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Abstract—We demonstrate a testbed and algorithms for col-
laborative human and automated (or mixed-initiative) decision
making within the context of outdoor search and rescue. Hydra
is a networked simulation tool that allows n human and k&
automated agents operating under different assumptions to share
control over m unmanned aerial vehicles (UAVs) with cameras,
with the goal of locating a hidden subject 6 as quickly as possible.
The agents are modeled on a pre-defined hierarchy of authority,
and the search space is characterized by varying degrees of
obstructions.

Search is based on iterating the following cycle of four steps:
1) all agents generate image requests based on their individual
probability density functions (pdfs), 2) Hydra collects requests
and computes an optimal assignment of images to the UAVs, 3)
Hydra processes the resulting image data and specifies whether or
not the subject was detected, and 4) all agents update their pdfs.
We propose initial models and algorithms under this framework,
and we show via simulations of a scenario with three agents and
one UAV that our method performs 57.7 percent better than a
theoretical upper bound for a single agent and UAV.

I. INTRODUCTION

Recent technological advances in unmanned flight have
provided equipment useful in designing automated search and
rescue systems that allow searchers to cover ground more
quickly, without putting human operators at risk. Because
such missions are too complex to be either fully automated
or entirely manual, we seek to understand how humans and
automation should share authority over complex command and
control systems in order to maximize a measure of information
about the system as quickly as possible. By integrating human
intuition and reasoning capabilities (which can be difficult to
quantify) with computational resources, we provide a robust
framework for collaborative, mixed-initiative decision making
that can accommodate different agent authority structures.

II. RELATED WORK

Early work in collaborative control for multiple human
operator, single robot systems includes a project by Cannon
that enabled remote waste cleanup by having users specify
locations in a shared image for a robot to excavate. [1] In this
scenario, the author demonstrated an improvement in cleanup
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Fig. 1: Three UAVs with mounted cameras are controlled by
a sequence of frame requests from distributed human and
automated agents.

time, although he does not address conflict resolution between
users.

Other precedents for online collaborative robot systems are
described in [2]. In [3], Goldberg, Chen, et al present a
theoretical framework for collaborative control, which they
demonstrate with a system that averages multiple vector inputs
to control the position of a moving point resource.

In [4] and [5], Song et al develop a model for shared camera
control where human users request sensor data corresponding
to a specific rectangular region of a shared image. By treating
these image requests as spatial votes, the authors leverage the
geometric properties of these votes to formulate the model
as an optimization problem, which they term spatial dynamic
voting. Given a set of image requests, they provide both exact
and approximate algorithms to determine the single rectangu-
lar region that maximizes user satisfaction. The authors make
use of these algorithms in [6], where they describe a system
that allows multiple users to simultaneously share control over
a single robotic camera. They consider the problem of sharing
control over more than one camera in [7], and we provide an
alternate formulation and algorithm in section IT1I-B2.

At the Center for Robot Assisted Search and Rescue,
Murphy led several studies in human-robot interaction [8],
[9], where the authors examined the use of robots in urban



search and rescue settings to understand the workflow of such
operations and the types of errors encountered. Murphy has
also led work in cooperative control of mobile robots based
on modeling and simulating societal behavior [10].

In designing a UAV control framework for search and
rescue applications, two important considerations are collision
avoidance (safety) and ground coverage. In [11], Ryan and
Hedrick give a control algorithm for a set of UAVs flying in
formation to sweep the search space using four basic path
rules. Hu et al study the optimal formation constrained multi-
agent coordination problem in [12] and identify geometric
properties of its solutions. Ryan, Nguyen, and Hedrick con-
sider a Coast Guard search and rescue scenario where two
UAVs assist a manned helicopter by expanding the range of
visual data available to the pilot. [13] The authors present a
decentralized controller for maneuvering the UAVs safely.

Baum and Passino present a search-theoretic approach for
fully automated cooperative control of UAVs tasked with
locating stationary targets. [14] They extend classic search
theory techniques to incorporate trajectory generation and to
allow for multiple information seekers. Although we do not
explicitly consider the trajectory generation problem in this
paper, we provide a framework for coordinated control of
multiple UAVs that can incorporate such models.

