

The event that the sensor is triggered between the previous
and current iteration:

{ 1 if3t:(i,t) €Dty <t<t,
Si,T: O

otherwise
The event that the sensor experiences a refractory period
between the previous and the current iteration:

1 if3t:(i,t) € Ditrog — fi <t <t;
BiAT = .
’ 0 otherwise

Each cell in the grid corresponds to entries in two
CPDFs. The first describe the probability that a sensor is
not experiencing a refractory period and triggers, provided
a sensor stimulus fully occupies only that cell:

P(Si77'|0j,‘r = 1aBj,‘r = 0)

The second is the probability that a sensor is not experi-
encing a refractory period and triggers, provided no sensor
stimulus occupies any part of that cell:

P(S:+|0;, =0,B;, =0).

Also, we need to compute the probability that a sensor
fires, given that it is undergoing a refractory period:

P(S;-|Bj-=1)

With these three distributions, we completely describe
for any iteration and sensor, the probability that a sensor
fires.

When modeling these probabilities, we make a number
of significant assumptions such as the independence of
an intruder’s occupancy of world-space cells causing a
sensor to trigger. We discuss these assumptions in detail
in Appendix 1.

4) Intruder Modeling: We assume that we know the
times the intruder enters and exits the room. We model
our intruder by position, speed, orientation, and size. At
each timestep, we add a sample from a zero-mean Gaussian
to the intruder’s speed and bound it by both the intruder’s
maximum speed vps 4 x as well as the geometric constraints
of the room. The orientation is also modeled by adding a
sample from a zero-mean Gaussian, however the variance

Fig. 2. The left image depicts a two dimensional slice of a sensor’s
characterization, with the corresponding values at each point depicted in
a grid-overlay. The right image shows a slice where the points have been
transformed into worldspace.

changes over time and is inversely proportional to the
current speed of the intruder. We discuss this in more detail
in Section VII-B.1. To model size, we use a bounding
rectangular prism, with given width, depth, and height. We
model the path of the intruder as lines between samples,
as is shown by the dashed line in Figure 1.

B. Outputs

The system uses the set of sensor firings to infer the
intruder’s path as illustrated in Figure 1. The objective
is to minimize the error between the intruder’s actual
location z, and the system’s estimation Z. It uses this
information to generate a set of images represented by a
unique tuple of pan, tilt, zoom, and time.

IV. FRAMEWORK

Our system involves three phases. In the Characterization
Phase, we build a probabilistic model for the sensor. In the
Deployment Phase, we place the sensors at the surveillance
location and transform the distributions accordingly. Finally
in the Tracking Phase, the system uses these sensor instan-
tiations, in conjunction with firing information, to estimate
the presence and location of an intruder traveling around a
room. We use this information to direct a robotic camera
to take photos of the intruder.

V. CHARACTERIZATION PHASE

In this phase, we represent the properties of the sensor
according to our sensor model. We begin by finding the du-
ration of the sensor’s refractory period f; by continuously
stimulating the sensor, and determine the rate at which it
provides data. This sampling rate is determined by how
often we will process the sensor data tp. By comparing
the differences between times the sensor transmits data
of the stimulus, we compute f;. In order to compute the
probability that the sensor triggers while undergoing a
refractory period, P(S; ; = 1|B; » = 1), we stimulate the
sensor and then monitor how often it signals an intruder
for each iteration during its refractory period.

To calculate the CPDFs for each sensor-type, we perform
a characterization according to a single sensor’s coordinate
space and overlay a three dimensional uniform grid over
this space. By repeatedly stimulating the sensor restricted



locally to the location of each index in the grid, we can
calculate for each index the probability that a stimulus
at only that location causes the sensor to fire. For index
j, call this value 7;. We depict a two-dimensional slice
of sampling locations, which results in a grid of values
Figure 2 (left). Each sample tests the sensor’s response
patterns to learn the empirical sensitivity of the sensor and
how this sensitivity changes with respect to the location
of the stimulus. In a PIR sensor, the stimulus might be a
small amount of movement centered at the sample point.
It is important to ensure that the samples are not taken
during the sensor’s refractory period and that the stimuli
not overlap with the stimulus at another point on the
grid. We describe in Section VI how each sample point
maps to an independent random variable, and avoiding
stimulus overlap makes this independence assumption more
reasonable.

