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Abstract—This paper presents an image-based annotation 
strategy for automated annotation of chemical databases. The 
proposed strategy is based on the use of a machine vision-based 
classifier for extracting a 2D chemical structure diagram in 
research articles and converting them into standard chemical 
file formats, a virtual “Chemical Expert” system for screening 
the converted structures based on the level of estimated 
conversion accuracy, and a fragment-based measure for 
calculation intermolecular similarity. In particular, in order to 
overcome limited accuracies of individual machine-vision 
classifier, inspired by ensemble methods in machine learning, it 
is attempted to use of the ensemble of machine-vision 
classifiers. For annotation, calculated chemical similarity 
between the converted structures and entries in a virtual small 
molecule database is used to establish the links. Annotation test 
to link 121 journal articles to entries in PubChem database 
demonstrates that ensemble approach increases the coverage of 
annotation, while keeping the annotation quality (e.g., recall 
and precision rates) comparable to using a single machine-
vision classifier.  

I. INTRODUCTION 
O search for chemical information in the scientific 
literature, chemical entities and their related information 

such as method of synthesis, chemical and biophysical 
properties, or biological activities need to be compiled in a 
structured form. With the aid of computer and informational 
techniques, cheminformatics research has devoted much 
effort into developing techniques for the storage, retrieval, 
and processing of chemical information in order to 
maximize the availability of chemical information published 
so far [1]. For example, scientists have registered new 
chemical structures with experimental properties to the CAS 
Registry System which is the largest commercially 
accessible chemical database in the world monitoring the 
scientific literature [2]. In the case of PubChem (the largest, 
publicly available chemical database integrated to the 
National Center for Biotechnology Information data 
warehouse), each chemical entries can have cross-reference 
links to related structures, bioassay data, and bioactivity 
description as well as relevant scientific articles. Thus, 
nowadays these chemical databases are, rather than a mere 
repository of molecular structure information, essential 
research tools allowing people can explore chemical 
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information distributed over the world efficiently [3, 4].    
While many chemical information systems have 

attempted to integrate all chemical information published 
up-to-date, much time and resources are spent on exploring a 
vast amount of unstructured information sources such as 
journal articles, patents, project reports, and books. In 
practice, it is a very daunting task for chemical experts to 
compile chemical information in the scientific literature, and 
often such manual curation results in the high cost of access 
[5]. Therefore an automated system annotating chemical 
structures in the chemical database with one or more 
relevant links to the scientific literature is highly demanded. 

The traditional approach for data mining the scientific 
literature is based on processing raw text information. In 
fact, various applications using text-mining and natural-
language processing (NLP) technology have been developed 
to integrate unstructured data in the biological and 
biomedical literature into biological databases [6]. In the 
case of the chemical document processing, instead of 
sequences representing genes or proteins within a document, 
chemical named entities should be identified first. Since a 
chemical compound might be expressed in various ways 
including generic name, IUPAC systematic nomenclature, 
abbreviations, and database index number, extracted 
chemical named entities need to be converted into their 
chemical structure by name-to-structure converting tools [7-
10]. A demonstration of this approach can be found in the 
IBM Chemical Search alpha site [11]. 

Another way to link entries in a chemical structure 
database with the scientific literature is to relate chemical 
structure diagrams embedded in the text of a scientific article 
to the corresponding structure entry in the database. Since 
novel chemical structures are usually referenced by chemical 
structure diagrams alone, this image-based annotation 
approach can complement the text-based approach 
mentioned above [12]. Basically, there are three essential 
stages in the image-based annotation: identification of a 
chemical structure diagrams from documents, conversion of 
a diagram to a chemical file format, and linking the 
converted structure to relevant entries in a chemical 
database. In order to extract raster images of the chemical 
diagrams and convert them into a standard, machine-
readable chemical file format, several machine vision-based 
classifier tools, so called chemical OCR systems such as 
Kekule [13], IBM OROCS[14], CLiDE [15], chemoCR [16], 
OSRA[17], and ChemReader [18] have been developed.  

In our previous works, we proposed an image-based 
annotation strategy in cooperation with ChemReader which 
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has been developed in our lab [19]. As a case study, the 
proposed annotation scheme was tested by attempting to link 
chemical structures in real journal articles to entries in the 
PubChem database. Even though our ChemReader 
outperformed other available software like OSRA V1.0.1 
and CLiDE V2.1 in a recognition test [18], many of 
chemical structures were discarded before the annotation 
task due to limited accuracy of machine vision algorithms. 
In fact, almost half of target articles couldn’t be linked to 
any entries in the PubChem database. 