Chaimowicz and Kumar study the problem of using a set of
UAVs to coordinate and control a swarm of ground vehicles
in urban environments. [15] They develop probabilistic and
behavioral models for shepherding based on an hierarchical
framework. In [16] Caffarelli et al present algorithms for
directing UAVs to monitor known stationary targets by paying
them a minimum number of visits per unit of time while in
consideration of the energy consumption of the UAVs and the
uncertainty of the trajectories.

The following two groups consider the complete automation
of a set of UAVs tasked with locating a target. We expand on
their work by proposing image frames as a unified vocabulary
by which both humans and automation can easily request
sensor information from the system, in accordance with a user-
defined hierarchy of agent authority. We also characterize the
underlying search space with varying degrees of obstructions,
which in turn affects the quality of information collected. We
then present a model for extracting data from the sensors that
provides a tradeoff between the size of the sampled image and
the quality (reliability) of the information.

In [17], Bourgault et al describe a decentralized Bayesian
approach for locating a single target by coordinating multiple
autonomous agents. In their framework, automated search
agents make individual decisions based only on their knowl-
edge (prior probability distribution), and the information
gathered by the different sensing platforms. Information is
combined using a fully decentralized Bayesian data fusion
technique, and controls are given using a decentralized co-
ordinated control scheme. Furukawa expands on this work in
[18] with the development of a coordinated control method
for autonomously searching for and tracking multiple targets
using multiple vehicles. Hoffmann et al [19] also consider the

PROBLEM FORMULATION

Input: Search domain ©; number of UAVs m; density of obstructions
¢ (z,y); termination threshold a

Goal: Minimize ¢, the number of iterations to termination

Steps in Each Iteration:
1) Agent frame request
2) UAV frame allocation
3) Sensor data extraction
4) Prior distribution update

Termination Condition: A sampled frame f such that B¢(f) = 1 and
Pr(6 € flB:(f)=1)>1—a

TABLE I: Summary of the system inputs, goal, steps, and
termination condition.

automation of a set of networked UAVs and develop a non-
parametric technique based on particle filtering to determine in
real-time the optimal control sensor locations to minimize the
number of future observations required to determine the state
of a target. In their setup, each UAV maintains its own estimate
of the target’s current state and uses an onboard particle filter
to approximate the posterior distribution once sensor data
has been gathered. The authors present two polynomial-time
approximation algorithms, making the network scalable while
maintaining a high degree of descriptiveness.

III. MIXED-INITIATIVE SEARCH AND RESCUE

Every search is initialized with the following inputs. We
limit the search space to a bounded area of the plane © that
contains a hidden, stationary subject with location 6 € ©.
We assume that the search space is characterized by a pre-
specified parameter ¢ (z,y), which corresponds to the density
of obstructions in © at point (x, y). (These could be buildings,
fog, vegetation, etc.) A distributed group of n human and &
automated agents collaboratively control a set of m UAVs
with mounted cameras for data collection. Each agent has an
associated authority level a; € [0, 1] and maintains a pdf P,
over © of the subject’s location.

In each iteration of a session, every agent specifies a
rectangular frame to investigate further.

Definition A frame f (x,y, z,t) corresponds to a rectangular
subregion of the search space, centered at point (z,y), with
zoom level z, and indexed by time t¢.

Both human and automated agents submit requests in this
unified format. We assume that the combined number of agents
is larger than the number of UAVs available. In each iteration,
the system must compute a set of m frames that maximize
total “satisfaction” among the agents.

Once data for a frame f is collected, the information is
processed and a binary value B(f) is returned indicating
whether or not the subject is detected within f. B(f) is
a Bernoulli random variable that is more likely to return a
correct answer when a frame is of high resolution (i.e. covers
a small area) and the density of obstructions is low.



We assume that as the area spanned by an image and/or the
density of obstructions increases, the quality of information
decreases. Let a be a pre-specified termination threshold
corresponding to the maximum acceptable probability of a
false positive in a candidate frame. Then, a search session
terminates when the sensor detects the subject in a frame with
small enough area so that we can ascertain with probability
1 — a that the sensor information is accurate. We determine
the maximum area of a terminating frame solely as a function
of a and the average density of obstructions in the frame,

1
cf = Area(f)/fc(x,y)dydx.

Since time is a major factor determining the success of a
search and rescue operation and hence the system, the goal of
each agent is to minimize t, the number of iterations required
to locate the subject. We develop models and algorithms for
the following four steps of the search process:

1) Agent Frame Request: All agents generate frame re-
quests based on their individual pdfs of the subject’s
location.