VI. DEPLOYMENT PHASE

Once we have a sensor type’s characterization, we use a
sensor’s position, orientation and type to transform it into
the shared world coordinate frame. A 2-dimensional layer
of an example is shown in Figure 2 (right). We approximate
the conversion by placing the center of the sample rotated
from the sensor ¢’s space into the containing cell j in world
space; we use this as the value for P(S;, = 1|0;, =
1, B; » = 0). To sufficiently characterize a sensor such that
all m world-space cells have readings, we would need to
sample all permutations of occupancies of cells, namely

P(Si,‘r|01,7— =O0l,75---5 Om,r = Om,1, Bi,T = O)

Acquiring all 2™ assignments is not feasible, so we make
the assumptions described in Appendix I. We determine
the values of all world-space cells within the convex hull
of the cells containing non-zero 7);s using Inverse Distance
Weighting [19] and all other cells have a value of zero.

Because we do not have samples for all permuta-
tions for occupancies of cells, we also cannot calculate
P(S;+|0j- = 0,B; ; = 0). This again leads us to the
Appendix I assumptions, which allow us to determine
P(S;.|0jr = 0,B;; = 0) by using the frequency of
sensor false positives. Let this rate be h, the number of
world-space cells where P(S; 7|0 =1,B; =0) >0
be &, and these cells be independent. Then

P(S;>=1|0j,=0,B;, =0) =1— (1 —h)'/¢

Taking the convex hull of cells with non-zero values
mapped to them yields the sensor shape’s convexity re-
quirement.

VII. TRACKING PHASE

A state is a set of information that describes the relevant
properties of an object that evolves over time, such as
position and velocity. The probabilistic model of how states
transition over time is referred to as the transition model.
Because our state estimation is tracking of the intruder, we
refer to this as our intruder model. A probabilistic model
of the observable evidence, given some unobservable state,

is the observation or sensor model. If the system can be
described by these two models, it can be represented as
a Dynamic Bayesian Network (DBN) [20]. If the intruder
model and sensor model are linear functions of Gaussians,
where the new state is a linear function of the previous
state plus Gaussian noise, then a Kalman Filter can be
used to provide the optimal solution to the state estimation
problem.

While our intruder model, which is presented in Sec-
tion VII-B is a linear function of Gaussians, our sensor
model is not. Because our sensor model is only restricted to
a convex-shaped CPDF, there are two options: an Extended
Kalman Filter or a Particle Filter. We can use a function
to estimate our sensor model, for instance a spline, and
then we can use an Extended Kalman Filter. Instead, we
choose Particle Filtering because it can be used directly by
sampling the CPDFs.

A. SIR Particle Filtering

While there are many versions of Particle Filters, we
use the Sampling Importance Resampling (SIR) Filter as
described in [13], [20]. It is a sampling-based method for
performing state estimation of DBNs over discrete time. We
represent our current state as a random variable X, with
instantiation z, and our evidence of our hidden state E,
with instantiation e,. We use three distributions to perform
SIR Particle Filtering. We model the prior probability
distribution of the intruder’s state P(Xy) as a way to
initialize the system, the intruder model P(X,|X,_1),
and the sensor model P(E,|X;). The prior describes the
distribution of the intruder’s location at the beginning of
inference. The intruder model describes, given the current
state of the intruder, the distribution of the intruder’s
location at the next timestep. Lastly, the sensor model
describes the distribution over sensor triggerings resulting
from a specific intruder state. When using Particle Filtering,
we maintain a vector of samples of states of the system,
distributed according to the likelihood of our evidence.
At each iteration, we advance each sample of the state
according to the intruder model, assign a probability of
each sample’s likelihood according to the sensor model,
and then resample from a normalized distribution across
the samples.

B. Tracking with Particle Filtering

To use Particle Filtering, we need to define the state of
our system at every iteration x; » and the observed evidence
e,. By using previous phases of the system, we derive
the distributions for P(Xy), P(X,|X,-_1), and P(E,|X,)
using Particle Filtering.

1) Intruder Model: The state of our system for each
sample is represented by a 5 tuple of x-position, y-position,
orientation, speed, and if the sensor is experiencing a
refractory period.