Here, to achieve higher chance of linking articles to 
structures in a chemical database, we address the annotation 
study again utilizing an ensemble of machine-vision 
classifiers, rather than depending on a single machine vision 
classifier. Proposed method is inspired by ensemble 
approaches in machine learning, which uses multiple models 
to obtain better predictive performance [20]. That is, a single 
chemical structure diagram is allowed to be processed by 
multiple machine-vision classifiers. Multiple interpretations 
of an input structure are then used for linking the original 
input structure to relevant entries in a chemical database.  

II. MACHINE-VISION CLASSIFIER - CHEMICAL OCR SYSTEM 
Chemical OCR systems extract a 2D chemical structure 

diagram from a document and convert it into a standard 
chemical file formats. Fig. 1 shows the essential recognition 
steps of a chemical structure diagram. The first step in 
chemical OCR systems is to identify all the individual 
chemical diagrams in a document, and segment these 
diagrams into atoms and bonds connected to form an 
individual molecule. Next, with the isolated chemical 
structure image which consists of a long sequence of bits 
that give pixel-by-pixel values, the pixels are grouped into 
components based on pixel connectivity. These connected 
components are then classified as text or graphic objects. 
Text objects are transferred to a character recognition 
algorithm and converted to character symbols. Graphical 
objects representing bond connectivity are analyzed via the 
vectorization process [21] or the (Generalized) Hough 
Transformation [22, 23]. Finally, from recognized chemical 
symbols and bonds, the whole of the structural information 
is assembled, and a connection-table is generated, which can 
be converted into a standard chemical file format. The 
detailed description of the chemical OCR systems can be 
found in our previous report [18].  

ChemReader which is the one of chemical OCR systems 
employed here is a software developer toolkit tailored to a 
chemical database annotation scheme. The recognition 
algorithms are optimized to achieve high accuracy and 
robust performance sufficient for fully automated processing 
of research articles. In particular, for robust bond detection, 
ChemReader employs the Hough Transformation which is 
tolerant to noise. Also, for intelligent chemical symbol 
recognition, a chemical “spell checker,” a recovery process 
similar to the conventional OCR error correction, is 
implemented in ChemReader. These features enable 

ChemReader to process complicated structures or symbol 
abbreviations in the low-resolution image. 

Another chemical OCR program present in this report is 
OSRA-recently released, open source software written by 
the CADD group at the National Cancer Institute. Since 
most machine vision algorithms could yield quite different 
interpretations of the same input with a slightly different 
parameter setting, OSRA attempt to process a structure 
multiple times by varying parameters, and then picks one as 
an output based on its own empirical confidence function. 
This iterative processing of the same input could improve 
the overall ratio of correct outputs, so long as the confidence 
function is reliable enough. In our previous study, OSRA 
shows the most comparable accuracy to ChemReader. In this 
study, the latest version, OSRA V1.3.3 has been used 
(Recently, a new version, OSRA V1.3.4 was released). 

III. CHEMICAL EXPERT SYSTEM 
Any chemical OCR systems including ChemReader and 

OSRA, no matter how accurate they become in the future, 
will never be completely error free since there will always 
be chemical structure diagrams with low resolution, high 
noise level, and/or unconventional notations, which can 
disguise even most sophisticated machine-vision algorithms. 
As a remedy, we have introduced a virtual “Chemical 
Expert” system which can estimate the reliability of 
extracted structure. Assuming that the reliability of output 
structure produced by chemical OCR systems is related to 
the relevance of annotated information, the Chemical Expert 
system examines a few main types of recognition errors and 
then judge if the output structure can be used further in the 
annotation pipeline. To estimate the reliability of output 
structure, following features are checked. 
1) Number of fragmentized molecules: Assumes that input 

image contains only one chemical structure diagram, 
molecular fragments in the output structure indicate 

 
 
Fig. 1.  General recognition steps of chemical structure diagram images. (a) 
input image, (b) character-line separation, (c) bond recognition, and (d) 
character recognition, (e) topology construction, and (f) data output in 
standard chemical file format. 
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recognition errors like missing bonds or wrong node 
conjunction.  

2) Bond length: The chemical structure diagram drawn in 
the “standard” two-dimensional format keeps bond 
length being uniform over entire structure. Thus 
divergence of extracted bond length could be an 
indication of errors occurred in the recognition process. 