2) UAV Frame Allocation: Hydra collects requests and
computes an optimal frame assignment to the UAVs.

3) Sensor Data Extraction: Hydra processes the resulting
image data and specifies whether or not the subject was
detected.

4) Prior Distribution Update: All agents update their pdfs
to incorporate the new data.

The system is illustrated in Figure 1 and outlined in Table I.

In the following subsections we present our approach to each
of the above tasks in technical detail.

(D

A. Step 1: Agent Frame Request

At the beginning of each iteration, participating agents
submit frame requests corresponding to the rectangular subre-
gions of the search space they wish to investigate further. We
consider different strategies for each class of agent.

1) Human Agents: To facilitate rapid decision-making, the
Hydra interface maintains for each agent a visual representa-
tion of his or her probability distribution P;; of the subject’s
location. Each cell of the search space is filled with a shade of
blue, where a darker shade corresponds to a higher likelihood
that the subject is located within that cell.

With this visual representation system, human agents can
quickly get a feel for what regions of the search space have
higher probabilities of finding the subject. The agents can then
decide which frame to request based on intuition.

2) Automated Agents: We consider a search strategy for a
single automated agent using results from information theory.
The information entropy of a probability distribution is a
measure of uncertainty, where higher entropy corresponds
to greater uncertainty regarding the outcome of a random
variable. The entropy of agent ¢’s distribution is given by

H(0)=— //Pi,t (z,y)log, P; (z,y) dydx ()
zJy

As shown by Shannon in [20], the uncertainty in the
agent’s distribution is minimized by sampling the frame that
minimizes the expected information entropy of the posterior
distribution. This is equivalent to maximizing the expected
log-likelihood of the posterior, known as information gain.

Let py = P(B(f) = 1) be the probability that the sensor
data for frame f indicates that 8 € f, and let py =
P(B(f) =0) be the probability that the subject was not
detected in f. We assume a general probability model for
now and give an explicit one below. The information entropy
conditioned on the sensor data is defined as

HO|B(f)) = —(pilogapr) H(O|B(f) =1)

-1
— (pologapo) H(O|B(f)=0)  (3)

Thus, the frame f; that maximizes the information gained for
agent ¢ is

fi = argmax H(0)— H(0|B(f)) )
f
as given by [21].

While choosing the frame that maximizes information gain
helps concentrate the agent’s pdf, it is not designed to zero in
on the areas with highest probability and hence the subject’s
most likely location. We thus propose a two-state search
process for automated agents. In the first stage, the agent’s
strategy is to request the frame that minimizes the expected
entropy of his or her posterior distribution. In the second stage,
the agent employs a greedy strategy by requesting the frame
of maximum acceptable size for termination (given a and c)
that holds the greatest expected probability.

B. Step 2: UAV Frame Allocation

In each cycle, we have a queue of frame requests initiated
by distributed human and automated agents. Due to limited
resources, not all of these requests can be met within a
reasonable amount of time, since the UAVs can take several
seconds to physically adjust their positions, focus, and record
data. Consequently, we require a method that considers certain
user attributes to determine which frames to record and in what
order; we call this the UAV frame allocation problem.

We present a geometric approach that uses agent authority
coupled with cumulative dissatisfaction to prioritize frame
requests. Since both human and automated agents submit
requests in the format of a frame, we do not distinguish
between the two. We first consider the case where the agents
share control over a single UAV (i.e. m = 1) by formulating a
spatial dynamic voting optimization problem. We then provide
a heuristic that extends this solution to consider multiple
available resources.

1) Single Frame Allocation: We adopt the model given in
[4], [S] to mathematically define a user’s satisfaction with
a proposed frame. Our objective then becomes to maximize
the priority-weighted sum of the users’ individual satisfaction
measures, which we denote as the global satisfaction function.
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Fig. 2: A sample snapshot of the frame requests in the queue at a given moment in time. The solution to the single frame
allocation problem is given by the thick rectangle in (a), and the corresponding solution to the multi-frame allocation problem

is shown in (b).