While the rest of our system uses three-dimensions, the
intruder model does not change its location along the z-
axis. This is because the placement of the sensors and the



camera will not necessarily be in the same plane, but it is
reasonable to assume the intruder will remain on the floor.

Because we are using Particle Filtering, the intruder
model is a function that maps from the old state and
yields some new state. The transition model we chose
P(X,|X,_1) determines position by Euler Integration. The
standard deviation of the Gaussian added to current speed is
determined according to typical properties of our intruder.
The Gaussian added to the orientation has a standard
deviation that is inversely proportional to the current speed
because the faster our intruder is traveling, the more likely
it is that the intruder’s path will not deviate significantly
from the current one.

Define 3; - as deterministic variables, timestamped every
time their respective \S; - is true. If there sensor is trigger-
ing, we set (3;, T to be the blind time. Otherwise, the 3; ;
for sensor ¢ subtracts off ¢p from the previous timestep,
and is restricted to be at least 0. Formally:

61'.,7' _ { fi if Si,T =1

maX(O, 61‘,7——1 — tp) else
The random variable B; » = 1 iff 3, , = 0.

We define P(X,) for our system as uniform at ran-
dom for position, orientation and speed. This is sufficient
because the system converges fast enough to the right
distribution that no pre-seeding is necessary. Whenever the
system begins, it sets 3; 0 = 0,Vi € N so that all sensors
are defined as not undergoing a refractory period.

As the transitions discussed above have no knowledge
of the room geometry, we need to impose the room’s con-
straints on the transition model. To add these constraints,
we use rejection sampling, first presented in [21]. We
propose an update to our state according to our transition
model. If the position is within the room and the speed
is between 0 and vr4x, then we accept this sample. If
our proposal does not fit within these bounds, we continue
to try new updates to the old state until we find one that
satisfies these constraints.

2) Sensor Model: Denote the set of evidence among all
sensors by:

et ={S1,r =514,---, SN = 5N,7}

Because any sensor triggering is independent of all others
given the location of the intruder:
P(EX;) =P(Sir-..,95+1Xs)
N
= [Liz1 PlSi-[X]
In order to compute the probability that a specific sensor
7 fires at iteration 7, due to an intruder of state z we use
two different distributions. If the sensor is undergoing a
refractory period, we use:
P(S;r=1X; =x,)
= P(Si- =1[Bi; =1)
Otherwise, we use:
P(Siﬂ- = 1|X.,- = .’137—)
P(S'L',T = O|Ok,7' =0, Bi,T = 0)7
=1- H;;nzlL P(Si,r = O|Ok,7' = 1aBi,‘r = 0)7
V(Ok,'ra l"r)

We use L(a, b, ¢) to mean the linear interpolation of
percentage ¢ between a and b. V(a, b) is the volume
percentage of cell a occupied by intruder with state b for
a given bounding prism size.

C. Estimator

The Particle Filter gives us a mechanism to determine
our confidence that an intruder is in a specific region.
After the resampling step, the samples of the state space
have been distributed according to the likelihood of the
state being correct. The higher the density of particles in a
region, the more likely that area is occupied by the intruder.
Because the intruder’s dimensions are approximated by a
prism that bounds the size of the intruder, to determine the
intruder’s location at each timestep 7, we iterate through
each world-space cell and count the number of samples of
our state that reside within the bounding prism centered at
the cell’s position. We choose the cell that maximizes the
number of samples as the estimated location of the intruder.

Once we estimate the location of the object in world
space, we calculate the pan, tilt, and zoom necessary for
the camera to take a photo. Because we bound the intruder
with a rectangular prism, we pick the parameters that make
the camera view the entire bounding prism, but no more.
To determine pan and tilt, we find the center of the intruder
bounding box, and then convert from cartesian to spherical
coordinates, where the origin in spherical coordinates is
the location of the camera. Next, we project the intruder
bounding prism onto an image plane orthogonal to the
viewing plane and determine the correct zoom to view
just the projection, but no more. There is a direct mapping
between the location of the bounding prism in world-space
and a specific pan, tilt, and zoom for the camera that maps
to this location.

VIII. SIMULATION RESULTS

We implemented a simulator to evaluate our estimator.
First, it generates random intruder paths and probabilistic
sensor models to compute corresponding sets of sensor
data. Second, it processes this data to generate estimates
of the intruder’s location. We compare the true positions
with the estimated intruder positions over time and compute
error based on Euclidean distance. The simulator runs on
a 1.6 Gigahertz Pentium M with 768 Megabytes of RAM
using 1000 state samples (particles).