3) Bond angle: Since chains or ring systems which are 
frequently appeared in the chemical structure diagram 
are usually drawn by fixed angle, specific bond angles 
such as 60°, 90°, 108°, 120° and 180° are likely to be 
dominant in the bond angles of most chemical 
structures.  

4) Non-existent chemical symbol: Frequently, chemical 
OCR systems fail to interpret atomic symbols or 
chemical abbreviations in the chemical structure. Also, 
output symbols which do not make chemical sense are 
examined. 

5) Inconsistent distance between neighboring atoms: It is 
very rare that a group of nodes are located close to each 
other in the 2D chemical structure diagram.  

IV. IMAGE-BASED CHEMICAL DATABASE ANNOTATION WITH 
ENSEMBLE APPROACH 

A. Similarity-based linking 
A useful database annotation scheme does not necessarily 

require perfect, exact matches between database entries and 
scientific articles. In fact, the ability to link to similar but not 
identical structures may be important when the intent is to 
synthesize drug leads that are not identical to the molecule in 
question and to identify related compounds in the scientific 
literature. Such similar but not identical molecules, having 
been synthesized in other drug development projects, could 
provide some new ideas for developing a derivate for given 
virtual ligand candidate molecules. Thus, for the purpose of 
retrieving similar molecules from a chemical database, many 
different chemical-similarity search methods which use 
substructure keys, atom pairs, or other molecular properties 
have been developed and widely used [24]. The similarity 
between two molecules can be quantified by computing 
chemical coefficients such as the Tanimoto coefficient or 
Euclidean distance coefficient on the basis of their selected 
properties. As the number of chemical structures in a 
chemical database is explosively increasing, the similarity 
calculation should not be unnecessarily computationally 
heavy. Therefore, the Tanimoto coefficient in conjunction 
with the PubChem binary fingerprint allowing a rapid 
evaluation of chemical similarity is employed in this test. 

B. Chemical database 
The target database for our annotation test is the Pubchem 

database which is the largest, publicly accessible chemical 
structure database, encompassing a collection of 26 million  
unique structures that have been chemically synthesized or 
isolated and are therefore known to exist. As integrated with 
other components in the NCBI Entrez data warehouse, a 
structure in the PubChem database can have cross-reference 

links to related structures, bioassay data, bioactivity 
description, and literature related to the structure. However, 
since the majority of the entries in the PubChem database 
have been obtained from disparate sources such as 
commercial vendors, reference catalogues, and existing 
small molecule collections, current PubChem entries do not 
possess much information about the synthesis method of the 
molecules, their properties, or their biological activities [25]. 
Therefore the PubChem database might be one of the target 
databases which our annotation scheme can enrich. 

 

 
C. Article set 
The annotation test was performed on a total of 121 

journal papers from seven different journals in the fields of 
biomedical and molecular biology, each of which has at least 
one chemical structure diagram. The papers in the portable 
document file (PDF) format are downloaded via links in the 
PubMed journals database, and then embedded images are 
extracted by parsing the document file according to the PDF 
specification. Images containing nonchemical structures are 
discarded by hand. In general, the figures in the journal 
papers contain not only chemical structure diagrams but also 
simple symbols (e.g., reaction symbols) and text for the 
additional description. Since the current version of 
ChemReader assumes that there is only one chemical 
structure diagram within an input image, components not 
related to the chemical structure are removed manually using 
an image editor. Also, an image file is broken into pieces of 
an image in case the image file contains multiple chemical 
structures. Table 1 shows the title of journals, number of 
sampled articles, and number of extracted structure 
diagrams. Among the 609 structure diagrams in the testing 
set, 38 structures are duplicated, but those are present in 
different articles or drawn differently in an article. For the 

TABLE II 
CONTINGENCY TABLE 

  
Relevanta 

Yes No 

Linkedb 
Yes True Positive (TP) False Positive (FP) 

No False Negative (FN) True Negative (TN) 
a,b Relevant (linked) structures are PubChem compounds having Tanimoto 

coefficients over 90% to the original (output) structure in this test. 

TABLE I 
ARTICLE SETS FOR AN ANNOTATION TEST 

Journal 
index Journal title # of articles 

# of chemical  
structure  
diagrams 

1 J. Am. Chem. Soc. 23 104 
2 Angew. Chem., Int. Ed. Engl. 15 105 
3 J. Med. Chem. 36 187 
4 Chem. Commun. 13 61 

5 Chem. Biol. 14 64 
6 J. Biol. Chem. 14 58 

7 Tetrahedron Lett. 6 30 
Total 121 609 
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validation of our annotation strategy, we obtain original 
connection tables for testing chemical structures by drawing 
structures manually using ChemDraw software [26]. 