Let F' = {f1,..., fn} be a set of axis-parallel rectangles
with fixed aspect ratio that represents the frame requests cur-
rently on the queue. We define agent ¢’s individual satisfaction
s(f, f;) as a measure of the similarity or overlap between
candidate frame f and frame request f; € F. We use the
intersection over maximum to measure the similarity between
two rectangles, given by:

N Area (f N f;)
s(f, fi) = max (Area (f), Area (f;))

This function exhibits the following property: 0 < s(f, f;) <
1. The agent’s satisfaction is therefore O when the intersection
of f; with f is the empty set (i.e. they are disjoint), and 1
when f; = f. A sample solution to the problem is illustrated
in Figure 2 (a). Furthermore, the function is piecewise linear,
allowing the use of computationally efficient optimization
algorithms.

Let s;; be the ith agent’s satisfaction with the frame
allocated at time step ¢, and let the agent’s dissatisfaction with
the frame be 5, ; = 1 —s; ;. We model the priority p; of agent
1’s frame request by taking the product of the agent’s authority
level and a normalized exponentially decaying function of
the agent’s dissatisfaction with the three previously allocated
frames:

®)

Q5 1 _ 1 _ 1 _
Pi= 0375 <2Si,t—1 + 752 + SSi,t—3> (6)
Hence, the more dissatisfied an agent is with the three
previously allocated frames, the higher his priority will be.
Furthermore, the model is constructed so that an agent’s
priority can never exceed his authority, and greater weight is
given to dissatisfaction from more recently allocated frames.
We desire an axis-parallel rectangle f* that maximizes total
satisfaction for all agents, weighted by priority:

o= argmax Y pis(f, fi), (7
! fieF
subject to f <max{Area(f;): f; € F}

We constrain the maximum area of an allocated frame to
be less than or equal to the area of the largest frame request
in the queue; this prevents the algorithm from selecting larger
frames in an attempt to satisfy more agents, which would in
turn significantly delay the time until the search can terminate
successfully.

Polynomial-time exact and approximation algorithms for
identifying a single optimal frame f* in this context are given
in [4], [5]. In the following section we extend this to find the
m best frames.

2) Multiple Frame Allocation: Given that there are m
UAVs available for use, we construct an optimization problem
that seeks to determine a sequence of m frames that maximize
the sum of all users’ individual satisfaction. A graphical exam-
ple of this problem is given in Figure 2 (b). It can be likened
to the p-center or facility location problem in Operations
Research, in which a set of facilities must be chosen and
located to minimize the distance between customers and their
nearest facility. [5]

To extend the single frame allocation algorithm to find
the m best frames, we prioritize the frame requests using
an m!" order exponentially decaying function of the agent’s
dissatisfaction as follows:

Q5 i 1 J _
Pi = 1 _ 2—m ; (2) Siﬂtfj (8)

We then run the single frame allocation algorithm m se-
quential times, updating the priority of each frame request
appropriately with each newly allocated frame.

C. Step 3: Sensor Data Extraction

The sensor is a camera and image processing system. Given
a frame specification, the UAV flies to the appropriate height
and location and takes a photo with the camera. The photo
is analyzed and a binary value {0,1} is returned, indicating 1
if the subject is detected in the frame and O otherwise. Since
the size of the frame is related to the level of detail/resolution
available to the image processing system, the sensor output
value is based on two factors: 1) whether or not the subject



a\c 0 002 0.04 006 008 0.10 0.12 0.14 0.16
0.02 | 6.47

0.06 | 467 420 7.20

0.10 | 483 517 500 6.17 11.03

0.14 | 417 443 510 540 597 647 830

0.18 | 430 357 540 487 713 540 510 927 9.07

TABLE II: The average number of steps required for five
agents to locate the subject using three UAVs and with
termination threshold a and obstruction density c.

is in fact located inside the frame, and 2) the accuracy of the
sensor, which corresponds to the size of the frame and the
density of obstructions in the underlying scene.