We performed simulation experiments for three sensor
types: (1) perfect optical beams, (2) perfect motion sensors,
and (3) imperfect motion sensors. For each, we considered
refractory periods of length 0, 4, 8, and 16 seconds. We
also consider the effect of varying the number of binary
sensors in the network.

In all simulations, we use a square room of size 10 x 10
x 10 cells of unit size. We defined our intruder bounding
prism of 1 cell height and 2 cell width and length. We
use the parameters: tp = 2 seconds, vapyax = 4 cells
per second and velocity Gaussian standard deviation is
1.5 cells per second, and P(S = 1|B = 1) = 1075,
We generated 10 3-minute trajectories evaluated at every 2
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Fig. 3. Error in estimated intruder position over time for the baseline
Naive Estimator that simply reports the intruder is stationary in the middle
of the room.
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seconds according to this model, which we then use across
all tests. The locations of the intruder at each iteration x.-
is used to determine which sensors trigger. We send this set
to the server, which then responds with its estimate Z,. We
determine our error E by the Euclidian distance between
the estimation and the true state |z, — ..

A. Baseline Naive Estimator

As a baseline for comparison, we consider the naive
estimator that simply reports that an intruder is stationary
in the center of the room. We compute the error values for
this estimator on a simulated intruder path and compare
them with those from our estimator.

First, we plot the point error values over time in Figure 3.
Over the entire path, the Baseline Naive Estimator has an
average error of 2.9 cells. The error is fairly well dispersed
over the domain, with a slight trend of high error staying
high, and low error staying low. This is because if the
intruder is in a corner at one timestep, it is likely to remain
near the corner in the next timestep. Next we present the
distribution of error over all runs in Figure 4 and see that
55% of particles are less than 4 cells away.

B. Twenty-Two Perfect Optical Beam Sensors

Next we consider a set of binary optical beam sensors.
These sensors have perfect detection, with no false posi-
tives or negatives. Their region of detection is 10 x 1 x 1
cells. We place these sensors at height (z value) 0, with
one set of sensors going along the floor in the x direction
for each cell index of y. We do the same in the y direction
for each cell index in x, yielding a criss-crossing pattern
of these sensors. Thus, if exactly one in the x set, and one
in the y set trigger, we know within 1 world-space cell
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Fig. 5. Twenty-two Perfect Optical-Beam Sensors: Distribution of error
values.
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Fig. 6. Fourteen Perfect Motion Sensors: Distribution of error values.

where the intruder is. We placed the intruder at height 0
and found the distributions illustrated in Figure 5.

This test illustrates a sanity check for a O second refrac-
tory period, as with perfect sensors, all estimations should
be within two world-space cells. We also can see that we
degrade gracefully as we increase our refractory period,
and even with a 16 second refractory period, we still get
64% within two cells.

C. Fourteen Perfect Motion Sensors

We then performed a setup with 14 perfect motion
sensors sensors with a characterization of 7 where for cells
of height 0, n; = 1 in the form of a isosceles triangle, with
a resolution of a reading every two world-space cells. For
all other heights, n; = 0.

We present the sensor placement, orientation and an
example run, with values shown for every 10 seconds for a
perfect motion sensor with no refraction in Figure 1. This
configuration generates a large number of intersections,
allowing for higher quality localization. We present the
distributions of error in Figure 6.

As we would expect due to the lower number of sensors,
with more complicated form of intersection, this setup
produces poorer quality localization of the intruder, even
with no refractory period. It was interesting to note that
there is little difference in localization between 4 and 8
second refractory periods. This is because there is sufficient
overlap to compensate for the sensors experiencing refrac-
tory periods. However, the compensation is less robust
in this simulation, as the change from a 0 to 4 second
refractory period was much more significant.
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Fig. 8. Varying Number of Binary Motion Sensors: Distribution of error
values for different number of binary motion sensors (each with 8 second
refractory period).

D. Fourteen Imperfect Motion Sensors

Next, we modeled a sensor which becomes less sensitive
as we stimulate it further away. We then ran the same tests
with the new characterization that had false negatives which
increased as a function of distance from the sensor, and
a false negative rate P(S;, = 1|01, = 0,...,0p,, =
0,B;,=0)=0.25.