D. Ensemble approach  
Ensemble is a machine-learning technique for combining 

multiple models in attempt to obtain better predictive 
performance. To overcome weak accuracies of individual 
machine vision classifier (i.e. chemical OCR system), it 
would be possible to combine recognition results from 
multiple chemical OCR tools to improve the annotation 
performance. In our previous annotation test, a single output 
structure produced by only ChemReader was used to 
estimate the Tanimoto similarity coefficients between the 
associated input structure and entries in a chemical database. 
However, since different machine-vision algorithms could 
have different strengths in particular types of structures, 
multiple interpretation of the same input structure would 
increase the chance of including correct structure 
information.  

In this study, two machine-vision classifiers, the 
ChemReader and OSRA have been employed to obtain two 
multiple output structures for the same input chemical 
structure diagram. That is, given an image of 2D chemical 
structure si, both ChemReader and OSRA produce their own 
output structures, so

ChemReader
 and so

OSRA
 respectively. Since it 

is never easy to select one output structure which is likely to 
be correct for the annotation, the ensemble approach utilize 
both output structures together. Any PubChem entries 
having Tanimoto similairty over 90% to either so

ChemReader or 
so

OSRA
 are linked to si. Thus if either so

ChemReader or so
OSRA

 is 
correct output, all relevant entries are correctly annotated 
and then the number of true positive links is maximized. For 
the comparison, we performed the annotation test with 
individual machine vision classifier as well as the ensemble 
approach. Therefore there are three rounds of annotation 
tests, each of which utilizes one of following sets 
respectively. 

� ChemReader set: a set of ChemReader output 
structures   

� OSRA set: a set of OSRA output structures 
� Ensemble set: the union of ChemReader set and 

OSRA set 

E. Performance estimation 
As a measurement of the chemical database’s annotation 

performance, the recall and precision rates are used. 
Precision is the ratio of linked structures that are relevant 
whereas recall is the ratio of relevant structures that are 
linked. Once a structure diagram is , is processed by a 
chemical OCR system and then linked to entries in the 
PubChem, precision )( isP  and recall )( isR  rates of the 
structure diagram can be computed as follows. 
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where )( isTP , )( isFP  and )( isFN  mean respectively the 
set of true positive links, the set of false positive links and 
the set of false negative links to the structure, si. Table II is 
the contingency table describing those four notions. The 
averaged precision and recall rates over an output set also 
can be defined as
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where S denotes the set of input structures.  

V. DISCUSSION 
First of all, the recognition results show that successfully 

processed output structures by ChemReader or OSRA are 
not much overlapped. The Tanimoto similarity can be seen 
as the extent of correctly including chemically important 
features in the output structure. The more missed or 
misinterpreted PubChem substructure patterns the 
recognized structure has, the smaller the Tanimoto similarity 
becomes. Thus suppose output structures having Tanimoto 
similarity over 90% against corresponding input structures 
are successful outputs of chemical OCR systems, only 32% 
of successful outputs are commonly belong to both 
ChemReader set and OSRA set. Fig. 2 shows the number of 
successful outputs in each journal produced by ChemReader, 
OSRA, or Both. In every journal, the ratio of overlapped 
successful outputs by both systems is less than 40% of total 
successful outputs. This clearly implies that the ensemble set 
would induce more true positive links than could be obtained 
only from either ChemReader set or OSRA set. 

The Chemical Expert system examines all output 
structures and removes output structures which do not 
satisfy a certain level of reliability. Fig. 3 and 4 show 
similarity histograms for both removed and accepted output 

 
Fig. 2.  Number of successful outputs produced by ChemReader or OSRA 
grouped by journal index. The successful output means that the output 
structure has Tanimoto similarity over 90% to the original structure.  
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structures of ChemReader and OSRA, respectively. In both 
cases, most of the unsuccessful output structures of small 
similarities are desirably removed. Even though there is loss 
in successful structures which could not satisfy the 
conditions in the Chemical Expert system, the fraction of 
loss is much smaller than the fraction of unsuccessful 
structures being filtered out. Table III summarizes the final 
results of the Chemical Expert system in this test.  