L _ Area(f) .
et r(f) = Trea(s) De the ratio of the area of a frame
f to the size of the search space, so that r(f) = 1 if the
frame is maximally large, and 0 < 7(f) < 1 for smaller
frame requests. f either contains the subject or it does not.
Let ¢y be a value between 0 and 1 that corresponds to the
average density of obstructions in frame f, and let B(f) be
the binary sensor output. Conditioned on the frame containing
the subject, we model B(f) as a Bernoulli random variable,
where the evidence is more likely to be accurate when the
frame is small (the image is of high resolution) and the density
of obstructions is low. According to agent ¢’s distribution, the
probability that the subject will be detected in frame f at time
t is given by:

(I—cp) A =r(f)Pis(f) ©)
1= =c) (X =r (M =Pi(f))

That is, if f contains the subject, the sensor returns
1 with probability (1 —cs) (1 —r(f)), and if f does not
contain the subject, the sensor returns 1 with probability
1—(1—cy) (1 —r(f)). With this sensor model, we determine
an upper bound on the acceptable frame size for termination
7 (f) by solving the following:

+

l—a < (I-c))(I=7(f))
=7(f) € 1- 1o (10)

Observe that frame f meets the size requirement for termina-
tion only when a > cy.

D. Step 4: Updating Priors

As evidence is collected during each cycle, every searcher’s
individual, spatial probability distribution for the subject’s
location must be updated to account for new information.

Let f} be the frame sampled at time ¢, and let B; be the
corresponding evidence collected. For agent k, we compute
the probability that 6 € f; by integrating over the marginals:

Pri(ff) :=Pri(0 € f]) = / (11)
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Fig. 3: Average number of steps to termination as given in
Table II. The number of steps increases when we require a
smaller frame to terminate.

Bayes’ rule can then be used to obtain the posterior probability
that the subject is located within f;, conditioned on the new
evidence as follows:

_ Pit(Bi]0 € f7) Pro(f7)
P+ (B¢)

Once each searcher’s posterior distribution has been up-
dated, we can incorporate the evidence from the next frame
(f{1) in a similar fashion. Our prior distribution is now given
by the posterior from the first step, and we use Bayes’ rule
and the information quality model to find the new posterior
distribution.

Py+(f]|Bt) 12)

IV. EXPERIMENTAL RESULTS

We are interested in determining how quickly the search
strategy described for automated agents can locate the hidden
subject. We created a scenario with a subject hidden uniformly
at random in a 25 x 25 grid with five automated agents of
equal authority and three UAVs; additionally, we randomly
generated a different prior distribution for each agent, which
we used to seed each run of the simulation. We tested the
agents’ combined performance 30 times each for a range of
termination thresholds (a) and constant obstruction densities
(c). We limited the first (information-seeking) phase of the
automated agent frame request algorithm to three steps and set
an upper bound of 200 iterations. Table II and Figure 3 reflect
the average number of iterations required for the runs that
successfully terminated within 200 iterations. Approximately
6.93 percent of the simulation runs diverged and were unable
to locate the subject; this behavior was particularly pronounced
when the difference between a and ¢ was small (i.e. when we
require a smaller frame to terminate).

We derive an upper bound on the expected number of steps
for a single automated agent to detect the subject by following
a naive frame request algorithm. Let a be the pre-specified
termination threshold, and let ¢ be the constant density of
obstructions across O. Then the largest acceptable frame for



termination has area 7 = 1 — i:‘j If we only consider frames

with area equal to 7, then we can sweep the entire search
space with 1/7 frames, and we terminate with the first frame
in which the subject is detected. To find an upper bound on
the number of frames we must take before the subject is
detected, assume that we continue search until the termination
conditions are met and the subject is truly located. Let f*
be the region of the search space in the partition of 1/7
frames that contains the subject. Sampling from the frame is
equivalent to sampling from a geometric distribution with a
probability of success equal to (1 — ¢) (1 — 7) = 1—a. Hence,
the expected number of samples of just frame f* required
before the subject is detected is ——, and
1
=)

1—a’

To compare the maximum information gain algorithm
against the naive search strategy, we ran each simulation until
an appropriately sized frame was found that truly contained the
subject. In our experiments we observed that on average the
number of steps taken by the maximum information gain frame
request algorithm is 65% fewer than the expected number of
steps required by the sweep strategy, with a standard deviation
of 15.8%. In experiments with three automated agents and a
single UAV, we observed a 57.7% improvement over the naive
search strategy.

E [time to truly locate subject] = (13)

S

V. CONCLUSION AND FUTURE WORK

In this paper we describe a framework for collaborative
control that is designed to accommodate different models
for sensor data extraction, agent authority hierarchies, prior
distributions, and termination conditions. Future work will
include extensive experiments with automated and human
agents. We will also seek to extend the frame allocation
algorithm to account for the current positions of the UAVs and
the cost of travel, incorporating path planning and scheduling
algorithms.
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