These distributions are very close to those observed with
the perfect sensor over all refractory periods, though as
expected the perfect sensors perform slightly better.

E. Varying Number of Sensors

By varying the number of sensors, it becomes evident
that increasing the number of sensors, and thereby allowing
more overlap for sensors to compensate one another, helps
accommodate for the refractory period. While 4 Sensors
does not do much better than our baselines, 8 sensors does
better, and 14 does significantly better. We present this in
Figure 8.

FE. Errors over Time for Imperfect Motion Sensors

We display the error in estimated intruder position over
time for the imperfect motion sensors with a 4 second
refractory period in Figure 9. Note that there is high
variance in the error values. High values result when all
sensors are blind in the region where the intruder is.
However, the estimator quickly compensates, and is able
to recover.

IX. IN-LAB EXPERIMENT

For the in-lab experiment, we ran tests on 8§ X10 PIR
sensors, which have an 8 second refraction time. The lab is
8 x 6 meters, and we use world-space cells of size .3 meters.
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Fig. 9.  Error in estimated intruder position over time for Fourteen
Imperfect Motion Sensors (each with 4 second refractory period).

Fig. 10. Lab Experiment: A map of our lab (top), with intruder true path
indicated by a dashed line as in Fig 1. Estimated path indicated by a solid
line. Photos taken by a robotic camera (a-d) correspond to the numbered
solid blue dots and their respective locations in the room.

Here, we present a sample of photos from our system.
We used the parameters: tp = 2 seconds, vyyax = 4
feet per second and velocity Gaussian standard deviation
is 1.5 feet per second. Again, we used 1000 samples of
the distributions. In our test shown in Figure 10, we had
an intruder walk around the room, and compare photos of
the estimated path with the real path. This example shows
that our system performs well in securing the lab.

X. CONCLUSION AND FUTURE WORK

We have described a system that uses a network of binary
motion sensors to track an intruder. We begin by defining
probabilistic sensor models that include refractory periods.



We develop a new method for processing noisy sensor data
based on Particle Filtering that incorporates a model of
intruder velocity. We report experiments with this method
using a new simulator and using physical experiments with
X10 sensors and a robotic pan-tilt-zoom camera in our
laboratory.

In the future, we will experiment with different sensor
models and different spatial arrangements of sensors, and
set up the camera system to run over extended duration
in our lab. An interesting open problem optimal sensors
placement, which can be considered a variant of the Art
Gallery problem. We will also investigate methods that
can simultaneously track multiple intruders. We are also
interested in ways to decentralize the algorithm by moving
processing onto a network of smart sensors. We would
like to investigate how altering parameters, such as the
number of samples, or data processing frequency affects
performance. Lastly, we would like to use vision processing
techniques to utilize information gathered from the camera
to enhance our system.

For project wupdates, please visit our website:
http://www.cs.berkeley.edu/~jschiff/currentProjects.html.
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APPENDIX I

We assume that the triggering of all sensors is indepen-
dent given the intruder’s state:

P(S17,. ., SnrlX7) = [[ P(SilX5)
i=1

We assume that the probability that an intruder’s complete
occupancy of a single cell causes a sensor to trigger equals
the probability that the intruder only occupies that cell:

P(SZ‘_’7-|O]'77- = 17Bi77' == 0) ==
P(S;|01=0,...,0;=1,...,0pn=0,B; =0)
We assume that the probability of the occupancy of any cell

causing the sensor to trigger is independent of any other
cells causing the sensor to trigger:

P(Siﬂ"Ol,Ta R Om,T7 Bi,T = O) =
Hj:l P(Si,7|0jm Bir = 0)

We assume that during the sensor’s refraction period, the
distribution does not vary in the presence of any stimulus:

P(Si,T|Ol,7‘, BRRR) Om,'ra Bi,'r = ]-) = P(Si,7‘|Bi,‘r = 1)
We assume that the distributions of sensor’s
likelihood of firing given a sensor’s position

P(S;+|01,7,...,0m+,Bir = 0), smoothly changes

between values over the detection region. When modeling
a sensor type, we pick any sensor and view its parameters
to be representative of all other sensors of the same type.
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