 
Number of accepted chemical structures in ChemReader 

set, OSRA set, and Ensemble set is 288, 253, and 541, 
respectively. Note that 541 structures in Ensemble set 
corresponds to only 376 input chemical structures. Using a 
90% Tanimoto similarity as a threshold for linking the 
structure in the articles with PubChem entries, 72,223, 
88,100, and 101,691 PubChem compounds (unique 
structures) were identified as relevant entries to the 
molecules in ChemReader set, OSRA set, and Ensemble set, 
respectively. On the other hand, 43,577 PubChem entries via 
ChemReader set, 43,244 PubChem entries via OSRA set, 
and 69,469 PubChem entries via ensemble set were 
retrieved. All similarity searches are performed using the 
PUG SOAP interface [27] with a 90% Tanimoto similarity 
coefficient as a threshold. 

Table IV shows the total number of TP, FP, and FN links 
in three tests. Since one PubChem entry can have multiple 
links to output structures, the sum of true and false positive 
links in Table IV is more than the number of retrieved 
unique PubChem entries. As expected, Ensemble set has 
much more TP links than any of ChemReader set or OSRA 
set. Table V shows the averaged recall and precision rates of 

three tests. Compared to ChemReader set and OSRA set, the 
ensemble set shows the highest recall rate as well as a 
moderate precision rate. In order word, without much 
decrease in precision rate, the ensemble approach could 
increase number of useful annotations. 

 

 
It should be noted that our current ensemble approach 

does not much improve in the recall and precision rates 
while the number of true positive links increase 
significantly. The reason is attributed to the manner 
constructing the ensemble set. Currently, we simply join the 
ChemReader set and the OSRA set for the ensemble set. 
However this simple union causes inherently the increase in 
FP and FN links as well as TP links. To improve the quality 
of annotations significantly as well as in the coverage of 
annotation with the ensemble approach, it would be required 
that the ensemble set includes only the most reliable output 
structure from multiple outputs produced by different 
chemical OCR tools. This might become possible as making 
the Chemical Expert system be able to estimate the 
reliability of output structures from different chemical OCR 
tools.  

For the future work, we plan to combine the existing 
functionality with text-mining and NLP technologies to use 

TABLE V 
AVERAGED RECALL AND PRECISION RATES OVER STRUCTURES 

 Avg. Precision Avg. Recall 

ChemReader 0.563 0.569 

OSRA 0.491 0.568 

Ensemble 0.544 0.619 

TABLE IV 
TOTAL NUMBER OF TP, FP, AND FN LINKS 

 TP FP FN 

ChemReader 24592 30844 47631 

OSRA 33105 21067 54995 

Ensemble 45707 51535 55984 

 

 
Fig. 4.  Tanimoto similarity histogram between original structures and 
OSRA 1.3.3 output structures.  

TABLE III 
NUMBER OF REMOVED, ACCEPTED & CORRECT, AND ACCEPTED & 

WRONG STRUCTURES 

    ChemReader OSRA Botha 

Accepted 
successful 85 61 29 

unsuccessful 203 192 136 

Removed 
successful 38 41 5 

unsuccessful 283 315 207 
aSet of chemical structures commonly belong to ChemReader and OSRA 
outputs 

 
Fig. 3.  Tanimoto similarity histogram between original structures and 
ChemReader output structures.  
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information in figure captions and the body of the 
manuscript for increasing the accuracy of the annotations. In 
traditional text-mining approaches, the article is indexed by 
several keywords including chemical names extracted from 
the title or the abstract section. For example, the National 
Library of Medicine (NLM) added chemical names into 
MeSH data so that articles in the PubMed database could be 
searchable by the chemical name [5]. Similarly, we propose 
that chemical structure diagrams in a scientific article can be 
used for MeSH indexing of articles. As demonstrated at the 
TIMI system [28], such integration of both chemical and 
textual descriptors enables linking the article with the 
chemical structure, which can uncover the contextual 
scientific knowledge sought by the pharmaceutical, 
biological, and medicinal chemistry research community. 

VI. CONCLUSION 
 This paper presents an image-based annotation strategy for 
automated annotation of chemical databases. The proposed 
strategy is based on the use of a machine vision-based 
classifier for extracting a 2D chemical structure diagram in 
research articles and converting them into standard chemical 
file formats, a virtual “Chemical Expert” system for 
screening the converted structures based on the level of 
estimated conversion accuracy, and a fragment-based 
measure for calculation intermolecular similarity. In 
particular, in order to overcome limited accuracies of 
individual machine-vision classifier, inspired by ensemble 
methods in machine learning, it is attempted to use of the 
ensemble of machine-vision classifiers. Annotation test to 
link 121 journal articles to entries in PubChem database 
demonstrates that ensemble approach increases the coverage 
of annotation, while keeping the annotation quality 
comparable to using a single machine-vision classifier. 
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